REFERENCES

- Abanades, A. (2014) Thermal cracking of methane into hydrogen for a CO₂ Free utilization of natural gas. <u>International Journal of Hydrogen Energy</u>, 39, 645.
- Abbasi, T., Tauseef, S. M., and Abbasi, S. A. (2012) Anaerobic digestion for global warming control and energy generation—an overview. <u>Renewable and Sustainable Energy Reviews</u>, 16(5), 3228-3242.
- Anu, K., Veijo, K., Armi, L., Annalea, L., Jukka, A., Jouko, S., Pertti, J., and Martikainen. (1999) . Methane production and oxidation potentials in relation to water table fluctuations in two boreal mires. <u>Soil Biology and Biochemistry</u>, 31,1471-1479.
- Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. <u>Energy Conversion and Management</u>, 52, 858-875.
- Botheju, D. and Bakke, R. (2011) Oxygen effects in anaerobic digestion-a review. <u>The Open Waste Management Journal</u>, 4, 1-19.
- Borja, R., Banks C J., and SanchezE.(1996)Anaerobic treatment of palm oil mill effluent in a two-stage up-flow anaerobic sludge blanket (UASB) system. Journal of Biotechnology, 45(2), 125-135.
- Das, D. and Veziroğlu, T.N. (2001) Hydrogen production by biological processes: a survey of literature. <u>International Journal of Hydrogen Energy</u>, 26(1), 13-28.
- Denise, C., Charles, J.B., Sonia, H., and Kimon-Andreas, G.K. (2012) The effect of pH control and 'hydraulic flush' on hydrolysis and volatile fatty acids (VFA) production and profile in anaerobic leach bed reactors digesting a high solids content substrate. Bioresource Technology, 123, 263-271.
- Fan, Y.T., Zhang, Y.H., Zhang, S.F., Hou H.W., and Ren B.Z. (2006) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. <u>Journal of Biotechnology</u>, 97, 5-500.
- Fred, M., Les, L., Scharff, H., and Liebhardt,B. (1997) Nutrient Cycling, Transformations, and Flows: Implications for A More Sustainable Agriculture. <u>Advances in Agronomy</u>, 60, 1-73.

Ø

- Hawkes, F.R., Dinsdale, R., Hawkes, D.L., and Hussy,I. (2002) Sustainable fermentative hydrogen production: challenges for process optimisation. <u>International Journal of Hydrogen Energy</u>, 27(11-12), 1339-1347.
- Hwang, MH.,Jan, NJ., Hyun, SH., and Kim, IS. (2004) Anaerobicbiohydrogen production from ethanol fermentation: the role of pH. Journal of <u>Biotechnology</u>, 111(3), 297-309.
- "Hydrogen Basics-Economics."Florida Solar Energy Center. 20 May 2007. 3 Jan 2015<http://www.fsec.ucf.edu/en/consumer/hydrogen/basics/economics.ht m>.
- Intanoo, P., Rangsanvigit, P., Tay, J.H., Malakul, P., and Chavadej, S. (2014) Optimization of separate hydrogen and methane productionfrom cassava wastewater using two-stage upflow anaerobic sludgeblanket reactor (UASB) system under thermophilic operation. <u>Bioresource Technology</u>, 173, 256-265.
- Jeffrey R. Bartels., Michael B., Pate., and Norman K.O. (2010) An economic survey of hydrogen production from. <u>International Journal of Hydrogen Energy</u>, 35, 8371-8374.
- Jenicek, P., Keclik, F., Maca, J., and Bindzar, J. (2008) Use of microaerobic conditions for the improvement of anaerobic digestion of solid wastes. <u>Water Science and Technology</u>, 58(7), 1491-1496.
- Jenicek, P.(2011) "Benefits and Drawbacks of Microaerobic Condition in Anaerobic Digestion." Department of Water Technology. 5 Dec 2011. 8 Nov 2013 < http://mbr.eng.usf.edu/biowet/Jenicek1.pdf>.
- Kapdan, I.K. and Kargi, F. (2006) Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 38, 569-582.
- Ke, S.Z., Shi, Z., and Fang, H.H.P. (2005) Applications of two-phase anaerobic degradation in industrial wastewater treatment. <u>International Journal of</u> <u>Environment and Pollution</u>, 23(1), 65-80.
- Kim M.S., Cha J., and Kim D.H.(2013) Fermentative Biohydrogen Production from Solid Wastes. <u>Environmental Science and Technology</u>, 37(1), 39.

