REFERENCES

- Cho Y-W, Jang J, Park CR, Ko S-W. (2000) Preparation and solubility in acid and water of partially deacetylated chitins. <u>Biomacromolecules</u>,1:609–14.
- Goosen, M.F.A. (1997) <u>Applications of chitin, chitosan</u>, Pennsylvania: Technomic Publishing.
- Helbert, W., Cavaille, J. Y., and Dufresne, A. (1996) <u>Polymer Composition</u>, 17, 4, 604.
- Jayakumar, R., Prabaharan, M., Nair, S.V., Tokura, S., Tamura, H., and Selvamurugan, N. (2010) Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. <u>Progress in Materials Science</u>, 55, 675–709.
- Jayakumar, R., Prabaharan, M., Nair, S.V., Tokura, S., Tamura, H., and Selvamurugan, N.(2010) Biomedical applications of chitin and chitosan based nanomaterial-A short review. <u>Carbohydrate Polymer</u>, 82, 227-232.
- Jayakumar, R., Prabaharan, M., Nair, S.V., Tokura, S., Tamura, H., and Selvamurugan, N. (2011) Biomaterials based on chitin and chitosan in wound dressing applications. <u>Biotechnology Advances</u>, 29, 322-337.
- Khor, E., and Lim, L.Y. (2003) Implantable applications of chitin and chitosan. Biomaterials, 24, 2339–2349.
- Kurita K. Chemistry and application of chitin and chitosan.(1995) <u>Polymer</u>

 <u>Degradation and Stability</u>,59,117–20.
- Kurita K (1997) Chitin and chitosan derivatives. In: Arshady R (ed) Desk reference of functional polymers: syntheses and applications. Washington, DC American Chemical Society, pp 239–259
- Kurita K (2006) Introduction of biologically active branches through controlled modification reactions of chitin and chitosan. In: Uragami T, Tokura S (eds) Material science of chitin and chitosan. Kodansha Scientific, Tokyo
- Kumar, M.N.V.R. (2000) A review of chitin and chitosan applications. <u>Reactive & Functional Polymers</u>, 46, 1–27.

- Li, J., Revol, J.F., and Marchessault, R. H. J. (1996) Applications of chitin and chitosan-derivatives for the detoxification of water and wastewater. <u>Colloid Interface Science</u>, 183, 365.
- Lu, Y., Weng, L., and Zhang, L. (2004) Morphology and Properties of Soy Protein Isolate Thermoplastics Reinforced with Chitin Whiskers.

 <u>Biomacromolecules</u>, 5, 1046-1051.
- Marchessault, R. H., Morehead, F. F., and Walter, N. M. (1959) Liquid Crystal Systems from Fibrillar Polysaccharides. <u>Nature</u>, 184, 632.
- Marumatsu, K., Masuda, S., yoshihara, Y., and Fujisawa, A. (2003) In vitro degradation behavior of freeze-dried carboxymethyl-chitin sponges processed by vacuum-heating and gamma irradiation. Polymer Degradation and Stability, 81, 327–332
- Morin, A. and Dufresne, A. (2002) Nanocomposites of Chitin Whiskers from Riftia Tubes and Poly(caprolactone). <u>Macromolecules</u>, 35, 2190–2199.
- Nair, K.G., and Dufresne, A. (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites 1. Processing and swelling behavior.

 <u>Biomacromolecules</u>, 4, 657-665.
- Paillet, M. and Dufresne, A. (2001) Chitin Whisker Reinforced Thermoplastic Nanocomposites. Macromolecules, 34, 6527-6530.
- Pillai, C.K.S., Paul, W., Sharma, C.P. (2009) Chitin and chitosan polymers: Chemistry, solubility and fiber formation. <u>Progress in Polymer Science</u>, 34, 641–678.
- Raabe, D., Sachs, C., and Romano, P. (2005) The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. <u>Acta Materialia</u>, 53, 4281–92.
- Revol, J.F., and Marchessault, R.H. (1993) In vitro chiral nematic ordering of chitin crystallites. <u>International Journal Biological Macromolecules</u>, 15, 329–35.
- Rinaudo, M. (2006) Chitin and chitosan: Properties and applications. <u>Progress in Polymer Science</u>, 31, 603–632.
- Sandford, PA., Sjak-Braek, G., and Anthonsen, T.(1989) Chitin and chitosan. London: <u>Applied Science</u>, 51–69.

