EFFECTS OF MICROAERATION ON HYDROGEN AND METHANE PRODUCTION FROM CASSAVA WASTEWATER USING A TWO-STAGE UASB SYSTEM

Pairin Tuntiwichayanon

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and InstitutFrançais du Pétrole 2015

a

I283685904

σ

Thesis Title:	Effects of Microaeration on Hydrogen and Methane		
ι	Production from Cassava Wastewater Using a Two-stage		
	UASB system		
By:	Pairin Tuntiwichayanon	1	
Program:	Petrochemical Technology		
Thesis Advisor:	Prof. Sumaeth Chavadej		

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

0

0

Charles. Sunceth

(Prof. Sumaeth Chavadej)

······ ·---

(Asst. Prof. Pomthong Malakul)

mutal .____

(Prof. Dr. Suntud Sirianuntapiboon)

ABSTRACT

5671020063: Petrochemical Technology Program Pairin Tuntiwichayanon: Effects of Microaeration on Hydrogen and Methane Production from Cassava Wastewater using a Twostage UASB System.

Thesis Advisor: Prof. Sumaeth Chavadej 74 pp.

Keywords: Two stage hydrogen and methane production/ Cassava wastewater/ Microaeration/ Upflow anaerobic sludge blanket reactor (UASB)/ Mesophilic operation

In this work, a two stage upflow anaerobic sludge blanket (UASB) system was used to produce separately hydrogen and methane from cassava wastewater under mesophilic temperature (37 °C) with a recycle ratio of 1:1 (final effluent flow rate: feed flow rate) and a constant pH of 5.5 in the hydrogen UASB unit. The liquid working volumes of the hydrogen and methane UASB units were 4 and 24 L, respectively. For the first part without microaeration, For the first part without microaeration, the optimum COD loading rate was found to be 6 kg·m⁻³·d⁻¹ based on the methane UASB volume to provide the highest process performance, the produced gas contained 34 %H₂, 65 %CO₂, 1 %CH₄, the hydrogen yield of 45 mL·kg⁻¹COD removed and the COD removal of 37% for the hydrogen UASB volume. For the methane UASB volume was compose of 63 %CH₄, 36.6 %CO₂, 0.4 %H₂, the methane yield of 652.6 mL·kg⁻¹COD removed and the COD removal of 52.0%. At this optimum COD loading rate, The system was operated at different oxygen supply rate (ranging from 5.2 to 7.9 mL $O_2 \cdot L^{-1}_{wastewater} \cdot d^{-1}$), the optimum oxygen supply rate of 6.1 mL $O_2 \cdot L^{-1}$ was found to provide the highest improvement of process performance in terms of the highest methane content of 67%, the highest methane yield of 682.3 mL·kg⁻¹COD removed and the highest COD removal of 57.7%. Moreover, the addition of oxygen was found to eliminate completely H₂S in the produced gas from the methane UASB unit.

บทคัดย่อ

ไพรินทร์ ดันติวิชยานนท์: อิทธิพลของการเติมออกซิเจนเพื่อการเพิ่มประสิทธิภาพของ การผลิตไฮโครเจนและมีเทนจากน้ำเสียที่ได้จากกระบวนการผลิตแป้งมันสำปะหลังโดยใช้ถัง ปฏิกรณ์แบบยูเอเอสบีแบบสองขั้น (Effects of Microaeration on Hydrogen and Methane Production from Cassava Wastewater using a Two-stage UASB System) อ. ที่ปรึกษา: ศ.คร. สุเมธ ชวเดช 74 หน้า

