REFERENCES

- Abbasi, S.A., Nipaney, P.C., and Panholzer, M.B. (1991) Biogas production from the aquatic weed pistia (Pistia stratiotes), <u>Bioresource Technology</u>, 37(3), 211-214.
- Abbasi, S.A., Nipaney, P.C., and Ramasamy, E.V. (1992) Studies on multiphase anaerobic digestion of salvinia. <u>Indian Journal of Technology</u>. 30(10), 483-490.
- Abbasi, T., Tauseef, S.M., and Abbasi, S.A. (2012) Anaerobic digestion for global warming control and energy generation-an overview. <u>Renewable and Sustainable Energy</u>, 16, 3228-3242.
- Achu, I and Bjornsson, L. (2012) High methane yields and stable operation during anaerobic digestion of nutrient-supplemented energy crop mixtures. <u>Biomass</u> <u>and bioenergy</u>, 47, 62 -70.
- Balaban, D. and Ucar, Y. (1999). Anaerobic biological treatment of high strength cassava starch wastewater in a new type up-flow multistage anaerobic reactor. <u>Bioresource Technology</u>, 104, 280–288.
- Balat, M. (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. <u>Energy Conversion and Management</u>, 52, 858-875.

o

- Bobleter, M., Kaewkannetra, P., Chiwes, W., and Chiu, T. (1994) Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology. <u>Fuel</u>, 90, 2746–2750.
- Chandra, R., Takeuchi, H., and Hasegawa, T. (2012) Methane production from lignocellulosic agricultural crop waste: a review in context to second generation of biofuel production. <u>Renewable and Sustainable Energy</u> <u>Reviews</u>, 16, 1462-1476.
- Chen, Y., Cheng, J.J., and Creamer, K.S. (2008) Inhibition of anaerobic digestion process: a review. <u>Bioresource Technology</u>, 99(10), 4044-4064.

- Chen, H. and Lee, A. (2014) A solution against well cement degradation under CO₂ geological storage environment. <u>International journal of green house gas</u> <u>control</u>, 3, 206–216.
- Christy, M., Gopinath, R., and Divya, D. (2014) A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. <u>Renewable and Sustainable Energy Reviews</u>, 34, 167–173.
- Daisy, A. and Kamaraj, S. (2011) The impact and treatment of night soil in anaerobic digester: a review. <u>Microbial and Biochemical Technology</u>, 3, 43-50.
- Dorota, K. (2011) Cu(II), Zn(II), Co(II) and Pb(II) removal in the presence of the Complexing agent of a new generation, <u>Desalination</u>, 267, 175-183.
- Ek, P., Zhibin, Z., Yi, I., Leilei, W., Yufeng, L., Meng, W., and Baoyu, G. (2011) Effect of Ferric Chloride on the Properties of Biological Sludge in Co-precipitation Phosphorus Removal Process. <u>Energy Resources and Environmental</u> <u>Technology</u>, 21(5), 564—568.
- Ejlertsson, M., Bao,Y., Aidang, S., Zhang, D., Lou, Z., Yuan, H., Huang, X., Zhu, N., and Hu, X. (2006) Dosing time of ferric chloride to disinhibit the excessive volatile fatty acids in sludge thermophilic anaerobic digestion system. <u>Bioresource Technology</u>, 189, 154–161.
- Elferink. R., Silvestre, G., Fernandez, B., and Bonmat, A. (1994) Significance of anaerobic digestion as a source of clean energy in wastewater treatment plants. <u>Energy Conversion and Management</u>, 101, 255–262.
- Ermler, X. (2005) Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields. Journal of Geochemical Exploration. 147, 139–150.
- Fengel, B. and Wegener, L. (1984) Characteristics of degraded hemicellulosic polymers obtained from steam exploded wheat straw. <u>Carbohydrate Polymers</u>, 60, 15-26.