- Sriupayo, J., Supaphol, P., Blackwell, J., and Rujiravanit, R. (2005) Preparation and characterization of α-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment. Carbohydrate Polymers, 62:130-136.
- Takai, O. (2008). Solution plasma processing (SPP). <u>Pure and Applied Chemistry</u>, 80, 2003–2011.
- Tamura H, Nagahama H, Tokura S.(2006) Preparation of chitin hydrogel under mild conditions. Cellulose, 13:357–64.
- Tamura H, Tsurutaa Y, Itoyamab K, Worakitkanchanakul W, Rujiravanit R, Tokura S. (2004) Preparation of chitosan filament applying new coagulation system. Carbohydrate Polymers, 56, 205–11.
- Tamura H, Nagahama H, Tokura S. (2007) Preparation of chitin hydrogel under mild conditions. <u>Japan Apply Polymer Science</u>, 104, 3909–16.
- Tamura H, Sawada M, Nagahama H, Higuchi T, Tokura S. (2006) Influence of amide content on the crystal structure of chitin. Holzforschung;60,480–4.
- Tokura S, Miura Y, Johnson M, Nishi N, and Nishimura S.I. (1994) <u>Journal Control</u> Release, 28, 235–41.
- Tokura, S., Baba, S., Uraki, Y., Miura, Y., Nishi, N., and Hasegawa, O. (1990)

 Controlled functionalization of the polysaccharide chitin. <u>Carbohydrate</u>

 <u>Polymers</u>, 13, 273–81.
- Uragami T, Kurita K, Fukamizo T (eds) (2001) <u>Chitin and chitosan in life science</u>. :Tokyo, Kodansha Scientific, pp 178–185
- Vasnev, V.A., Tarasov, A.I., Markova, G.D., Vinogradova, S.V., and Garkusha, O.G. (2006) Synthesis and properties of acylated chitin and chitosan derivatives. <u>Carbohydrate Polymers</u>, 64, 184–189
- Watanabe, K., Saiki, I., Uraki, Y., Tokura, S., and Azuma, I. (1990) Regioselective Conjugation of Chitosan with a Laminin-related Peptide. Chemical Pharmaceutical Bull, 38, 506–9.
- Wongpanit, P., Sanchavanakit, N., Pavasant, P., Supaphol, P., Tokura, S., and Rujiravanit, R. (2005). Preparation and Characterization of Microwavetreated Carboxymethyl Chitin and Carboxymethyl Chitosan Films for Potential Use in Wound Care Application. <u>Macromolecular Bioscience</u>, 5, 1001–1012

- Yi H, Wu L-Q, Bentley WE, Ghodssi R, Rubloff GW, Culver JN, et al. Biofabrication with chitosan. Biomacromolecules 2005;6:2881–94.
- Zaini, M. J., Fuad, M. Y. A., Ismail, H., Mansor, M. S., and Mustafah, J. (1996) Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres: Part II Analysis of composite microstructure and mechanical properties. <u>Polymer International</u>, 40, 51-55.

APPENDICES

Appendix A Characterization of Raw Materials

Table A1 Percent yield of chitin

Samples	Dry weight (%)
Dry shrimp shell	100
Decalcication product	54.17
Deproteination product	20.12
Chitin	25.71

Table A2 Percent yield of chitin hydrogel

Samples	Dry weight (%)
Chitin powder	100
Chitin hydrogel	65.8

Table A3 Degree of deacetylation of chitin and chitin hydrogel

	Degree of deacetylation (%DD)					
Type of chitin	1	2	3	Average	SD	
Chitin powder	32.51	34.74	36.62	34.62	2.05	
Chitin hydrogel	5.42	3.87	36.64	35.31	1.38	

Appendix B Preparation of Chitin Hydrogel by Using Solution Plasma

 Table B1
 Solid content of chitin hydrogel and the ratio of alcohol solution without

 NaOH system for deacetylation reaction

					Amount of
Ratio of	Chitin			Total	chitin
Alcohol	hydrogel	Alcohol	Water	volume	hydrogel
:H ₂ O	(ml)	(ml)	(ml)	(ml)	(g)
90:10	10	90	0	100	1.82
50 : 50	10	50	40	100	1.82
10:90	10	10	80	100	1.82

