PREPARATION OF NATURAL RUBBER-COATED BANANA CELLULOSE-BASED SHEET BY DBD PLASMA TREATMENT FOR WATER RESISTANCE IMPROVEMENT

Chanikan Saelim

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2013

I28372773

Thesis Title:	Preparation of Natural Rubber-coated Banana Cellulose-
	based Sheet by DBD Plasma Treatment for Water Resistance
	Improvement
By:	Chanikan Saelim
Program:	Polymer Science
Thesis Advisor:	Assoc. Prof. Ratana Rujiravanit

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

...... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Ratana Rijixanant

(Assoc. Prof. Ratana Rujiravanit)

Chiwadey remarth

(Prof. Sumaeth Chavadej)

R-Mel

(Asst. Prof. Manisara Phiriyawirut)

ABSTRACT

5472004063: Polymer Science Program
Chanikan Saelim: Preparation of Natural Rubber-coated Banana
Cellulose-based Sheet by DBD Plasma Treatment for Water
Resistance Improvement
Thesis Advisor: Assoc. Prof. Ratana Rujiravanit 64 pp.
Keywords: Natural rubber/ Cellulose/ Dielectric barrier discharge/ Zinc oxide/
Water resistance

In recent years, there has been much research conducted for the development of plant-based polymeric alternatives to petroleum-based products. Natural rubber is promising due to its outstanding properties such as water repellency, elasticity, toughness, impermeability, adhesiveness, and electrical resistance. In this work, natural rubber was used as a surface coating on cellulose sheet prepared from banana cellulose pulp in order to obtain eco-friendly cellulose products with improved water resistance. The fabrication of natural rubber-coated banana cellulose-based sheet was accomplished with the aid of dielectric barrier discharge (DBD) plasma treatment in order to enhance the coating ability of natural rubber on the fiber surface. The results showed that the surface hydrophilicity of cellulose sheet was increased after DBD plasma treatment due to the increase of oxygen-containing functional groups on the plasma-treated cellulose surface. The optimum DBD plasma treatment time was 30 s. The plasma-treated cellulose-based sheet was further immersed in natural rubber solution. The water contact angle could be increased from 55.7° in the case of untreated cellulose sheet up to 79.4° for the natural rubber-coated cellulose-based sheet. In addition, SEM micrographs also revealed coating of natural rubber on fiber surface.

บทคัดย่อ

ชนิกาญจน์ แซ่ลิ้ม : การเคลือบขางธรรมชาติบนพื้นผิวแผ่นเซลลูโลสจากต้นกล้วยที่ถูก ดัดแปลงด้วยเทคนิคพลาสมาแบบใดอิเล็กทริคแบริเออร์ดิสชาร์จ เพื่อเพิ่มสมบัติการต้านทานน้ำ (Preparation of Natural Rubber-coated Banana Cellulose-based sheet by DBD Plasma Treatment for Water Resistance Improvement) อาจารย์ที่ปรึกษา : รศ. ดร.รัตนา รุจิรวนิจ 64 หน้า

ในงานวิจัยนี้ได้ทำการเคลือบขางธรรมชาติบนพื้นผิวของแผ่นเซลลูโลสจากต้นกล้วยที่ ถูกดัดแปลงด้วยเทคนิคพลาสมาแบบไดอิเล็กทริคแบริเออร์ดิสชาร์จ พบว่าคุณสมบัติในการดูดซับ น้ำ (Hydrophilicity) บนพื้นผิวมีมากขึ้นหลังจากแผ่นเซลลูโลสผ่านพลาสมา เนื่องจากพลาสม่า ทำให้เกิดหมู่ฟังก์ชั่นที่มีขั้ว เช่น C-OH, C=O, และ O-C=O บนพื้นผิวของแผ่นเซลลูโลส เวลาที่ เหมาะสมสำหรับการใช้พลาสมาในการปรับปรุงพื้นผิวของแผ่นเซลลูโลสอยู่ที่ 30 วินาที หลังจาก นั้นแผ่นเซลลูโลสที่ถูกปรับปรุงพื้นผิวด้วยพลาสมาจะนำไปใส่ลงในสารละลายยางธรรมชาติที่ ละลายอยู่ใน โทลูอีน พบว่าค่ามุสัมผัสของน้ำบนผิวของแผ่นเซลลูโลสที่ถูกปรับปรุงพื้นผิวด้วย ไดอิเล็กทริคแบริเออร์ดิสชาร์จและเคลือบด้วยยางธรรมชาติมีค่าเพิ่มขึ้นจาก 55.7° เป็น 79.4° นอกจากนี้ภาพจากกล้องจุลทัศน์อิเล็กตรอนแบบสแกนยังแสดงให้เห็นการเคลือบของยาง ธรรมชาติบนพื้นผิวของเส้นใยเซลลูโลส