- Ferguson, R. and Diesenhofer, H. (2004) Study of micronutrients (copper, zinc and vitamin B12) in posterolateral myelopathies. <u>Journal of the Neurological</u> <u>Sciences</u>, 329, 11–16.
- Fermoso, B., Dermirel, B., and Scherer, P. (2009) Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane, <u>Biomass and Bioenergy</u>, 35, 992-998.
- Franzel, R. and Markert, T. (2002) Effect of enzymatic pretreatment on the anaerobic digestion of milk fat for biogas production. <u>Food Research International</u>, 73, 26–30.
- Fricke, K., Santen, H., Wallmann, R., Huttner, A., and Dichtl, N. (2007) Operating problems in anaerobic digestion plants resulting from nitrogen in MSW. <u>Waste Management</u>, 27(1), 30-43.
- Fubao, N., Wang, W., Xie, L., Luo, G., Zhou, Q., and Lu, Q. (2010) Optimization of biohydrogen and methane recovery within a cassava ethanol wastewater/waste integrated management system. <u>Bioresource Technology</u>, 120, 165–172.
- Garrot, N., Tran, T., Da, J., Santander, M., Adolfo, G., Giraldo, A., and Kuakoon P. (1999) A comparison of energy use, water use and carbon footprint of cassava starch production in Thailand, Vietnam and Colombia. <u>Resources</u> <u>Conservation and Recycling</u>, 100, 31–40.
- Gerardi, (2006) Optimization of thermal-dilute sulfuric acid pretreatment for enhancement of methane production from cassava residues. <u>Bioresource</u> <u>Technology</u>, 102, 3958–3965.
- Grabber, N., Narkchamnan, S., and Sakdaronnarong, C. (2005) Thermo-molded biocomposite from cassava starch, natural fibers and lignin associated by laccase-mediator system. <u>Carbohydrate Polymers</u>, 96, 109–117.
- Gray, P., Evangelina, M., Felissia, F., Kruyeniski J., and Area, M. (2003) Kinetic study of the extraction of hemicellulosic carbohydrates from sugarcane bagasse by hot water treatment. <u>Industrial Crops and Products</u>, 67, 1–6.

D

- Haberl, H., Mook, W., Aroua, M., and Issabayeva, G. (2012) Prospective applications of renewable energy based electrochemical systems in wastewater treatment: A review. <u>Renewable and Sustainable Energy Reviews</u>, 38, 36–46.
- Hsu, R., Kurdi, P., and Hansawasdi, C. (1980) Assessment of the prebiotic potential of oligosaccharide mixtures from rice bran and cassava pulp. <u>LWT - Food</u> <u>Science and Technology</u>, 63, 1288-1293.
- Hsu, R. (1996) Biodegradable foams based on cassava starch, sunflower proteins and cellulose fibers obtained by a baking process. <u>Journal of Food</u> Engineering, 85, 435–443.
- Itsadanont, A. (2013) A one-step electrochlorination/electroflotation process for thetreatment of heavy metals wastewater in presence of EDTAA. <u>Chemical Engineering and Processing</u>, 70, 110-116.
- Jenicek, P. (2011)Microbial community functional structure in response to microaerobic conditions in sulfate-reducing sulfur-producing bioreactor. <u>Journal of</u> <u>Environmental Sciences</u>, 26, 1099–1107.
- Jenicek, P., Keclik, F., Maca, J., and Bindzar, J. (2008) Use of microaerobic conditions for the improvement of anaerobic digestion of solid wastes. <u>Water Science</u> <u>and Technology</u>, 58(7), 1491-1496.
- Jenicek, P., Koubova, J., Bindzar, J., and Zabranska, J. (2010) Advantages of anaerobic digestion of sludge in micreaerobic conditions. <u>Water Science and</u> <u>Technology</u>, 62.2, 427-434.
- Kelleher, B.P., Leahy, J.J., Henihan, A.M., O'Dwyer, T.F., Sutton, D., Leahy, M.J., (2000) Advances in poultry litter disposal technology. <u>Bioresource</u> <u>Technology</u>. 83, 27–36.
- Khongsumran, O., Leethochawalit, M., Chavadej, S., and Rangsunvigit, P. (2013) Enhancement of Anaerobic Digestion of Cellulosic Fraction in Wastewater by Microaeration.

σ

Krom, G. (2002) Cacotheline as a reagent for the detection of ferrous and ferric iron. <u>Bioresource Technology</u>, 12, 271–279.

