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Refrigeration system is widely used in the industry, especially in cryogenic
process. The main problem of refrigeration system is high energy consumption from
shaft work resulting in high operation cost. To minimize the amount of shaft work, it
is accomplished by a combination of pinch and exergy analysis. The strength of
pinch analysis is graphical representation by using simple diagrams of composite
curves and grand composite curve for process modifications. However, limitation of
pinch analysis is that it only deals with thermal system, not including power or shaft
work. Exergy analysis is a tool to utilize power or shaft work and identify
thermodynamic imperfection of process. Both strengths are combined to help
improve process efficiency. In this study, this methodology is applied for case study
of LNG to improve processes such a reducing shaft work and increasing the exergy
efficiency.  Furthermore, the cascade refrigeration system is designed by
mathematical programming.
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