Table B2 Solid content of chitin hydrogel and the ratio of alcohol solution with NaOH system for deacetylation reaction

					Amount of
NaOH	Chitin	50% NaOH		Total	chitin
concentration	hydrogel	w/v	Alcohol	volume	hydrogel
(%)	(ml)	(ml)	(ml)	(ml)	(g)
1%	10	1.8	88.2	100	1.82
	_				_
5%	10	9	81	100	1.82
10%	10	18	72	100	1.82
12%	10	21.6	68.4	100	1.82

Appendix C Deacetylation of Chitin Hydrogel without NaOH Concentration

Table C1 Effect of type of alcohol and alcohol concentration on degree of deacetylation by using solution plasma technique

Ratio of		De	gree of dead	cetylation (%D	PD)
methanol:H ₂ O	1	2	3	Average	SD
90:10	43.54	44.32	43.43	43.76	0.48521473
50:50	45.44	43.43	46.54	45.14	1.57703308
10:90	54.64	54.43	53.43	54.17	0.64655497
Ratio of		Deg	gree of dead	cetylation (%D	D)
ehanol :H ₂ O	1	2	3	Average	SD
90:10	43.5	46.44	44.58	44.84	1.48714492
50:50	45.65	47.98	48.98	47.53	1.70869346
10:90	55.5	53.44	54.58	54.50	1.03195607
Ratio of		Deg	gree of dead	cetylation (%D	D)
propanol :H ₂ O	1	2	3	Average	SD
90:10	44.5	47.44	48.58	46.84	2.10513658
50:50	47.54	48.67	49.91	48.70	1.18542538
10:90	59.98	56.98	58.98	58.64	1.52752523

 Table C2
 Effect of type of alcohol and alcohol concentration on degree of

 deacetylation by using conventional heat treatment

Ratio of					
methanol:H ₂ O		Deg	ree of deac	etylation (%I	DD)
	1	2	3	Average	SD
90:10	35.64	37.87	35.86	36.46	1.2289155
50:50	36.56	38.45	39.98	38.33	1.713155
10:90	39.43	38.45	40.32	39.40	0.9353609
Ratio of			1	1	1
ehanol :H ₂ O		Degi	ree of deace	etylation (%[DD)
	1	2	3	Average	SD
90:10	35.67	37.89	36.64	36.73	1.1129391
50:50	37.55	39.87	39.9	39.11	1.3481963
10:90	40.87	41.54	40.34	40.92	0.6013596
Ratio of		1			
propanol :H ₂ O		Degr	ee of deace	etylation (%E	DD)
	1	2	3	Average	SD
90:10	36.47	35.04	38.79	36.77	1.8925204
50:50	39.67	39.43	38.22	39.11	0.7771958
10:90	40.32	40.53	39.32	40.06	0.646555

Table C3 Effect of cycles of plasma treatment time on degree of deacetylation

1 cycle of treatment time								
Type of		Degree of deacetylation (%DD)						
Alcohol	1	2	3	Average	SD			
Methanol	42.78	43.07	46.11	43.99	1.844568604			
Ethanol	43.5	46.44	44.58	44.84	1.487144916			
Propanol	44.5	47.44	48.58	46.84	2.105136575			
		2 cycles	of treatmer	nt time				
Type of		Degr	ee of deace	etylation (%D	D)			
Alcohol	1	2	3	Average	SD			
Methanol	48.64	47.86	45.88	47.46	1.422814113			
Ethanol	54.76	56.97	54.87	55.53	1.245404887			
Propanol	60.54	58.76	57.78	59.03	1.399190242			
		3 cycles	of treatmer	nt time				
Type of		Degr	ree of deace	tylation (%D	D)			
Alcohol	1	2	3	Average	SD			
Methanol	49.87	53.78	52.17	51.94	1.965120861			
Ethanol	56.67	56.89	57.77	57.11	0.582065288			
Propanol	62.87	62.91	58.44	61.41	2.569286542			

Appendix D Deacetylation of Chitin Hydrogel with NaOH concentration

 Table D1
 Effect of no NaOH concentration in methanol solvent on degree of

 deacetylation for deacetylation chitin hydrogel by using solution plasma technique