งานวิจัยนี้ทำหกรศลิตไฮโครเจนและมีเทนจากน้ำเสียที่ได้จากกระบวนการผลิตแป้งมันที่ ้มีกากมันสำปะหลังแขวนลอยอยู่โคยใช้ถังปฏิกรณ์แบบยูเอเอสบีสองขั้น ซึ่งถังปฏิกรณ์ทั้งสองถูก ควบคุมอุณหภูมิอยู่ที่ 37 องศาเซลเซียส โคยระบบยูเอเอสบีแบบสองขั้นจะควบคุมอัตราการป้อน สารอินทรีย์ ซึ่งอยู่ในช่วง 12 ถึง 60 กิโลกรัมต่อลูกบาศก์เมครต่อวันเทียบกับถังปฏิกรณ์ที่ใช้ผลิต ไฮโดรเจนหรือ 2 ถึง 10 กิโลกรัมต่อลูกบาศก์เมตรต่อวันเทียบกับถังปฏิกรณ์ที่ใช้ผลิตมีเทน น้ำเสีย ขาออกจากการผลิตมีเทนถูกนำกลับมาป้อนเข้าถังปฏิกรณ์ที่ใช้ผลิตไฮโครเจนในอัตราส่วน 1 ต่อ นอกจากนี้ถังปฏิกรณ์สำหรับผลิตไฮโครเจนจะควบคุมค่าความเป็นกรค-ค่างของระบบเท่ากับ 5.5 ในขณะที่ถังปฏิกรณ์สำหรับผลิตมีเทนไม่มีการควบคุมค่าความเป็นกรค-ค่างของระบบ จากผลการ ทคลองพบว่าอัตราการป้อนสารอินทรีย์ที่ 36 กิโลกรัมต่อลูกบาศก์เมตรต่อวันเทียบกับถังปฏิกรณ์ที่ ใช้ผลิตไฮโครเจน (หรือ 6 กิโลกรัมต่อถูกบาศก์เมตรต่อวันเทียบกับถังปฏิกรณ์ที่ใช้ผลิตมีเทน) เป็น ้สภาวะเหมาะสมที่ให้ประสิทธิภาพกระบวนการผลิตก๊าซได้สูงที่สุดคือ ในถังปฏิกรณ์ที่ใช้ผลิต ไฮโครเจนได้องก์ประกอบของก๊าซไฮโครเจน 34% ก๊าซการ์บอนไดออกไซค์ 65 % และก๊าซ และในถังปฏิกรณ์ที่ใช้ผลิตมีเทนได้องค์ประกอบของก๊าซมีเทน 63% ก๊าซ มีเทน 1% การ์บอนใดออกไซด์ 36.6 % , ก๊าซไฮโครเงน 0.4 %, ผลผลิตมีเทนที่ได้ 652.6 มิลลิลิตรต่อ กิโลกรัมสารอินทรีย์ที่ถูกกำจัดและร้อยละการกำจัดสารอินทรีย์เท่ากับ 52. ที่อัตราการป้อน สารอินทรีย์ที่เหมาะสม ระบบจะควบคุมอัตราการป้อนก๊าซออกซิเจน (ซึ่งอยู่ในช่วง 5.2 ถึง 7.9 มิลลิลิตรออกซิเจนต่อลิตรของน้ำเสียต่อวัน จากผลการทคลองพบว่าอัตราการป้อนก๊าซออกซิเจน ที่ 6.1 มิลลิลิตรออกซิเจนต่อลิตรของน้ำเสียต่อวันเป็นสภาวะที่ปรับปรุงประสิทธิภาพกระบวนการ ้ผลิตก๊าซได้สูงที่สุดคือ ในถังปฏิกรณ์ที่ใช้ผลิตมีเทนได้องก์ประกอบของก๊าซมีเทน 67%, ผลผลิต มีเทนที่ได้ 682.3 มิลลิลิตรต่อกิโลกรัมสารอินทรีย์ที่ถูกกำจัดและร้อยละการกำจัดสารอินทรีย์ เท่ากับ 57.7 อีกทั้งการเติมออกซิเงนสามารถกำจัคก๊าซไฮโครเงนซัลไฟค์ในถังปฏิกรณ์ที่ใช้ผลิต มีเทน.

ACKNOWLEDGEMENTS

This work would have not been successful without the assistance of the following individuals and organizations. First of all, This thesis work is funded by The Petroleum and Petrochemical College; and The National Center of Excellence for Petroleum, Petrochemicals, Advanced Materials, Thailand. This research work was partially supported by the Ratchadapisek Sompote Endowment Fund (2015), Chulalongkorn University (CU-56-900-FC) and Thailand Research Fund (IRG5780012).

I would like to express my grateful appreciation to my thesis advisors, Prof. Sumaeth Chavadej, for several constructive suggestions and discussion throughout this research work. Special thanks go to Asst. Prof. Pomthong Malakul and Prof. Suntud Sirianuntapaiboon for their valuable suggestions. Furthermore, I would like to take this opportunity to thank my senior, MS. Patcharee Intanoo for her kindly advice and suggestion and also all of my PPC friends for their friendly assistance, cheerfulness, and encouragement. Finally, I would like to thank Ubon Bioethanol Co., Ltd. Thailand for kindly providing the seed sludge, cassava residue, cassava wastewater for this study.