- Kothari, R.,Buddhi, D., and Sawnnew, R.L. (2004).Sources and technology production: a review. <u>International Journal of Global Energy Issues</u>, 21, 154-178.
- Levine, A.D., Tchobanoglous, G., and Asano, T. (1991). Size distributions of particulate contaminants in wastewater and their impact on treatability. <u>Water Research</u>, 25(8), 911-922.
- Liu, D.W., Liu, D.P., Zeng, R.J., and Angelidaki, I. (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. <u>Water Research</u>, 40(11), 2230-2236.
- Luo, G., Xie, L., Zhou, Q., and Angelidaki, I. (2011) Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process. <u>Bioresource Technology</u>, 102(18), 8700-8706.
- Madigan, M.T., Martinko, J.M., Dunlap, P.V., and Clark, D.P. (2011) <u>Brock Biology</u> of <u>Microorganisms</u>, 12th ed., Upper Saddle River, NJ: Prentice Hall.
- Magnusson, L., Islam, R., Sparling, R., Levin, D., and Cicek, N. (2008) Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process. <u>International Journal of Hydrogen Energy</u>, 33(20), 5398-5403.
- Metcalf, L. and Eddy, H.P. (2003) <u>Wastewater Engineering: Treatment and Reuse</u>. New York: McGraw-Hill.

- Meyers, R.A. (Ed). (2001) Solar thermochemical process technology. <u>Encyclopedia</u> <u>of Physical Science & Technology</u>, 15, 237-256.
- Mohan, S.V., Mohanakrishna, G., and Sarma, P.N. (2008) Integration of acidogenic and methanogenic processes for simultaneous production of biohydrogen and methane from wastewater treatment. <u>International Journal of Hydrogen Energy</u>, 33(9), 2156-2166.
- Ramos I, Pérez R., and Fdz-Polanco M. (2013) Microaerobicdesulphurisation unit: A new biological system for the removal of H2S from biogas. <u>Bioresource</u> <u>Technology</u>, 142, 633-640.
- Sanders,W.T.M. (2001) "Anaerobic Hydrolysis during Digestion of Complex Substrates."Wageningen University. 8 May 2010. 10 October 2013 <http://edepot.wur.nl/198997>.

- Sarada, R. and Joseph, R. (1996) A comparative study of single and two stage processes for methane production from tomato processing waste. <u>Process</u> <u>Biochemistry</u>, 31(4), 337-340.
- Sreethawong, T., Niyamapa, T., Neramitsuk, H., Rangsunvigit, P., Leethochawalit, M., and Chavadej, S. (2010) Hydrogen production from glucose-containing wastewater using an anaerobic sequencing batch reactor: Effects of COD loading rate, nitrogen content, and organic acid composition. <u>Chemical</u> <u>Engineering Journal</u>, 160(1), 322-332.
- Ugwu, E.I. and Agunwamba, J.C. (2012) Detoxification of cassava wastewater by alkali degradation. Journal of Research in Environmental Science and Toxicology, 1(7), 161-167.
- Veeken, A., Kalyuzhnyi, S., Scharff, H., and Hamelers, B. (2000) Effect of pH and VFA on hydrolysis of organic solid waste. <u>Environmental Engineering</u>, 126(12), 1076-1081.
- Wang, W., Xie, L., Luo, G., Zhou, Q., andLu, Q. (2012)Optimization of biohydrogen andmethane recovery within a cassava ethanol wastewater/waste integratedmanagement system. <u>Bioresource Technology</u>. 120, 165–172.
- Wiegant, WM., Hennink, M., and Lettinga, G.(1986)Separation of the propionate degradation to improve the efficiency in the thermophilic anaerobic treatment of acidified wastewaters. <u>Wastewater Engineering: Treatment and Reuse</u>, 20, 24-517.
- Yu, H., Zhu, Z., Hu, W., and Zhang, H. (2002) Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobiccultures. <u>International Journal of Hydrogen Energy</u>, 27, 1359-1365.
- Zhang, Z.P., Show, K.Y., Tay, J.H., Liang, D.T., Lee, D.J., and Jiang, W.J. (2006) Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. <u>Process Biochemistry</u>, 41(10), 2118-2123.

APPENDICES

Appendix A Calibration Curves

 Table A1
 Gas chromatograph's calibration curve for hydrogen (H₂)

Volu	me of hydrogen (ml)	Peak area
	0.02	1,101,005
	0.04	2,016,179
	0.08	3,680,042
	0.1	5,675,328
	0.2	11,471,761
	0.4	22,832,569

Figure A1 The relationship between amount of hydrogen (H_2) and peak area.

Equation

Amount of hydrogen =
$$\frac{\text{Peak area + 319,435}}{6 \times 10^7}$$

Volume of nitrogen (ml)	Peak area
0.02	69,431
0.04	188,161
0.08	426,068
0.1	478,146
0.2	1,008,515
0.4	2,155,800
0.6	3,309,337

Table A2 Gas chromatograph's calibration curve for nitrogen (N₂)

Amount of nitrogen =
$$\frac{\text{Peak area + 53,607}}{6 \times 10^6}$$

σ

o

Volume of oxygen (ml)	Peak area
0.02	81,122
0.04	233,918
0.08	514,527
0.1	662,766
0.2	1,366,208
0.4	2,738,126

 Table A3
 Gas chromatograph's calibration curve for oxygen (O2)

Figure A3 The relationship between amount of oxygen (O_2) and peak area.