	N	lo NaOH c	oncentratio	n	
Cycle of plasma		Degree	e of deacety	lation (%DE	D)
treatment	1	2	3	Average	SD
0	35.42	33.87	36.64	35.31	1.3882723
1	47.28	43.49	44.77	45.18	1.9279782
2	53.096	51.36	54.71	53.06	1.6753702
3	54.87	55.77	54.87	55.17	0.5196152
4	56.71	54.52	59.23	56.82	2.356926
5	57.52	59.54	54.98	57.35	2.2849362

¹ Cycle of plasma treatment = 1 Hour

Table D2 Effect of 1% w/v of NaOH concentration in methanol solvent on degree of deacetylation for deacetylation chitin hydrogel by using solution plasma technique

	1%	(w/v) NaOl	H concentra	ation	
Cycle of plasma		Degree	of deacety	lation (%DD))
treatment	1	2	3	Average	SD
0	35.42	33.87	36.64	35.31	1.3882723
1	54.01	54.54	56.94	55.16	1.5612922
2	57.01	55.54	59.72	57.42	2.1204323
3	57.82	61.57	60.58	59.99	1.9433734
4	62.82	60.73	61.94	61.83	1.0493331
5	62.59	64.34	64.98	63.97	1.2372146

¹ Cycle of plasma treatment = 1 Hour

Table D3 Effect of 5% w/v of NaOH concentration in methanol solvent on degree of deacetylation for deacetylation chitin hydrogel by using solution plasma technique

	5% ((w/v) NaO	H concentra	ation	
Cycle of plasma		Degree	e of deacety	lation (%DD))
treatment	1	2	3	Average	SD
0	35.42	33.87	36.64	35.31	1.3882723
1	55.43	55.97	59.27	56.89	2.0787496
2	65.24	60.05	65.76	63.68	3.1572826
3	67.24	67.05	65.03	66.44	1.2247857
4	69.01	71.22	70.59	70.27	1.1385224
5	72.01	71.25	70.35	71.20	0.8309834

¹ Cycle of plasma treatment = 1 Hour

Table D4 Effect of 10% w/v of NaOH concentration in methanol solvent on degree of deacetylation for deacetylation chitin hydrogel by using solution plasma technique

	10%	(w/v) NaO	H concentr	ation	
Cycle of plasma		Degree	of deacety	lation (%DD)
treatment	1	2	3	Average	SD
0	35.42	33.87	36.64	35.31	1.3882723
1	55.87	57.87	58.93	57.56	1.5538769
2	69.65	68.87	69.43	69.32	0.4021608
3	70.59	75.75	68.65	71.66	3.6696776
4	70.59	74.86	76.65	74.03	3.1134279
5	74.76	76.89	75.87	75.84	1.0653169

¹ Cycle of plasma treatment = 1 Hour

Table D5 Effect of 12% w/v of NaOH concentration in methanol solvent on degree of deacetylation for deacetylation chitin hydrogel by using solution plasma technique

	12% (w/v) NaOH concentration						
Cycle of plasma		Degree	e of deacety	lation (%DD	0)		
treatment	1	2	3	Average	SD		
0	35.42	33.87	36.64	35.31	1.3882723		
1	56.42	58.82	62.23	59.16	2.9195947		
2	72.87	70.56	69.54	70.99	1.706136		
3	70.43	75.87	78.76	75.02	4.2295508		
4	76.76	78.54	79.98	78.43	1.6129889		
5	76.08	78.97	80.32	78.46	2.1661102		

¹ Cycle of plasma treatment = 1 Hour

Table D6 Effect of 5% w/v of NaOH concentration in methanol solvent on degree of deacetylation for deacetylation chitin hydrogel by using conventional heat treatment

5% (w/v) NaOH concentration						
Cycle of plasma		Degree	e of deacety	lation (%DD	0)	
treatment	1	2	3	Average	SD	
0	35.42	33.87	36.64	35.31	1.3882723	
1	37.45	38.87	39.45	38.59	1.0289801	
2	39.54	40.65	41.87	40.69	1.1654327	
3	45.78	46.56	47.98	46.77	1.1154072	
4	50.76	51.97	53.56	52.10	1.404291	
5	56.43	49.71	55.34	53.83	3.6065542	

¹ Cycle of plasma treatment = 1 Hour

Table D7 Effect of 10% w/v of NaOH concentration in methanol solvent on degree of deacetylation for deacetylation chitin hydrogel by using conventional heat treatment

