A SYSTEMATIC STUDY ON BENZIMIDAZOLE DERIVATIVES: INVESTIGATION OF HYDROGEN BOND, PACKING STRUCTURE, AND MOLECULAR MOBILITY RELATED TO PROTON TRANSFER IN ANHYDROUS SYSTEM OF POLYMER ELECTROLYTE MEMBRANE FUEL CELL

Autchara Pangon

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2011

Thesis Title:	А	Systematic	Study	on	Benz	imidazole	e Derivat	ives:
	Inve	estigation o	f Hydrog	gen E	Bond,	Packing	Structure,	and
	Mo	lecular Mob	ility Rela	ted to	Proto	n Transfe	er in Anhyd	lrous
	Sys	tem of Polyr	ner Electi	olyte	Mem	brane Fue	l Cell	
By:	Aut	chara Pango	n					
Program:	Pol	ymer Scienc	e					
Thesis Advisors:	Pro	f. Suwabun	Chirachar	nchai				
	Pro	f. Kohji Tas	hiro			1		

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof. Pomthong Malakul)

(Prof. Kohji Tashiro)

hindando mabrit

(Prof. Suwabun Chirachanchai)

Hathailian M.

(Asst. Prof.Hathaikarn Manuspiya)

Ryarat Nimmanpipug

(Asst. Prof. Piyarat Nimmanpipug)

ABSTRACT

5192003063: Polymer Science Program

Autchara Pangon: A Systematic Study on Benzimidazole
Derivatives: Investigation of Hydrogen Bond, Packing Structure,
and Molecular Mobility Related to Proton Transfer in Anhydrous
System of Polymer Electrolyte Membrane Fuel Cell
Thesis Advisors: Prof. Suwabun Chirachanchai and Prof. Kohji
Tashiro. 91 pp.

Keywords: Proton conductivity / Hydrogen bond network / Polymer electrolyte membrane / Packing structure / Proton transfer / Molecular mobility Benzimidazole / Branching polyethylenimine

The present work aims to clarify how proton can be transferred in heterocycle molecules under anhydrous system based on benzimidazole model compounds and model polymer via a simple molecular design and synthesis approach. In the case of benzimidazole model compounds, the number of benzimidazole groups under monofunctional, difunctional, and trifunctional leads us to an understanding that the hydrogen bond network among benzimidazole as well as the packing structure is the key factor for enhancing proton transfer efficiency. The most favorable structure is trifunctional benzimidazoles which gives a helical hydrogen bond network under columnar packing structure of which the conductivity is as high as 10⁻² S/cm² at 170 °C. In the case of model polymer containing multifunctional benzimidazole, a branching benzimidazole polymer can be easily obtained by simply conjugating benzimidazoles onto branching polyethylenimine. This model polymer suggests that although benzimidazoles form the hydrogen bond network, the tight and strong network obstructs the chain mobility. The favorable condition for polymer containing benzimidazoles is the one with only a few percent of benzimidazole group (~20%) and at that time the conductivity is 10^{-4} S/cm² at 190 °C. The work also extends to show an approach to obtain branching benzimidazole pendant group which will be useful for the conjugation onto polymer backbone in the next step. The pendant group of aminotris[2-(benzimidazol-2-yl)ethyl]methane is successfully prepared by the reaction between triacid chloride of nitromethanetripropionic acid chloride and diamine of phenylenediamine followed by the reduction of nitro group via Pd/C catalyst.

บทคัดย่อ

อัจฉรา แป้งอ่อน : การพิสูจน์ทราบของพันธะไฮโดรเจน โครงสร้างการจัดเรียงคัว และ การเคลื่อนที่เชิงโมเลกุล ที่เกี่ยวกับการส่งผ่านโปรตอนในระบบที่ไม่ใช้น้ำของเซลล์เชื้อเพลิงแบบ พอลิเมอร์อิเลกโตรไลท์เมมเบรน (Investigation of Hydrogen Bond, Packing Structure, and Molecular Mobility related to Proton Transfer in Anhydrous System of Polymer Electrolyte Membrane Fuel Cell) อ. ที่ปรึกษา : ศาสตราจารย์ คร. สุวบุญ จิรชาญชัย และ ศาสตราจารย์ คร.โค จิ ทาชิโระ, 91 หน้า

