MECHANICAL, RHEOLOGICAL PROPERTIES AND PHASE MORPHOLOGY OF POLYMER BLENDS BASED ON POLY(BUTYLENE TEREPATHALATE) AND HIGH DENSITY POLYETHYLENE CARBOXYLATE IONOMER COMPATIBILIZER

4

Keyu Chen

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2013

I28372633

561042

Thesis Title:	Mechanical, Rheological Properties and Phase Morphology
	of Polymer Blends Based on Poly(butylene terepathalate) and
	High Density Polyethylene Carboxylate Ionomer
	Compatibilizer
By:	Keyu Chen
Program:	Polymer Science
Thesis Advisors:	Asst. Prof. Manit Nithitanakul

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

r (Asst. Prof. Manit Nithitanakul)

Hothaihan M.

(Asst. Prof. Hathaikarn Manuspiya)

Por P.

(Dr. Pornsri Pakeyangkoon)

ABSTRACT

5472018063: Polymer Science Program
Keyu Chen: Mechanical, Rheological Properties and Phase
Morphology of Polymer Blends Based on Poly(butylene
terepathalate) and High Density Polyethylene Carboxylate Ionomer
Compatibilizer.
Thesis Advisors: Asst. Prof. Manit Nithitanakul 60 pp.
Keywords: Na-EMAA ionomer/HDPE/PBT blend/ Rheology/ Mechanical

properties

Polymer blending is a well-established route for the development of new polymer. In this study, poly(butylene terepathalate) and high density polyethylene blended with a ethylene/methacrylic acid copolymer, in which the MAA acid groups had been partially neutralized with sodium ions (Surlyn®), were used as compatibilizer. The blend samples were prepared with different concentrations of compatibilizer (0, 1, 2.5, 5, 10 phr) and added to different ratios of PBT/HDPE (100/0, 80/20, 70/30, 50/50, 30/70, 20/80, 0/100). The blend samples were analyzed by a series of instruments: rheometer, universal tensile machine, dynamic mechanical analysis and scanning electron microscope. By varying the amount of compatibilizer, the viscosity of the blend increased, finer and smaller dispersed droplet size micrographs were observed, and the impact strength of the new material was reduced compared to blends without added compatibilizer. The tensile modulus were not remarkably changed, but 1 phr of Surlyn obviously increased tensile strength when compared with uncompatibilized blend.

บทคัดย่อ

เคยู่ว เฉิน: การศึกษาคุณสมบัติเชิงกลและคุณสมบัติการใหลของพอลิบิวทิลีนเทเรฟทา เลตกับพอลิเอทิลีนความหนาแน่นสูงโดยใช้การ์บอกซิเลตไอโอโนเมอร์เป็นสารเป็นสารเพิ่มความ เข้ากันได้ (Mechanical and Rheological Properties and PhaseMorphology of Polymer Blends Based on Poly(butyleneterepathalate) and High Density Polyethylene Carboxylate Ionomer Compatibilizer) อ. ที่ปรึกษา ผศ. ดร. มานิตย์ นิธิ ธนากุล 60 หน้า