σ

TABLE OF CONTENTS

PAGE

16

16

1

Ti	tle Page		i
A	ostract (in English)	4	iii
A	ostract (in Thai)		iv
A	cknowledgements		v
Та	able of Contents		vi
Li	st of Tables		ix
Li	st of Figures		x
СНАРТ	E R		
Ι	INTRODUCTION		1
II	LITERATURE REVIEW		3
	2.1 Limitations of Conventional Hydrogen and		
	Methane Production		3
	2.2 Hydrogen and Methane Production Methods		4
	2.2.1 Hydrogen Production Methods		4
	2.2.2 Methane Production Methods		9
	2.3 Anaerobic Hydrolysis and Microaeration		11
	2.4 Cassava Wastewater		14
	2.5 Important Parameters in Wastewater		15
	2.5.1 Total Solids (TS)		15
	2.5.2 Total Volatile Solids (TVS)		15
	2.5.3 Total Suspended Solids (TSS)		15
	2.5.4 Volatile Suspended Solids (VSS)		15
	2.5.5 Total Dissolved Solids (TDS)		16
	2.5.6 Biochemical Oxygen Demand (BOD)		16

2.5.7 Chemical Oxygen Demand (COD)2.6 Anaerobic Fermentation Process

σ

CHAPTER		PAGE
	2.6.1 Principle of Anaerobic Fermentation Process	16
	2.6.2 Reactor Configuration	° 18
	2.7 Two-Step Hydrogen and Methane Production	25
III	EXPERIMENTAL	27
	3.1 Materials	27
	3.1.1 Cassava Wastewater	27
	3.1.2 Seed Sludge and Substrates	27
	3.1.3 Chemicals	28
	3.2 Equipment	28
	3.3 UASB Setup and Operation	29
	3.4 Measurements and Analytical Methods	31
	3.4.1 COD Anaiysis	31
	3.4.2 Total VFA and VFA Composition Analysis	32
	3.4.3 Gas Composition Analysis	33
	3.4.4 Phosphorous Analysis	33
	3.4.5 Nitrogen Analysis	33
	3.4.6 Microbial Concentration (MLVSS)	33
	3.4.7 Microbial Washout (Effluent VSS)	33
IV	RESULTS AND DISCUSSION	35
	4.1 Anaerobic Digestion of Cassava Wastewater	
	without Microaeration	35
	4.1.1 Hydrogen Production	35
	4.1.2 Methane Production	41
	4.2 Anaerobic Digestion of Cassava Wastewater	
	with Microaeration	46
	4.2.1 COD Removal and Gas Production Rate	47
	4.2.2 Gas Composition and Methane Production Rate	48

•

vii

ο

CHAPTER

74

÷

	4.2.3 Methane Yield and Specific Methane Production	
	Rate	49
	4.2.4 The Amount of Organic Acid and Ethanol	
	Concentration and Total Volatile Fatty Acid (VFA)	
	and VFA Composition	51
	4.3 Microbial Concentration and Microbial Washout Results	52
	4.3.1 Without Microaeration	52
	4.3.2 With Microaeration	53
	4.4 Overall Performance	54
V	CONCLUSIONS AND RECOMMENDATIONS	56
	5.1 Conclusions	56
	5.2 Recommendations	56
	REFERENCES	57
0	APPENDICES	61
	Appendix A Calibration Curves	61
	Appendix B Preparation of 1 M NaOH Solution for	
	pH Control System	72
	Appendix C Volatile Fatty Acids (VFA) Quantification by	
	using High-Performance Liquid Chromatography	73

CURRICULUM VITAE

1

LIST OF TABLES

TABLE		PAGE
2.1	Advantages and disadvantages of various pretreatment	
	processes for lignocellulosic materials	11
2.2	Typical organic loading rates for anaerobic suspended	
	growth processes at 30 °C	18
3.1	Characteristics of the studied cassava wastewater	27
3.2	COD loading rate, flow rate, and hydraulic retention time	
	(HRT) for determining the effect of COD loading rate on	
	hydrogen UASB volume at pH 5.5 and on methane UASB	
	volume without pH controlled under mesophilic temperature	
	(COD = 14 g/L)	30
3.3	Oxygen supply rate for determining the effect of oxygen	
	added on methane UASB volume without pH controlled under	
	mesophilic temperature(COD = 14 g/L)	31
Al	Gas chromatograph's calibration curve for hydrogen (H2)	61
A2	Gas chromatograph's calibration curve for nitrogen (N_2)	62
A3	Gas chromatograph's calibration curve for oxygen (O2)	63
A4	Gas chromatograph's calibration curve for methane (CH ₄)	64
A5	Gas chromatograph's calibration curve for carbon dioxide (CO ₂)	65
A6	Liquid chromatograph's calibration curve for acetic acid	66
A7	Liquid chromatograph's calibration curve for propionic acid	67
A8	Liquid chromatograph's calibration curve for butyric acid	68
A9	Liquid chromatograph's calibration curve for valeric acid	69
A10	Liquid chromatograph's calibration curve for ethanol	70
A11	Liquid chromatograph's calibration curve for lactic acid	71