้งานวิจัยนี้มุ่งเน้นให้เห็นชัดเจนถึงการส่งผ่านโปรตอนในโมเลกุลเฮเทอโรไซเคิลภายใต้ ระบบที่ไม่ใช้น้ำของสารต้นแบบและพอลิเมอร์ต้นแบบของเบนซิมิคาโซล โดยวิธีออกแบบและ ้สังเคราะห์โมเลกุลอย่างง่าย จำนวนหมู่เบนซิมิดาโซลภายใด้ หมู่พึงก์ชันเดี๋ยว หมู่พึงก์ชันคู่ และ หมู่พึงก์ชันสาม นำมาสู่ความเข้าใจที่ว่า ร่างแหของพันธะไฮโครเจนในหมู่เบนชิมิคาโซลรวมถึง ้โครงสร้างการจัดเรียงตัวเป็นปัจจัยสำคัญในการเพิ่มประสิทธิภาพการส่งผ่านโปรตอน โครงสร้าง ที่เอื้อต่อการส่งผ่านโปรตอนมากที่สุดคือ เบนซิมิดาโซลหมู่ฟังก์ชันสาม ซึ่งให้ร่างแหของพันธะ ้ไฮโดรเจนแบบเกลียวภายใต้โครงสร้างการจัดเรียงตัวแบบแนวตรง ที่ซึ่งค่าการนำโปรตอนเท่ากับ 10⁻² S/cm ที่อุณหภูมิ 170 องศาเซลเซียส ในกรณีของพอลิเมอร์ดันแบบที่ประกอบด้วยเบนซิมิดา ์โซลจำนวนมาก นั่นคือเบนซิมิดาโซลที่มีลักษณะเป็นกิ่ง สามารถเตรียมได้อย่างง่ายโดยการติด เบนซิมิตาโซลบนพอลีเอททิลลีนอิมมีนที่เป็นกิ่ง พอลิเมอร์ด้นแบบนี้ชี้ให้เห็นว่า แม้ว่าเบนซิมิดา ์โซลจะทำให้เกิดร่างแหของพันธะไฮโครเจน ร่างแหที่แข็งแรงและอย่กันอย่างแน่นจะขัดขวางการ ้เคลื่อนที่ของสายโซ่ เงื่อนไขที่เหมาะสมสำหรับพอลิเมอร์ที่ประกอบด้วยเบนซิมิดาโซลคือพอลิ เมอร์ที่มีเบนซิมิดาโซลจำนวนหนึ่ง (~20%) และในขณะนั้นให้ค่าการนำโปรตอนเท่ากับ 10⁴ S/cm ที่อุณหภูมิ 190 องศาเซลเซียส งานนี้ขยายไปสู่การแสดงวิธีได้มาซึ่งหมู่แขวนเบนซิมิคาโซลที่มี ้ลักษณะเป็นกิ่ง ซึ่งจะมีประโยชน์สำหรับการเชื่อมติดบนสายโซ่หลักของพอลิเมอร์ในขั้นตอน ต่อไป หมู่แขวนของ ทริส[2-(เบนซิมิคาโซ-2-อิว)เอททิล]ในโตรมีเทน ถูกเตรียมได้สำเร็จจาก ปฏิกิริยาระหว่าง ไตรแอซิคตลอไรค์ของในโตรมีเทนไตรโพรไพโอนิค แอซิค กลอไรค์ และไคเอ มีนของฟีนิลลืนไดเอมีน ตามด้วยการรีดักชั้นของหมู่ในโตรด้วยตัวเร่งปฏิกิริยา แพดลาเดียม/ การ์บอน

ACKNOWLEDGEMENTS

The author would like to express her sincere thanks to her advisor, Professor Suwabun chirachanchai, for giving her knowledge, continuous support, guidance, patience, inspiration, encouragement and for providing her with an excellent research atmosphere. Especially thanks for being her role model.

She would like to extend her grateful thanks to Professor Kohji Tashiro (Department of Future Industry-oriented Basic Science and Materials, Toyota Technological Institute, Japan) not only for giving her a chance to experience doing the research in his laboratory but also for giving her strong support, worth advices, kindness, and concerns during her stays in Japan. She also wishes to thank to all Tashiro laboratory's members for their many helps and good taking care during her stay in Japan.