- Laureano-Perez, L., Zhao, Y., Zhang, S., and Chen, J. (2005) Mechanisms of sequential dissolution and hydrolysis for lignocellulosic waste using a multilevel hydrothermal process. Chemical Engineering Journal, 273, 37–45.
- Lawther, L., Avancini S., Faccin G., Vieira, M., Rovaris, A., Podesta, R., and Tramonte, N. (1996) Cassava starch fermentation wastewater: Characterization and preliminary toxicological studies. <u>Food and Chemical</u> <u>Toxicology</u>, 45, 2273–2278.
- Levan, B., O-Thong, S., Hniman, A., Prasertsan, P., and Imai, T. (1990) Biohydrogen production from cassava starch processing wastewater by thermophilic mixed cultures. <u>International Journal of Hydrogen Energy</u>, 36, 3409-3416.
- Lijo, J., Wang, J., and Moriizumi, Y. (2014) Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste. <u>Waste Management</u>, 33, 813-819.
- Mackie, P., Yalcinkaya, S., Joseph, F., and Malina, J. (1998) Model development and evaluation of methane potential from anaerobic co-digestion of municipal wastewater sludge and un-dewatered grease trap waste. <u>Waste Management</u>, 40, 53–62.
- Mao, C., Feng, Y., Wang, X., and Ren, G. (2015) Review on research achievements of biogas from anaerobic digestion. <u>Renewable and Sustainable Energy</u> <u>Reviews</u>, 45, 540–555.
- Mcmillan, D. (1994) <u>Refining and Marketing: the Refining Industry and Sustainable</u> <u>Development</u>. Total Professors Association (Sheet Handout, Bangkok, Thailand).
- Millett, D., Domen, T., Luo, C., and Li, X. (1979) The use of chelating agents in the remediation of metal-contaminated soils: A review, <u>Environmental Pollution</u>, 153, 3-13.
- Moestedt, T., Christianne, A., David, L., and Sedlak, H. (2013) Effect of ferric chloride addition on the removal of Cu and Zn complexes with EDTA during municipal wastewater treatment. <u>Water Research</u>, 38, 921–932.

- Moriizumi, B., Lijo, L., González-García, S., Bacenetti, J., Fiala, and M., Feijoo, G.
 (2012) Assuring the sustainable production of biogas from anaerobic monodigestion, Journal of Cleaner Production, 72, 23-34.
- Olugasa, F., Coban, H., Miltner, A., Elling, J., Hinrichs, K., and Kastner. M. (2014) The contribution of biogas residues to soil organic matter formation and CO₂ emissions in an arable soil, <u>Soil Biology and Biochemistry</u> 86, 108-115.
- Perez, L., Zhao, Y., Zhang, S., and Chen, J. (2005) Mechanisms of sequential dissolution and hydrolysis for lignocellulosic waste using a multilevel hydrothermal process. Chemical Engineering Journal, 273, 37-45.
- Pitter, K., Azizur, M., Rahman, M., Kadohashi, K., Maki, T., and Hasegawa, H. (2001) Effect of external iron and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake in rice. <u>Chemosphere</u>, 84, 439–445.
- Rapport, J., Xie, L., Zou, Z., Wang, W., and Shim, H. (2008) Anaerobic treatment of cassava stillage for hydrogen and methane production in continuously stirred tank reactor (CSTR) under high organic loading rate (OLR). <u>Intrenational</u> <u>Journal of Hydrogen Energy</u>, 35, 11733-11737.
- Rivers, N. and Emert, A. (1987) Bioconversion of lignocellulosic biomass to hydrogen: Potential and challenges. <u>Biotechnology Advances</u>, 27, 1051–1060.
- Saha, G., Rita L., George, J., Durval R., Maria A., and Adalberto P. (2003) Scale-up of diluted sulfuric acid hydrolysis for producing sugarcane bagasse hemicellulosic hydrolysate (SBHH). <u>Bioresource Technology</u>. 101, 1247– 1253.
- Schattauer, A., Abdoun, E., Weiland, P., Plochl, M., and Heiermann, M. (2011) Abundance of trace elements in demonstration biogas plants, <u>Biosystems</u> <u>Engineering</u>, 108, (57-65).
- Siddiqui, Z., Horan, N., and Anaman, K. (2011) Optimisation of C:N ratio for codigested processed industrial food waste and sewage sludge using the BMP test. <u>International Journal of Chemical Reactor Engineering</u>. 9(9), 1-15.

