CHAPTER I INTRODUCTION

Waste gases from combustion of solid, liquid and gaseous fuels in different human activities have significantly contributed to environmental problems, especially in increasing global temperature. Pollutants from electricity generation, cement and fermentation plants, industries, transportation, heating (cooling), cooking, and other activities include not only NOx, SOx but also the greenhouse gases (GHGs) such as CO_2 and CH_4 . The reduction of GHGs emission, particularly CO_2 , therefore, plays a key role in controlling harmful effects on human beings' life (Halmann *et al.*, 1998; Maroto-Valer *et al.*, 2002).

 CO_2 is a colorless and odorless gas. A molecule of CO_2 consists of two double bonds with one carbon and two oxygen atoms. CO_2 serves as an essential source of photosynthesis in plants to produce carbohydrates, lipids, etc. and new oxygen to assist life on Earth (Pierantozzi, 2000). Although the concentration of CO_2 is presently 0.038 percent in air (Keeling *et al.*, 2005), the greater amount of CO_2 is being emitted to the environment by combustion of carbon-containing substances which are mostly fossil fuels. CO_2 is not the most severe GHG, but it is the highest emitted which makes it the most unavoidable anthropogenic GHG (Kangwanwatana *et al.*, 2013). To substantially decrease emissions, recovery and utilization of CO_2 from manufacturing plants and natural sources is becoming clearly.

Using captured and recycled CO_2 involves the following: (1) directly apply CO_2 from concentrated flue gas or rich sources to applications that do not need pure CO_2 ; (2) develop efficient and less-energy processes for CO_2 separation for cases requiring pure CO_2 ; (3) search new and high effective compounds as alternate medium or solvent to replace the old ones in existing processes with CO_2 ; (4) use CO_2 as supercritical fluid or either solvent or anti-solvent; (5) make use of CO_2 along with high 'atom efficiency' such as carboxylation and carbonate synthesis; (6) employ CO_2 as a reactant or feedstock to yield applicable chemicals and materials; (7) reduce CO_2 emissions by means of sequestration for energy recovery; (8) convert CO_2 into fuels and chemicals via renewable energy; (9) use bio-chemical or geologic-formation condition to transform CO_2 into "new fossil" energies (Song, 2006). In spite of these

0

promises, in recent years study and research experience have shown that appreciable limitations are linked with CO_2 utilization. Those drawbacks encompass: (1) expenses for capturing, separating, purifying and transporting; (2) energy need for converting CO_2 ; (3) restrictions in market size; (4) little interest from manufacturers in recycling and utilizing CO_2 ; (5) the deficiency of socio-economical driving forces (Song, 2006).

Depending on constraints such as location, type of industry, etc., there is no single, universally viable route for CO_2 utilization—one or more approaching methods can be taken into account. Additionally, a technique merging various processes may be the most *feasible* solution for many applications. In this research work, demonstration of converting CO_2 into methanol in terms of technology and economy will be presented.

Ø

o.