She would also like to express her appreciation to Prof. Ono Masatomi (Toyota Technological Institute, Japan) for his valuable suggestion about the synthesis method.

She wishes to thank her thesis committee, Asst. Prof. Pomthong Malakul, Asst. Prof. Hathaikarn Manuspiya, and Asst. Prof. Piyarat Nimmanpipug for their suggestions and invaluable guidance. A deep gratitude is expressed to all professors at PPC who have given her valuable knowledge.

She would like to acknowledge the scholarships from the Development and Promotion of Science and Technology Talents Project (DPST) for the Ph.D program and Japan Student Services Organization (JASSO) for the short-term research in Japan.

This thesis work is funded by the Petroleum and Petrochemical College, and the National Center of Excellence for Petroleum, Petrochemical, and Advanced Materials, Thailand. The author also acknowledges the National Research Council of Thailand and the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (EN276B) for research financial supports.

Her thanks are also to all Suwabun's group members for their helps, good suggestions, friendship and all the good memories.

Last, but not least, she thanks her family for giving her life, encouragement, and unconditional support to pursue her interests and especially for their love and understanding.

TABLE OF CONTENTS

		PAGE
Title P	age	i
Abstra	ct (in English)	iii
Abstra	ct (in Thai)	v
Ackno	wledgements	vi
Table	of Contents	viii
List of	Schemes	xi
List of	Figures	xii
List of	Table	xvi
CHAPTER		
Ι	INTRODUCTION	1
II	LITERATURE REVIEW	3
	2.1 Fuel Cell	3
	2.2 Polymer Electrolyte Membrane Fuel Cell (PEMFC)	5
	2.3 High temperature PEMFC	7
	2.4 Polymer Electrolyte Membrane	8
	2.5 Points of Study	17
III	SYSTEMATIC STUDIES ON BENZIMIDAZOLE	
	DERIVATIVES: MOLECULAR STRUCTURS AND T	HEIR
	HYDROGEN BOND NETWORK FORMATION TOW	ARD
	PROTON TRANSFER EFFICIENCY UNDER	
	POLYPHOSPHORIC ACID MATRICES	18
	3.1 Abstract	18
	3.2 Introduction	19
	3.3 Experimental	20

viii

3.4 Results and discussion	23
3.5 Conclusions	38
3.6 Acknowledgements	39
3.7 References	39

IV POLYETHYLENIMINE CONTAINING BENZIMIDAZOLE BRANCHING: A MODEL SYSTEM TO STUDY PROTON TRANSFER PERFORMANCE THROUGH A BALANCE OF HYDROGEN BOND AND CHAIN MOBILITY 42 4.1 Abstract 42 • • 4.2 Introduction 42 1 4.3 Experimental 44 4.4 Results and discussion 47 4.5 Conclusions 67 68 4.6 Acknowledgements 69 4.7 References

SYNTHESIS AND STRUCTURAL CHARACTERIZATIONS OF V AMINOTRIS[2-(BENZIMIDAZOL-2-YL)ETHYL]METHANE: **MULTI-BENZIMIDAZOLE MOIETY AS PROTON CONDUCTIVE SPECIES IN ANHYDROUS POLYMER** 72 **ELECTROLYTE MEMBRANE** 72 5.1 Abstract 72 5.2 Introduction 74 5.3 Experimental 5.4 Results and discussion 76 82 5.5 Conclusions 82 5.6 Acknowledgements

5.7 References 82

CHAPTER		PAGE
VI	CONCLUSIONS	84
	REFERENCES	86
	CURRICULUM VITAE	90
		÷
		ć .
		4
		÷
		5 m
		Υ.