ACKNOWLEDGEMENTS

I am heartily thankful to my supervisor, Assoc.Prof. Ratana Rujiravanit, for providing invaluable knowledge, suggestions and kind support throughout this research work.

I would like to thank Prof. Sumaeth Chavadej and Asst. Prof. Manisara Phiriyawirut for being thesis committee.

I am grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College; and the Center of Excellence on Petrochemical and Materials Technology, Thailand.

I would like to show my gratitude to the staff members of Petroleum and Petrochemical college for training instrument and give the suggestion to me.

I am indebted to my many student colleagues to support a stimulating and fun environment to learn and grow. Particularly thanks are given to Chutima, Nattakamala, Weerayut, Kullakarn, Maneekarn, Thus, Supaporn and Sureerat for available themselves to me. Also, I simply say thanks to friends who made the two years such a memorable experience.

I would like to express my gratitude to my family for their understanding, encouragement and support for me throughout my life.

Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of the project.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	xi
List of Figures	xii

CHAPTER

I	INTRODUCTION	1
Π	LITERATURE REVIEW	3
	2.1 Papers	3
	2.1.1 Layered Structure of Paper	3
	2.2 Plant Fibers	3
	2.2.1 Different Types of Plant Fibers	3
	2.2.2 General Structure of Plant Fibers	4
	2.2.3 Chemical Composition of Plant Fibers	5
	2.2.4 Cellulose from Plant Fibers	7
	2.3 Natural Rubber	10
	2.4 Plasma	11
	2.4.1 Basic Principle of Plasma	11
	2.4.2 Classification of plasma	13
	2.4.2.1 Thermal plasma or equilibrium plasma	13
	2.4.2.2 Non-thermal plasma or non-equilibrium plasma	a 13
	2.4.3 Type of non-thermal plasmas	14
	2.4.3.1 Glow discharge	14
	2.4.3.2 Radio Frequency discharge	15

III

2.4.3.3 Microwave discharge	16
2.4.3.4 Gliding arc discharge	17
2.4.3.5 Corona discharge	18
2.4.3.6 Dielectric barrier discharge	19
2.4.4 Interaction of Plasmas with Polymer Surfaces	21
2.5 ZnO Particles	24
2.5.1 Basic Properties and Applications	24
2.5.2 ZnO Syntheses	25
2.5.2.1 Alkaline Precipitation	25
2.5.2.2 Organo-Zinc Hydrolysis	25
2.5.2.3 Spray Pyrolysis	25
2.5.3 ZnO Crosslinking	25
EXPERIMENTAL	27
3.1 Chemicals and Materials	27
3.1.1 Banana trunks	27
3.1.2 Natural rubber latex	27
3.1.3 Other chemicals	27
3.1.4 Air gas for plasma treatment	27
3.2 Equipment	27
3.2.1 Contact Angle Measurement	27
3.2.2 Ultraviolet-Visible Spectrophotometer (UV-Vis)	28
3.2.3 Wide Angle X-Ray Diffraction (WAXD)	28
3.2.4 Fourier Transformed Infrared Spectroscopy (FTIR)	28
3.2.5 Thermogravimetric Analyzer (TGA)	28
3.2.6 Scaning Electron Microscope (SEM)	28
3.2.7 X-Ray Photoelectron Spectroscopy (XPS)	29
3.2.8 Brookfield Viscometer	29
3.2.9 Water absorbency time	29