- Sidiras, T. and Koukios, F. (1989) Biodegradation of lignocellulosic substances and production of sugars and lignin degradation intermediates by four selected microbial strains. <u>Polymer Degradation and Stability</u>, 61, 535-542.
- Sweet, N. and Winandy, M. (1999) Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum. <u>Renewable Energy</u>, 36 3367-3372.
- Tomme, K., Teixeiraa, E., Curvelob, A., Marconcinia, A., and Mattosoa, L. (1995) Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid), <u>Industrial Crops and Products</u>, 37, 61-68.
- Vintiloiu, A., Kalyuzhnyi, S., Scharff, H., and Hamelers, B. (2013) A one-step electrochlorination/electroflotation process for thetreatment of heavy metals wastewater in presence of EDTA. <u>Chemical Engineering and Processing</u>, 70, 110-116.
- Wang, H. and Banks, G. (2006) Effect of biogas utilization and plant co-location on life-cycle greenhouse gas emissions of cassava ethanol production, <u>Journal of Cleaner Production</u>, 37, 326-334.
- Wang, H., Suksri, P., Hondo, H., and Wake, Y. (2011) Effect of biogas utilization and plant co-location on life-cycle greenhouse gas emissions of cassava ethanol production, Journal of Cleaner Production, 37, 326-334.
- Weiland, P. (2010) Biogas production: current state and perspectives. <u>Applied</u> <u>Microbiology and Biotechnology</u>, 85(4), 849-860.
- Winandy, M., Nitschke, M., Franc, O., and Contiero, J. (1995) Structure, properties and applications of rhamnolipids produced by Pseudomonas aeruginosa L2-1 from cassava wastewater. <u>Process Biochemistry</u>, 45, 1511–1516.
- Worms, G., Ferenc, K., and Baranyai, Z. (2006) Lanthanide(III) complexes of some natural siderophores: A thermodynamic, kinetic and relaxometric study. <u>Journal of Inorganic Biochemistry</u>, 127, 53–61.

- Yu, H., Zhu, Z., Hu, W., and Zhang, H. (2014) Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic
 - cultures. International Journal of Hydrogen Energy, 27, 1359-1365.
- Yu, H., Li, M., Guan, J., Han, J., Liang, W., Wang, K., and Guo, B. (2015) Absorption and oxidation of H₂S in triethylamine hydrochloride ferric chloride ionic liquids. Journal of Molecular Liquids, 209, 58–61.
- Zhang, G., Wang, W., Xie, L., Chen, J., Luo, G., and Zhou Q. (2011) Biohydrogen and methane production by co-digestion of cassava stillage and excess sludge under thermophilic condition. <u>Bioresource Technology</u>, 102, 3833–3839.
- Zheng, Q., Pattiya, A., Titiloye, J., and Bridgwater, A. (2014) Evaluation of catalytic pyrolysis of cassava rhizome by principal component analysis. <u>Fuel</u>. 89, 244–253.
- Noloya,A. and Tinajero, A "Effect of biological additives and micronutrients on the anaerobic digestion of physicochemical sludge." Water Science Technology. 10 Oct, 2005. 30 June 2014 <<u>http://www.ncbi.nlm.nih.gov/pubmed/16180439.</u> html>
- Tafdrup, S "Biogas Composition." Naskeo Environnement. 3 Nov, 2009. 12 July 2014 http://www.biogas-renewable-energy.info/biogas composition. http://www.biogas-renewable-energy.info/biogas composition.
- Tierno, P "A Chemical Engineer's Guide to Cleaning Just About Anything." A review of engineering in everyday life. 26 Jun, 2015. 23 July 2014 <https://illumin.usc.edu/139/a-chemical-engineer39s-guide-to-cleaning-justabout-anything. html>
- Rackemann, D " Evaluation of mud filtrate clarification to improve factory performance." Australian Society of Sugar Cane Technology. 8 Jul, 2010. 30 July 2014 https://www.akzonobel.co/dissolvinegl/news/pressreleases/2010/20100708_merit award_glda_ chelates.aspx.html>

Wiktionary, I "Chelating agents are ligands for metals that by via multiple atoms thus taking up several coordination sites on the metal." Chelating Agent. 5 May, 2010. 28 July 2014 <www.boundless.com/chemistry/textbooks/ boundless-chemistry-textbook/transition-metals-22/reactions-andapplications-of-coordination-compounds-161/chelating-agents-620-7511 /issues/new/.html>

o

APPENDICES

Appendix A Calibration Curves for Gas Chromatography (Temperature of 45 °C, Retention Time of 60 Minute)

 Table A1
 Calibration curve for hydrogen (H2)

Volume of Hydrogen (ml)	Peak Area
0.02	16,313
0.04	58,770
0.08	180,674
0.1	226,743
0.2	427,198
0.4	778,509

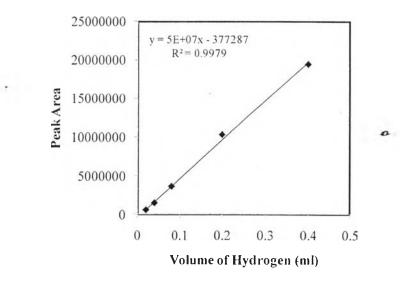
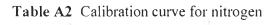
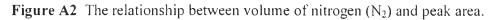
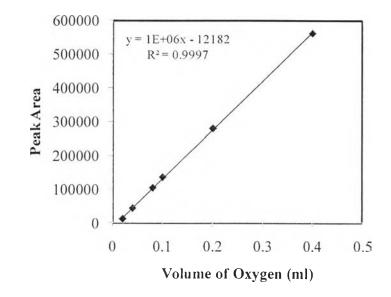



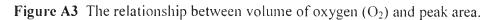
Figure A1 The relationship between volume of hydrogen (H₂) and peak area.