Amount of oxygen =
$$\frac{\text{Peak area + 44,133}}{7 \times 10^6}$$

-

Volume of methane (ml)	Peak area
0.02	151,094
0.04	523,919
0.08	998,851
0.1	1,366,651
0.2	2,898,103
0.4	5,880,444

Table A4 Gas chromatograph's calibration curve for methane (CH₄)

Equation

Amount of methane =
$$\frac{\text{Peak area} + 138,046}{2 \times 10^7}$$

Volume of carbon dioxide (ml)	· Peak area
• 0.02	4,238
0.04	188,166
0.08	293,029
0.1	354,304
0.2	747,872
0.4	1,515,064

Figure A5 The relationship between amount of carbon dioxide (CO₂) and peak area.

0

Amount of carbon dioxide = $\frac{\text{Peak area} + 45,298}{4 \times 10^6}$

Concentration of acetic acid (mg/l)	Peak area
1,000	226,593
2,000	458,639
3,000	693,445
4,000	951,778
5,000	1,179,161

 Table A6
 Liquid chromatograph's calibration curve for acetic acid

Figure A6 The relationship between concentration of acetic acid and peak area.

Amount of acetic acid =
$$\frac{Peak area + 8361}{237.3}$$

Concentration of propionic acid (mg/l)	Peak area
1,000	274,670
2,000	553,990
3,000	836,683
4,000	1,091,859
5,000	1,435,669

Table A7 Liquid chromatograph's calibration curve for propionic acid

Amount of propionic acid =
$$\frac{Peak area + 9231}{283.2}$$

Concentration of butyric acid (mg/l)	Peak area
1,000	310,185
2,000	636,623
3,000	974,830
4,000	1,315,752
5,000	1,672,791

 Table A8
 Liquid chromatograph's calibration curve for butyric acid

Amount of butyric acid =
$$\frac{Peak \ area + \ 18698}{334.8}$$

o

Concentration of valeric acid (mg/l)	Peak area
1,000	346,808
2,000	707,645
3,000	1,082,011
4,000	1,470,955
5,000	1,844,040

Table A9 Liquid	chromatograph	's calibration	curve for va	leric acid
-----------------	---------------	----------------	--------------	------------

Amount of valeric acid =
$$\frac{Peak area + 17638}{370.4}$$

Concentration of ethanol (mg/l)		Peak area	
1	1,000	189,866	
	2,000	377,275	
	3,000	569,223	
	4,000	765,786	
	5,000	958,108	

Table A10 Liquid chromatograph's calibration curve for	ethanol
--	---------

Figure A10 The relationship between concentration of ethanol and peak area.

Amount of
$$et \square anol = \frac{Peak \ area + 2593}{191.7}$$

Concentration of ethanol (mg/l)	Peak area
1,000	241,057
2,000	513,754
3,000	735,330
4,000	1,047,749
5,000	1,350,707

Figure A11 The relationship between concentration of lacticand peak area.

$$Amount of et \square anol = \frac{Peak area + 22985}{268.4}$$

-

Appendix B Preparation of 1 MNaOH Solution for pH-controlled System

Preparation of NaOH at concentration of 1 M (Molecular weight of acetic acid = 60)

$$= \frac{1 \ mol}{1 \ l} \times \frac{40 \ g}{1 \ mol}$$
$$= 40 \frac{g}{l}$$

.

Appendix C Volatile Fatty Acids (VFA) Quantification by using High-Performance Liquid Chromatography

C 1. Mobile phase solution preparation			
Concentration of fresh sulfuric acid (liquid)		= 98%	ov∕v
Density of sulfuric acid	=	1.84 g/ml	
Molecular weight of sulfuric acid		= 9	8.08
Determination of fresh acetic acids concentr	ation in term	of molar	

 $\frac{0.98mL \text{ of sulfuricacid}}{mL \text{ of solution}} \times \frac{1.84 \text{ g of sulfuricacid}}{mL \text{ of sulfuricacid}} \times \frac{1 \text{ molof sulfuricacid}}{98.08 \text{ g of sulfuricacid}} \times \frac{1000mL}{1 \text{ L}}$ = 18.38 M

Sulfuric acid are required at concentration of 0.004M

Dilution of sulfuric acid

N_1V_1	=	N_2V_2	
V_1	-	$N_2 V_2 / N_1$	
	=	(0.004x2)/18.38	
	=	4.352 x10 ⁻⁴	L

CURRICULUM VITAE

Name : Ms. PairinTuntiwichayanon

Date of Birth : March 1, 1991

Nationality : Thai

University Education :

2008-2012 Bachelor Degree of Industrial Chemistry, Faculty of Science, Chiangmaiuniversity

Work Experience:

2011Position: Internship Student

Company name: National Science and

Ø

Technology Development Agency, Thailand

Proceedings:

 Tuntiwichayanon, P.; and Chavadej, S. (2015, April 21) Effects of Microaeration on Hydrogen and Methane Production from Cassava Wastewater using a Twostage UASB System. <u>Proceedings of The6thResearch Symposium on Petroleum,</u> <u>Petrochemicals, and Advanced Materials and The 21th PPC Symposium on Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand.</u>

o

-