3.3 Methodology

29

	3.3.1 Preparation of Cellulose Fiber 2	9
	3.3.2 Preparation of Cellulose-based Sheet 2	9
	3.3.3 Preparation of Deproteinized Natural Rubber Solution 3	0
	3.3.4 Plasma Treatment and Sample Preparation 3	0
IV	ESULTS AND DISCUSSION 3	3
	Characterization of Cellulose Fibers derived from	
	Banana Trunks 3	3
	4.1.1 Morphological Analysis 3	3
	4.1.2 Chemical Analysis 3	4
	4.1.3 Thermogravimetric Analysis 3	5
	2 Characterization of DBD plasma-treated Cellulose sheets 3	6
	4.2.1 Effect of DBD Plasma Treatment Time on Water	
	Contact Angle on Cellulose sheets 3	6
	4.2.2 Effect of DBD Plasma Treatment Time on Surface	
	Chemical Composition of Cellulose sheets 3	7
	4.2.3 Effect of DBD Plasma Treatment on crystallinity	
	of Cellulose sheets 3	9
	Characterization of natural rubber-coated cellulose sheets 4	0
	4.3.1 Effect of NR Coating on Surface Morphology of	
	Cellulose Sheets 4	0
	4.3.2 Effect of NR Coating on Thickness of Cellulose	
	Sheets 4	0
	4.3.3 Effect of DBD Plasma Treatment Time on The	
	Amount of coated NR 4	1
	4.3.4 Effect of NR Concentration on The Amount of NR	
	coated on Cellulose Sheets 4	2

V

4.3.5	Effect of NR Coating on Water Contact Angle on	
(Cellulose Sheets	43
4.3.6	Effect of NR Coating on Thermal Properties of	
	Cellulose Sheets	43
4.3.7	Effect of NR Coating on Crystallinity of Cellulose	
	Sheets	44
4.3.8	Effect of number of NR Coating Cycles on The	
	Amount of NR coated on Cellulose Sheets and	
	Water Contact Angle	45
4.3.9	Effect of ZnO on The Amount of NR coated on	
	cellulose Sheets	46
4.3.10	Effect of ZnO on Water Contact Angle on cellulose	
	Sheets	47
4.3.11	Effect of Zn(NO ₃) ₂ Concentration on The Amount	
	of NR-coated on Cellulose Sheets and Water Contact	
	Angle	48
4.4.12	The Distribution of ZnO Deposition on cellulose	
	Sheets	48
4.3.13	Effect of NR Coating on Chemical Composition of	
	Cellulose Sheets	49
4.3.14	Water Absorbency Time of NR-Coated DBD Plasma-	
	Treated Cellulose Sheets and Water Contact Angle	51
CONCLU	SIONS	52
REFERE	NCES	53
APPENDI	CES	57

Appendix A	Effect of Plasma Treatment Time on Contact	
	Angle Measurement	57
Appendix B	Effect of Plasma Treatment Time on Amount	
	of Coating NR	58
Appendix C	Effect of Plasma Treatment Time on Contact	
	Angle Measurement	59
Appendix D	Effect of the Number of Coating Cycle on the	
	Amount of Coated Natural Rubber	60
Appendix E	Effect of the Number of Coating Cycle on	
	Contact Angle Measurement	61
Appendix F	Effect of ZnO on Amount of NR coated on	
	Cellulose Sheets	62
Appendix G	Effect of ZnO on Contact Angle Measurement	62
Appendix H	Effect of Zn(NO ₃) ₂ Concentration on The	
	Amount of NR-coated on Cellulose Sheets	63
Appendix I	Effect of Zn(NO ₃) ₂ Concentration on Water	
	Contact Angle	63

CURRICULUM VITAE 64

PAGE

LIST OF TABLES

TABL	TABLE	
2.1	Water droplet absorbency time and contact angle in the	
	untreated and He/BD plasma treated cellulosic samples	23
4.1	Effect of plasma treatment time on the percentage of	
	chemical composition	39
4.2	Thickness of untreated and NR-coated cellulose sheets	40
4.3	Effect of NR and ZnO coating on the percentage of chemical	
	composition	50
4.4	Water droplet absorbency time of the untreated and NR-	
	coated cellulose sheets	51