х

LIST OF SCHEMES

SCHEME

PAGE

CHAPTER III

3.1	Chemical structures of model compounds: benzimidazole	
	(B-1), ethylene-1,2-di-2-benzimidazole (B-2), 1,4-bis(2-	
	benzimidazolyl)benzene (B-3) and 1,3,5-tri(2-benzimi-	
	dazolyl)benzene (B-4)	20

CHAPTER IV

4.1	Synthesis of MPEI	45
-----	-------------------	----

CHAPTER V

5.1 Synthesis of	1, 2 and 3	7	5
------------------	------------	---	---

LIST OF FIGURES

FIGURE

PAGE

CHAPTER II

2.1	Schematic draw of a single fuel cell components and	
	operationsbased on hydrogen/oxygen fuel cell (Carrette et	
	<i>al.</i> , 2001)	3
2.2	Typical fuel cell polarization curves (voltage vs. current	
	density) and power density curves (Haile, S.M., 2003)	6
2.3	CO coverage on a platinum surface as a function of	8
	temperature and CO concentration. H_2 partial pressure is 0.5	
	bar (Yang et. al., 2001)	
2.4	Chemical structure of Nafion [®] : m=1; n=2; x=5-13.5; y=1	9
2.5	Cluster-network model of Nafion® membranes proposed by	
	Hsu et.al, (1983)	9
2.6	Proton conductivity of Nafion [®] (•), 1.5wt.%Krytox-Si-	
	Nafion [®] (\circ), 2.5wt.% Krytox-Si-Nafion [®] (\triangledown), and 5.0	
	wt.%Krytox-Si–Nafion [®] (\bigtriangledown) hybrid membranes (Gosalawit	
	<i>et. al.</i> , 2006)	10
2.7	Chemical structures of PEMs based on aliphatic	
	hydrocarbon Polymers	11
2.8	Chemical structures of PEMs based on aromatic	
	hydrocarbon polymers	12
2.9	Proton transfer mechanism of imidazole	13
2.10	Chemical structures of PEMs based on heterocycle main	
	chains	14
2.11	Chemical structures of self conductive polymers based on	
	heterocycle pendent group	15
2.12	Examples of acid-based blended membrane	16

PAGE

CHAPTER III

3.1	X-ray crystal packing structure diagrams of (a) B-1; (b) B-2;	
	and (c) B-3 with hydrogen bond interaction. The figures	
	were built with the software Materials Studio (Accelrys,	
	Inc.)	26
3.2	Schematic draws of hydrogen bond chains formed in	
	lamellar structure of (a) B-1; (b) B-2; (c) B-3 and in	
	columnar structure of (d) B-4. Some hydrogen atoms were	
	excluded to clarify of viewing	27
3.3	T_1 relaxation times of B-1 , B-2 , B-3 , and B-4	28
3.4	Degradation temperatures of B-1, B-2, B-3 and B-4.	29
3.5	Arrhenius plot comparing the experimental data of PPA (D);	
	B-1 /PPA (●); B-2 /PPA (△); B-3 /PPA (▲); B-4 /PPA (○)	
	with the value obtained from VTF equation fitting (broken	
	lines)	30
3.6	(a) Temperature dependence FTIR spectra of (i) B-1; (ii) B-	
	2; (iii) B-3; and (iv) B-4 at room temperature (), 60 °C	
	$()$, 100 °C (\cdots) , 140 °C $()$ and 200 °C $(-)$;	
	(b) possible hydrogen bond changing from strong H-bond to	
	weak H-bond during heating; and (c) isobestic positions of	
	B-1, B-2, B-3 and, B-4	34
3.7	WAXD patterns of (a) B-1; (b) B-2; (c) B-3; (d) B-4 during	
	heating and cooling at 3 $^{\circ}$ C/min under N ₂ atmosphere	36

CHAPTER IV

4.1	(a) ¹ H NMR and (b) ¹³ C NMR spectra of MPEI 1:0.6	
	(labeled numbers on MPEI structure identifying the	
	positions of hydrogen and carbon in the NMR spectra)	49