LIST OF FIGURES

FIGURE

-

1.1

PAGE

2.1	Biological pathways to produce hydrogen.	7
2.2	A method for producing methane sustainably.	10
2.3	Flow diagram of the anaerobic digestion process.	17
2.4	Anaerobic suspended growth processes: (a) complete-mix	
	process,(b) Anaerobic contact process, and (c) anaerobic	
	sequencing batch reactor process.	19
2.5	Schematic of the UASB process and some modifications:	
	(a) original UASB process, (b) UASB reactor with	
	Sedimentation tank and sludge recycle, and (c) UASB reactor	
	with internal packing for fixed-film attached growth, placed	
	above the sludge blanket.	20
2.6	Schematic of alternative sludge blanket processes:	
	(a) anaerobic baffled reactor (ABR) and (b) anaerobic	
	migrating blanket reactor(AMBR).	22
2.7	Upflow anaerobic attached growth treatment reactors:	
	(a) anaerobic upflow packed-bed reactor, (b) anaerobic	
	expanded-bed reactor, and (c) anaerobic fluidized-bed	
	reactor.	24
2.8	Downflow attached growth anaerobic treatment reactor.	25
3.1	Apparatus of UASB setup.	29
3.2	Schematic of two stage upflow anaerobic sludge blanket	
	(UASB) unit.	30
3.3	(a) COD reactor and (b) spectrophotometer.	32
4.1	Effect of COD loading rate on COD removal and gas	
	production rate on hydrogen UASB unit at 37°C and pH 5.5.	35
4.2	Effect of COD loading rate on gas composition and hydrogen	
	production rate on hydrogen UASB unit at 37°C and pH 5.5.	37

F	IGUR	URE		
	4.3	Effect of COD loading rate on hydrogen yield on hydrogen		
		UASB unit at 37°C and pH 5.5.	38	
	4.4	Effect of COD loading rate on Specific hydrogen production		
		rate(SPHR) on hydrogen UASB unit at 37°C and pH 5.5.	39	
	4.5	Effect of COD loading rate on total VFA, organic acid and		
		alcohol concentration on hydrogen UASB unit at 37°C and		
		pH 5.5.	40	
	4.6	Effect of COD loading rate on COD removal and gas		
		Composition rate on methane UASB unit at 37°C and without		
		pH control.	42	
	4.7	Effect of COD loading rate on gas composition and methane		
		production rate on methane UASB unit at 37°C and without		
		pH control.	42	
	4.8	Effect of COD loading rate on methane yield on methane		
		UASB unit at 37°C and without pH control.	43	
	4.9	Effect of COD loading rate on Specific methane production		
		rate (SMPR) on methane UASB unit at 37°C and without		
		pH control.	44	
	4.10	Effect of COD loading rate on total VFA, organic acid and		
		Alcohol concentration on methane UASB unit at 37°C and		
		without pH control.	46	
	4.11	Effects of oxygen supply rate on COD removal and gas		
		production rate on methane UASB unit at 37°C and without		
		pH control.	47	
	4.12	Effects of oxygen supply rate on gas composition and		
		methane production rate on methane UASB unit at 37°C		
		and without pH control.	48	
	4.13	Effects of oxygen supply rate on methane yield on methane		
		UASB unit at 37°C and without pH control.	50	

σ

FIGUR	E	PAGE
4.14	Effects of oxygen supply rate on SMPR (specific methane	
	production rate) on methane UASB unit at 37°C and without	
	pH control.	50
4.15	Effects of oxygen supply rate on total VFA, organic acid	
	and alcohol concentration on methane UASB unit at 37°C	
	and without pH control.	51
4.16	Effect of COD loading rate on MLVSS and Effluent VSS	
	on hydrogen UASB unit at 37°C and pH 5.5.	52
4.17	Effect of COD loading rate on MLVSS and Effluent VSS	
	on methane UASB unit at 37°C and without pH control.	53
4.18	Effects of oxygen supply rate on effluent VSS	
	on methane UASB unit at 37°C and without pH control.	54
4.19	Overall Performance of Two Stage UASB Process without	
	Microaeration	54
4.19	Overall Performance of Two Stage UASB Process without	
	Microaeration	55
A1	The relationship between amount of hydrogen (H_2) \bullet	
	and peak area.	61
A2	The relationship between amount of nitrogen (N_2)	
	and peak area.	62
A3	The relationship between amount of oxygen (O ₂)	
	and peak area.	63
A4	The relationship between amount of methane (CH ₄)	
	and peak area.	64
A5	The relationship between amount of carbon dioxide (CO_2)	
	and peak area.	65
A6	The relationship between concentration of acetic acid	
	and peak area.	66
A7	The relationship between concentration of propionic acid	

o

 ~ -1

FIGURE

σ

PAGE

	and peak area.		67
A8	The relationship between concentration of butyric acid	٩	
	and peak area.		68
A9	The relationship between concentration of valeric acid		
	and peak area.		69
A10	The relationship between concentration of ethanol		
	and peak area.		70
A11	The relationship between concentration of lactic		
	and peak area.		71