การผสมพอลิเมอร์เป็นทางเลือกที่เหมาะสมสำหรับการพัฒนาพอลิเมอร์แบบใหม่ ใน งานวิจัยนี้ ทำการผสมพอลิบิวทิลีนเทเรฟทาเลตกับพอลิเอทิลีนความหนาแน่นสูงโดยใช้คาร์บอกซิ เลตไอโอโนเมอร์เป็นสารเป็นสารเพิ่มความเข้ากันได้ พอลิเมอร์ผสมถูกเตรียมโดยใช้คาร์บอกซิ เลตไอโอโนเมอร์ที่ความเข้มข้นที่แตกต่างกันคือ (0,1,2.5,5,และ 10 ต่อร้อยส่วนของพอลิเมอร์ ในสัคส่วนของพอลิบิวทิลีนเทเรฟทาเลตกับพอลิเอทิลีนความหนาแน่นสูง ดังต่อไปนี้ ผสม) (100/0, 80/20, 70/30, 50/50, 30/70, 20/80, 0/100) ตัวอย่างของพอลิเมอร์ที่ผสมแล้วถูกวิเคราะห์ โดยเครื่องมือต่อไปนี้ เครื่องรีโอมิเตอร์ เครื่องทคสอบแรงคึงแรงกคอเนกประสงค์ เครื่องทคสอบ สมบัติเชิงพลวัต และ กล้องจุลทรรศน์อิเล็กตรอนชนิคส่องกราค เมื่อทำการเพิ่มปริมาณของสาร เพิ่มความเข้ากันได้ ความหนืดของพอลิเมอร์ผสมมากขึ้น เม็ดพอลิเมอร์ของวัตภาคภายในมีขนาด ้ถุดถง ซึ่งสามารถสังเกตได้จากก่ากวามแข็งแรงทนต่อการกระแทกของพอลิเมอร์ผสมที่ได้ถุดถง เมื่อเปรียบเทียบกับพอลิเมอร์ผสมที่ไม่ได้ใส่สารเพิ่มความเข้ากันได้ มอดูลัสเชิงเส้นของพอลิเมอร์ ้ผสม ไม่มีการเปลี่ยนแปลง แต่พอลิเมอร์ผสมที่มีสารเพิ่มความเข้ากันได้ 1% มอดูลัสเชิงเส้นมีค่า เพิ่มขึ้นอย่างเห็นได้ชัด เมื่อเทียบกับพอลิเมอร์ผสมที่ไม่ได้ไส่สารเพิ่มความเข้ากันได้

ACKNOWLEDGEMENTS

I am grateful for the scholarship and funding of the thesis work provided by Petroleum and Petrochemical College Chulalongkorn University, and by the Center of Excellence on Petrochemical and Material Technology of Thailand.

I am grateful to my advisor Assist. Prof. Manit Nithitanakul and Prof. Brian P. Grady for all helps and suggestion throughout the work. Special thanks to Mr. Sutep Charoenpongpool for his helpful and constructive suggestion, and thanks to all Petroleum and Petrochemical College's staff. I appreciate SCG Polyolefin Co., Ltd. for supporting HDPE. Also thanks to Kasetsart University for the use of Injection Molding Machine.

Finally, I would like to thank my parent and my family for their whole hearted support, encouragement and understanding. Also I would like to thank my friends for their help, suggestion, encouragement and cheerfulness, and last but not least special thank goes to Mr. Panu who was my co-worker.

TABLE OF CONTENTS

P	A	C	F
-r	А	U	Ľ

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	viii
List of Figures	ix

CHAPTER

I	INTRODUCTION	1
Π	LITERATURE REVIEW	3
	2.1 Poly (butylene terephthalate)	3
	2.2 High-density polyethylene	6
	2.3 Na-EMAA ionomer	8
III	EXPERIMENTAL	11
	3.1 Materials	11
	3.2 Equipment	11
	3.2.1 Twin-screw Extruder	11
	3.2.2 Compression Presses	11
	3.2.3 Injection mould machine	11
	3.2.4 Differential Scanning Calorimetry	11
	3.2.5 Universal Testing Machine	11
	3.2.6 Zwick Impact tester	11
	3.2.7 Dynamic Mechanical Analyzer	11
	3.2.8 CapillaryRheometer	11
	3.2.9 Scanning Electron Microscope	11

CHAPTE	2	PAGE
	3.3 Experiment procedures	11
	3.3.1 Blends preparation	11
	3.3.2 Specimen preparation	12
	3.3.2.1 Compression molding	12
	3.3.2.2 Injection molding	13
	3.4 Characterization	13
	3.4.1 Rheological measurement	13
	3.4.2 Scanning Electron Microscope	13
	3.4.3 Mechanical testing machine	14
	3.4.4 Dynamic mechanical analyzer	14
	3.4.5 Differential Scanning Calorimetric Analysis	14
IV	RESULTS AND DISCUSSION	15
	4.1 Rheological behavior	15
	4.1.1 Neat components and	
	uncompatibilizedbinary blends	15
	4.1.2 Compatibilized ternary blends	17
	4.2 Dynamic properties	21
	4.2.1 The DMA results of Tan δ	
	as a function of temperature	21
	4.2.2 The DMA results of storage modulus	
	as a function of temperature	23
	4.3 SEM morphology	26
	4.4 Mechanical properties	31
	4.4.1 Impact strength	31
	4.4.2 Tensile properties	34
	4.5 Thermal properties	36
V	CONCLUSIONS	41