Equation

Amount of hydrogen =
$$\frac{\text{Peak area} + 377287}{5 \times 10^7}$$

Volume of Nitrogen (ml)	Peak Area
0.02	34,210
0.04	128,767
0.08	305,287
0.1	393,916
0.2	809,433
0.4	1.602,475


Equation


O

Amount of nitrogen =
$$\frac{\text{Peak area} + 29532}{4 \times 10^6}$$

Volume of Oxygen (ml)	. Peak Area
0.02	12,286
0.04	43,995
0.08	104,342
0.1	135,546
0.2	280,220
0.4	562,001

Table A3 Calibration curve for oxygen

Equation

0

Amount of oxygen =
$$\frac{\text{Peak area} + 12182}{1 \times 10^6}$$

Table A4 Calibration curve for methane (CH₄)

Volume of Methane (ml)	Peak Area
0.02	92,517
• 0.04	381,106
0.1	1.293,552
0.2	2,674,654

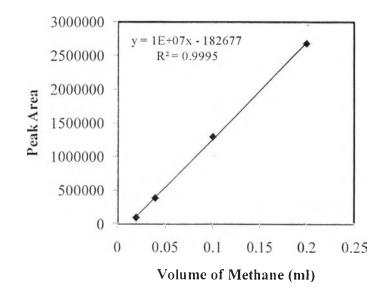
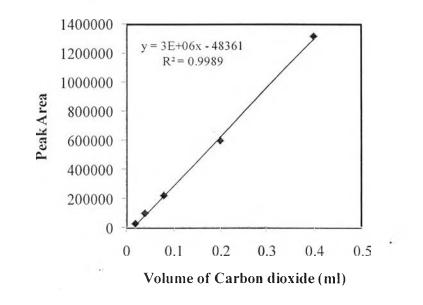


Figure A4 The relationship between volume of methane (CH₄) and peak area.


Equation

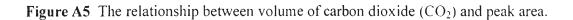
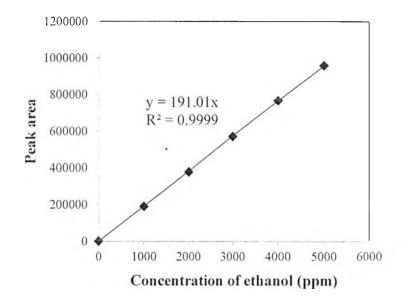
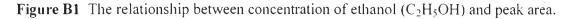

Amount of methane =
$$\frac{\text{Peak area} + 182677}{1 \times 10^7}$$

Table A5 Calibration curve for carbon dioxide (CO₂)

*

Volume of Carbon Dioxide (ml)	Peak Area
0.02	26,118
0.04	97,539
0.08	220.122
0.2	596,414
0.4	1,315,885


Equation


Amount of carbon dioxide =
$$\frac{\text{Peak area} + 48361}{3 \times 10^6}$$

Appendix B Calibration Curves for High Performance Liquid Chromatography (Temperature of 45 °C, Retention Time of 60 Min, Mobile Phase of 4 Mm H₂SO₄)

Concentration of Ethanol (ppm)	Peak Area
1000	189,866
2000	377,275
3000	569,223
4000	765,786
5000	958,108

 Table B1
 Calibration curve for ethanol (C2H5OH)

Equation

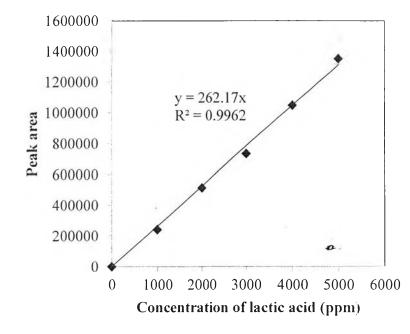
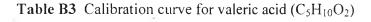
Concentration of ethanol =
$$\frac{\text{Peak area}}{191.01}$$