	10% (w/v) NaOH concentration						
Cycle of plasma		Degree	of deacety	lation (%DD))		
treatment	1	2	3	Average	SD		
0	35.42	33.87	36.64	35.31	1.3882723		
1	38.43	40.54	42.34	40.44	1.9570471		
2	41.43	45.34	45.32	44.03	2.2516883		
3	50.32	51.98	55.45	52.58	2.6176771		
4	55.53	56.84	56.34	56.24	0.661085		
5	56.32	59.34	59.43	58.36	1.7701507		

¹ Cycle of plasma treatment = 1 Hour

Table D8 Effect of 12% w/v of NaOH concentration in methanol solvent on degree of deacetylation for deacetylation chitin hydrogel by using conventional heat treatment

	12% (w/v) NaOH concentration						
Cycle of plasma		Degree	of deacety	lation (%DD	0)		
treatment	1	2	3	Average	SD		
0	35.42	33.87	36.64	35.31	1.3882723		
1	38.54	36.32	35.34	36.73	1.6395528		
2	43.43	49.65	46.87	46.65	3.1158305		
3	50.35	51.54	54.97	52.29	2.3987983		
4	55.34	58.23	59.54	57.70	2.148961		
5	56.65	58.87	59.97	58.50	1.6911929		

¹ Cycle of plasma treatment = 1 Hour

Appendix E Solubility of Plasma Treated Chitin Hydrogel

Table E1 Effect of 5% w/v of NaOH concentration in methanol solvent on solubility of plasma treated chitin hydrogel

	5% (w/v) NaOH concentration						
Cycle of plasma	% solubility of plasma treated chitin hydrogel						
treatment	1	2	3	Average	SD		
0	0	0	0	0	0		
1	15.72	18.87	22.13	18.90667	3.205157		
2	17.82	17.16	19.64	18.20667	1.284419		
3	28.3	25.8	28.96	27.68667	1.666893		
4	38.76	38.5	39.08	38.78	0.290517		
5	49.75	48.75	48.92	49.14	0.53507		

¹ Cycle of plasma treatment = 1 Hour

Table E2 Effect of 10% w/v of NaOH concentration in methanol solvent on solubility of plasma treated chitin hydrogel

10% (w/v) NaOH concentration						
Cycle of plasma	%	solubility c	of plasma tr	eated chitin h	iydrogel	
treatment	1	2	3	Average	SD	
0	0	0	0	0	0	
1	24.37	28.92	22.2	25.16333	3.429524	
2	36.76	38.59	39.84	38.39667	1.549075	
3	49.83	47.07	48.7	48.53333	1.387528	
4	70.62	72.59	71.99	71.73333	1.009769	
5	79.73	78.97	80.32	79.67333	0.676782	

¹ Cycle of plasma treatment = 1 Hour

Table E3 Effect of 12% w/v of NaOH concentration in methanol solvent on solubility of plasma treated chitin hydrogel

	12%	(w/v) NaO	H concenti	ration	
Cycle of plasma	% :	solubility o	f plasma tr	eated chitin h	ydrogel
treatment	1	2	3	Average	SD
0	0	0	0	0	0
1	38.44	38.82	35.23	37.49667	1.972165
2	60.28	60.56	59.54	60.12667	0.527004
3	81.35	85.87	81.76	82.99333	2.499687
4	100	100	98	99.33333	1.154701
5	100	100	100	100	0

¹ Cycle of plasma treatment = 1 Hour

Appendix F Yield of Plasma Treated Chitin Hydrogel

Table F1 Yield of plasma treated chitin hydrogel with 5% w/v NaOH concentration

	5% (w/v) NaOH concentration						
Cycle of plasma	0,	6 Yield of	plasma trea	ated chitin hyd	drogel		
treatment	1	2	3	Average	SD		
0	100	100	100	100	0		
1	81.32	83.87	82.13	82.44	1.302958		
2	73.82	71.16	69.64	71.54	2.11575		
3	58.37	55.87	53.96	56.06667	2.211568		
4	48.76	48.5	52.08	49.78	1.996096		
5	39.75	38.75	34.92	37.80667	2.549438		