CONCLUSIONS V

vii

CHAPTER	
REFERENCES	42
APPENDICES	44
Appendix A Scanning Electron Microscopy Analysis	44
Appendix B Mechanical Properties of the Blends	46

60

LIST OF TABLES

	PAGE
Temperature profile of twin screw extruder	12
Blend compositions	12
Number average diameter (μm) of dispersed phase size of	
blends	31
	Temperature profile of twin screw extruder Blend compositions Number average diameter (µm) of dispersed phase size of blends

LIST OF FIGURES

FIGURE

4.1	Flow cures of neat components.	15
4.2	Flow curves of uncompatibilized binary blends and neat	
	polymers.	16
4.3	Flow cures of PBT/SuryIn blends	17
4.4	Flow cures of PBT/HDPE 80/20 blend containing	
	various Surlyn contents of 0, 1, 2.5, 5, 10 phr.	18
4.5	Flow cures of PBT/HDPE 70/30 blend containing	
	various Surlyn contents of 0, 1, 2.5, 5, 10 phr.	18
4.6	Flow cures of PBT/HDPE 50/50 blend containing	
	various Surlyn contents of 0, 1, 2.5, 5, 10 phr.	19
4.7	Flow cures of PBT/HDPE 30/70blend containing various	
	Surlyn contents of 0, 1, 2.5, 5, 10 phr.	20
4.8	Flow cures of PBT/HDPE 20/80 blend containing	
	various Surlyn contents of 0, 1, 2.5, 5, 10 phr.	20
4.9	Tan δ as a function of temperature of neat compositions (a)	
	and PBT/HDPE blends (b).	21
4.10	Tan δ as a function of temperature of different ratios of	
	blends: PBT/HDPE 30/70 (a), PBT/HDPE 50/50 (b),	
	PBT/HDPE 70/30 (c).	23
4.11	Storage modulus E'as a function of temperature of	
	different ratios of blends: PBT/HDPE 30/70 (a),	
	PBT/HDPE 50/50 (b), PBT/HDPE 70/30 (c).	25
4.12	The SEM micrographs of the uncompatibilized	
	HDPE/PBT blends at different ratio as (a) 20/80; (b)	
	30/70;(c) 50/50; (d) 70/30; (e)80/20 respectively.	27

PAGE

LIST OF FIGURES

FIGURE		PAGE
4.13	The SEM micrographs of HDPE/PBT 80/20 with 1 phr	
	Na-EMAA.	28
4.14	SEM micrographs of fractured surfaces of HDPE/PBT	
	30/70 with different amount of Na-EMAA.	28
4.15	SEMmicrographs of fractured surfaces of HDPE/PBT	
	50/50 with different amount of Na-EMAA.	29
4.16	SEM micrographs of fractured surfaces of HDPE/PBT	
	70/30 with different amount of Na-EMAA.	30
4.17	Variation of impact strength with Surlyn content in the	
	blend of PBT/HDPE 70/30.	32
4.18	Variation of impact strengthwith Surlyn content in the	
	blend of PBT/HDPE 50/50.	33
4.19	Variation of impact strengthwith Surlyn content in the	
	blend of HDPE/PBT 70/30.	33
4.20	Variation of tensile strength and tensile modulus with	
	Surlyn content in the blend of HDPE/PBT 70/30 (a),	
	HDPE/PBT 50/50 (b), and HDPE/PBT 30/70 (c).	35
4.21	DSC melt crystallization exotherms (a) and melting	
	thermograms (b) for HDPE, PBT, and HDPE/PBT blend	
	samples recorded during cooling and heating at	
	10 °C/min.	37
4.22	DSC melt crystallization exotherms for HDPE/PBT 30/70	
	blend (a),HDPE/PBT 50/50 blend (b) and HDPE/PBT	
	70/30 blend (c) samples recorded during cooling at	
	10 °C/min.	39