LIST OF FIGURES

FIGURE		PAGE
2.1	Arrangement of microfibrils and cellulose in the plant	
	cell wall	4
2.2	Structural constitution of natural vegetable fiber cell.	5
2.3	The structural unit of cellulose	6
2.4	Acid hydrolysis breaks down disordered (amorphous)	
	regions and isolates nanocrystals	8
2.5	Transmission electron micrograph of a dilute suspension	
	of sugar beet cellulose	9
2.6	Chemical structure of cis-1,4-polyisoprene	11
2.7	Schematic views of (a) a plasma and (b) a discharge.	12
2.8	General structure of a glow discharge	15
2.9	Schematic diagram of a capacitively-coupled plasma	
	(CCP) plasma source with an equivalent electrical circuit.	16
2.10	Schematic drawing of Microwave discharge	17
2.11	Phases of gliding arc evolution: (A) initial gas break-	
	down; (B) equilibrium heating phase; (C) non-	
	equilibrium reaction phase	17
2.12	The corona discharge-inhomogeneous discharge at	
	atmospheric pressure	19
2.13	Experimental set up of dielectric barrier discharge plasma	
	(DBD)	20
2.14	Schematic diagram of parallel-plate DBD plasma source	
	configurations	20
2.15	Schematic diagrams of cylindrical DBD plasma source	
	configurations	21

LIST OF FIGURES

FIGUREPAGE2.16Wide-scan (a,c) and C 1 s high-resolution (b,d) spectra of
an untreated (a, b) Cellophane foil sample and a sample,
which was treated in an oxygen plasma for 480 s (c, d)232.17Wurtzite (a) and zincblend phases (b) of ZnO242.18The crosslinking of carboxylated nitrile rubber with zinc
oxide263.1The DBD set up (1) power supply unit, (2) high voltage
transformer, (3) upper electrode, (4) lower electrode, (5)

3.1	The DBD set up (1) power supply unit, (2) high voltage	
	transformer, (3) upper electrode, (4) lower electrode, (5)	
	dielectric glass, (6) cellulose sheet, (7) mass-flow	
	controller, (8) air gas, (9) needle calve, (10) vacuum	
	pump and (11) plasma chamber	30
3.2	Flow chart of the entire experimental procedure	32
4.1	SEM image of cellulose fibers obtained from acid	
	hydrolysis of banana trunks	33
4.2	FTIR spectra of original banana trunks and prepared	
	cellulose fibers	34
4.3	The thermogravimetric analysis of original banana trunk	
	and cellulose fibers	35
4.4	Effect of plasma treatment time on water contact angle on	
	Cellulose sheet	36
4.5	ATR-FTIR spectra of cellulose sheets at different DBD	
	plasma treatment time	37
4.6	XPS spectra of (a) untreated- cellulose sheets and (b)	
	plasma-treated cellulose sheets at 30 s	38
4.7	XRD pattern of (a) untreated and (b) 30 s DBD plasma	
	treated cellulose sheet	39

LIST OF FIGURES

FIGURE		PAGE
4.8	SEM images of (a) untreated cellulose fiber and (b) NR-	
	coated cellulose fibers	40
4.9	Effect of DBD plasma treatment time on amount of	
	coated NR	41
4.10	Effect of NR concentration on amount of coated NR on	
	cellulose sheets	42
4.11	Effect of NR concentration on viscosity of NR solution	42
4.12	Effect of NR-coated cellulose sheets on water contact	
	angle	43
4.13	Effect of NR-coated cellulose sheets on thermal stability	44
4.14	XRD pattern of (a) 30 s DBD plasma treated and (b) NR-	
	coated cellulose sheets.	45
4.15	Effect of number of coating cycles on amount of NR	
	coated and water contact angle on cellulose sheets.	46
4.16	Effect of ZnO on amount of NR coated on cellulose	
	sheets	47
4.17	Effect of ZnO on water contact angle on cellulose sheets.	47
4.18	Effect of $Zn(NO_3)_2$ concentration on amount of coated	
	NR and water contact angle on cellulose sheets	48
4.19	SEM-EDX images of Zn atom distributed on NR/ZnO-	
	coated DBD plasma-treated cellulose surface.	49
4.20	XPS spectra of (a) NR-coated (A) and (b) NR/ZnO-	
	coated cellulose sheets (C)	50