¹ Cycle of plasma treatment = 1 Hour

Table F2 Yield of plasma treated chitin hydrogel with 10% w/v NaOH concentration

	10%	(w/v) NaO	H concenti	ration	
Cycle of plasma	% Yield of plasma treated chitin hydrogel			drogel	
treatment	1	2	3	Average	SD
0	100	100	100	100	0
1	84.37	88.92	87.24	86.84333	2.30079
2	70.76	68.55	67.89	69.06667	1.503141
3	60.13	55.67	58.71	58.17	2.278508
4	45.62	48.55	41.93	45.36667	3.317263
5	39.73	38.96	34.38	37.69	2.892283

1 Cycle of plasma treatment = 1 Hour

Table F3 Yield of plasma treated chitin hydrogel with 12% w/v NaOH concentration

12%	(w/v) NaO	H concenti	ration	
0,	6 Yield of	plasma trea	ated chitin hyd	lrogel
1	2	3	Average	SD
100	100	100	100	0
80.44	82.82	75.27	79.51	3.859961
60.28	60.56	65.54	62.12667	2.959347
51.35	55.57	56.75	54.55667	2.839037
41.78	40.43	44.58	42.26333	2.116798
30.76	25.79	28.87	28.47333	2.508632
	1 100 80.44 60.28 51.35	% Yield of 1 2 100 100 80.44 82.82 60.28 60.56 51.35 55.57 41.78 40.43	% Yield of plasma treat 1 2 3 100 100 100 80.44 82.82 75.27 60.28 60.56 65.54 51.35 55.57 56.75 41.78 40.43 44.58	100 100 100 Average 80.44 82.82 75.27 79.51 60.28 60.56 65.54 62.12667 51.35 55.57 56.75 54.55667 41.78 40.43 44.58 42.26333

¹ Cycle of plasma treatment = 1 Hour

Appendix G Determination of Molecular Weight by GPC

Figure G1 Calibration curve for GPC measurement using pullulan standard

Table G1 The molecular weight of Treated chitin hydrogel in 12% NaOH concentration with different times by using solution Plasma

	Treated	Treated	Treated
Condition	chitin	chitin	chitin
	hydrogel	hydrogel	hydrogel
	3 hours	4 hours	5 hours
M _n	91,141	88,942	87,689
M _w	245,880	230,840	220,149
M _z	627,817	540,912	466,782
PDI	2.69781	2.59541	2.51059

M is molecular weight and PDI is polydispersity index.

Table G2 The molecular weight of plasma-treated chitin hydrogel obtained by varying NaOH concentrations at 5 hours of plasma treatment time

Condition	Plasma-	Plasma-	Plasma-
	treated chitin	treated chitin	treated chitin
	hydrogel	hydrogel	hydrogel
	5% NaOH	10% NaOH	12% NaOH
M _n	103,134	105,596	87,689
M _w	228,674	222,543	220,149
M _z	349,047	324,807	466,782
PDI	2.21726	2.10749	2.51059

M is molecular weight and PDI is polydispersity index.

Appendix H Antibacterial Activity of Plasma Treated Chitin Hydrogel

Table H1 Antibacterial activity of the obtained chitosan from plasma solution treatment against E.coli

Cycles of	
treatment time.	Bacterial Reduction Rate (%)
4	90.9 ± 6.4
5	96.96 ± 7.3

Table H2 Antibacterial activity of the obtained chitosan from plasma solution treatment against S.aureus

Cycles of	
treatment time.	Bacterial Reduction Rate (%)
4	89.79 ± 5.4
5	95.91 ± 5.1

CURRICULUM VITAE

Name: Ms. Maneekarn Kantakanun

Date of Birth: April 8, 1988

Nationality: Thai

University Education:

2007–2010 Bachelor Degree of Science in Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

Proceedings:

1. Kantakanun, M.; Vanichvattanadecha, C.; Saito, N.; and Rujiravanit, R. (2013) Deacetylation of chitin hydrogel by using solution plasma. <u>Proceedings of The 4th Research Symposium on Petroleum, Petrochemicals, and Advanced Materials and The 19th PPC Symposium on Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand.</u>

Presentations:

1. Kantakanun, M.; Vanichvattanadecha, C.; Saito, N.; and Rujiravanit, R. (2013) Deacetylation of chitin hydrogel by using solution plasma. Poster presented at <u>The 4th Research Symposium on Petroleum, Petrochemicals, and Advanced Materials and The 19th PPC Symposium on Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand.</u>