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ABSTRACT

4873018063; Petroleum Technology Program
Teerawit Frasomsri: Selectivity of Ring-Contraction Products in the
Hydroisomerization of Methylcyclohexane.
Thesis Aavisors; Assoc. Prof, Thirasak Rirksomboon, Prof. Daniel E
Resasco, Dr. Siriporn Jongpatiwit, and Prof. Somchai Osuwan.
69 pp.
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The hydroisomerization of methylcyclohexane (MCH) was conducted at the
temperature 533 K in the presence of hydrogen at a total pressure of 2 MPa, and
HJIMCH molar ratio of 40. Zeolitic (FAU, MFI, and BEA) and non-zeolitic
(tungstated zirconia) solid acids were used as the catalysts and the supports. Bare and
Pt-supported (1 wt%) catalysts were used to study the effect of the hydride transfer
rate to the product selectivity. Ohserved products under these conditions are mainly
the MCH ring-contraction (RC) isomers consisting of 1,1-dimethylcyclopentane, cis-
1,3-dimethylcyclopentane,  /ram-1,3-dimethylcyclopentanes, /ram-1,2-dimethyl-
cyclopentane, and ethylcyclopentane. Acid strength played an essential role to the
different carbénium ion intermediate formations resulting in different RC isomers.
Besides the acid strength, the shape selectivity of the catalysts was important to the
RC product distribution. Interestingly, effect of hydrice transfer rate influenced to
the selectivity of RC isomers over all kinds of zeolites, but tungstated zirconia.
Moreover, two different SI/Al ratios (25 and 30) of FAU zeolites with and without
loacled platinum revealed the insignificant difference in selectivity.
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