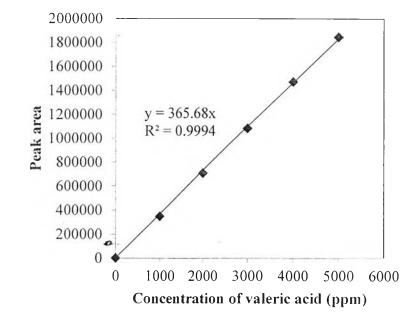
82

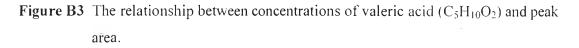
o

Concentration of Lactic acid (ppm)	Peak Area
1000	241,057
2000	513,754
3000	735,330
4000	1,047,749
5000	1,350,707

Table B2	Calibration	curve for	lactic acid	$(C_3H_6O_3)$


Figure B2 The relationship between concentrations of lactic acid $(C_3H_6O_3)$ and peak area.


Equation

Concentration of lactic acid =
$$\frac{\text{Peak area}}{262.17}$$

Concentration of Valeric Acid (ppm)	Peak Area
1000	. 346,808
2000	707,645
3000	108,2011
4000	1,470,955
5000	1,844,040

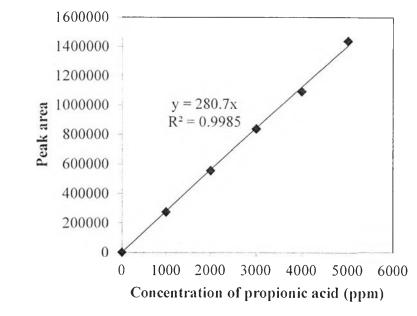
Equation

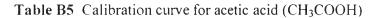
0

Concentration of valeric acid = $\frac{\text{Peak area}}{365.68}$

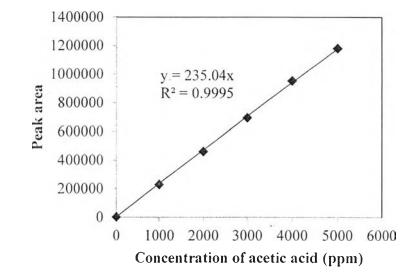
Concentration of Propionic Acid (ppm)	Peak Area
. 1000	274,670
2000	553,990
3000	836,683
4000	1,091,859
5000	1,435,669

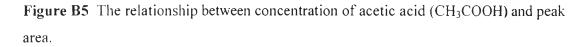
Table B4 Calibration curve for propionic acid (C₃H₆O₂)




Figure B4 The relationship between concentrations of propionic acid $(C_3H_6O_2)$ and peak area.

Equation


0


Concentration of propionic acid =
$$\frac{\text{Peak area}}{280.7}$$

Concentration of Acetic Acid (ppm)	Peak Area
1000	226,593
2000	458,639
3000	693,445
4000	951,778
5000	1,179,161

•

Equation

Concentration of acetic acid =
$$\frac{\text{Peak area}}{235.04}$$

Table B6	Calibration curve for butyric acid (C ₃ H ₆ O ₃)

Concentration of Butyric Acid (ppm)	Peak Area
1000	310,185
2000	636,623
3000	974.830
4000	1,315,752
5000	1,672,791

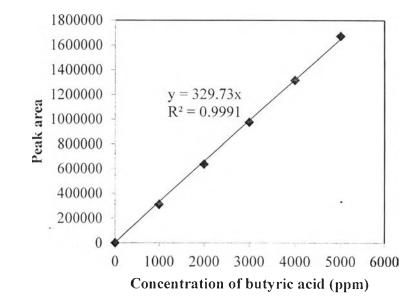


Figure B6 The relationship between concentrations of butyric acid $(C_3H_6O_3)$ and peak area.

Equation

Concentration of butyricacid =
$$\frac{\text{Peak area}}{329.73}$$

CURRICULUM VITAE

Name: Ms. Arada Sookkeaw

Date of Birth: October 10, 1989

Nationality: Thai

University Education:

2010–2013 Bachelor Degree of Chemical Engineering, Faculty of Engineering, King Mongkut 's University of Technology North Bangkok.

Proceedings:

1. Sookkeaw, A.; Chavadej, S.; Leethochawalit, M.; and Intanoo, P.

(2015, April 21) Improvement of biogas production by added chelant for micronutrient control. <u>Proceedings of The 6th Research Symposium on</u> <u>Petrochemical. and Materials Technology and The 21th PPC Symposium on</u> <u>Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand.</u>

Ø

a