FIGURE

PAGE

4.2	¹ H- ¹³ C DEPT-135 edited-HSQC spectrum (solid line =	
	negative phase peak and dash line = positive phase peak)	50
4.3	Inverse gated 13 C NMR spectrum of <i>b</i> PE1	51
4.4	Temperature dependence FTIR spectra of MPEI 1:0.2 during	
	(a) 1 st heating, (b) cooling, and (c) 2 nd heating	54
4.5	Temperature dependence FTIR spectra of (a) MPEI 1:0.2,	
	(b) MPEI 1:0.4, (c) MPEI 1:0.6, (d) MPEI 1:0.8, and (e)	
	MPEI 1:1.0 during the second heating process	55
4.6	FTIR curve fitting of MPEI 1:0.2	56
4.7	Semi-quantitative analysis of hydrogen bond network based	
	on FTIR spectra of MPEI 1:0.2 (\bullet), MPEI 1:0.4 (\blacktriangle). MPEI	
	1:0.6 (\Box), MPEI 1:0.8 (\circ), and MPEI 1:1.0 (\bigtriangleup) (Calculated	
	from those of Figure 4.5)	57
4.8	WAXD profiles under temperature variation of (a) MPEI	
	1:0.2, (b) MPEI 1:0.4, (c) MPEI 1:0.6, (d) MPEI 1:0.8, and	
	(e) MPEI 1:1.0	58
4.9	Radial distribution functions of (a) MPEI 1:0.2, (b) MPEI	
	1:0.4, (c) MPEI 1:0.6, (d) MPEI 1:0.8, and (e) MPEI 1:1.0 at	
	approximate temperature 30 °C (), 50 °C (), 75 °C	
	(), 100 °C (), 125 °C (), 150 °C (),	
	175 °C (), and 200 °C ()	60
4.10	Proton conductivity of Nafion [®] (\diamondsuit), MPEI 1:0.2 (\bullet), and	
	MPEI 1:0.4 (A) as a function of temperature	61
4.11	DSC thermograms of (a) MPEI 1:0.2/PVA, (b) MPEI	
	1:0.4/PVA, (c) MPEI 1:0.6/PVA, (d) MPEI 1:0.8/PVA, and	
	(e) MPEI 1:1.0/PVA during the second heat treatment at	
	heating rate 10 °C min ⁻¹ under N ₂ atmosphere	62

xiv

4.12	FTIR spectra of (a) PVA, (b) MPEI 1:0.2/PVA, (c) MPEI		
	1:0.4/PVA, (d) MPEI 1:0.6/PVA, (e) MPEI 1:0.8/PVA, and		
	(f) MPEI 1:1.0/PVA membranes measured at room		
	temperature (c) MPEI-3/PVA, (d) MPEI-4/PVA, and (e)		
	MPEI-5PVA during the second heat treatment at heating rate		
	10 °C min ⁻¹	63	
4.13	Possible hydrogen bond formation of (a) PVA, (b) MPEI,		
	and (c) MPEI/PVA membranes	63	
4.14	Arrhenius plot of proton conductivity comparing the		
	experimental data of PVA (\diamondsuit), and PVA blended with		
	MPEI 1:0.2 (•), MPEI 1:0.4 (▲), MPEI 1:0.6	64	
4.15	Overlaid re-plots of proton conductivity, glass transition		
	temperature, and relative amount of H-bond as a function of		
	DS	67	
	DS	67	
	DS CHAPTER V	67	
5.1	DS CHAPTER V FTIR spectra of (a) nitromethanetripropionic acid, and the	67	
5.1	DS CHAPTER V FTIR spectra of (a) nitromethanetripropionic acid, and the reaction between nitromethanetripropionic acid and SOCl ₂ at	67	
5.1	DS CHAPTER V FTIR spectra of (a) nitromethanetripropionic acid, and the reaction between nitromethanetripropionic acid and SOCl ₂ at (b) room temperature for 3 days, and (c) reflux temperature	67	
5.1	DS CHAPTER V FTIR spectra of (a) nitromethanetripropionic acid, and the reaction between nitromethanetripropionic acid and SOCl ₂ at (b) room temperature for 3 days, and (c) reflux temperature for a day	67	
5.1	DS CHAPTER V FTIR spectra of (a) nitromethanetripropionic acid, and the reaction between nitromethanetripropionic acid and SOCl ₂ at (b) room temperature for 3 days, and (c) reflux temperature for a day FTIR spectrum of 2	67 77 78	
5.1 5.2 5.3	DS CHAPTER V FTIR spectra of (a) nitromethanetripropionic acid, and the reaction between nitromethanetripropionic acid and SOCl ₂ at (b) room temperature for 3 days, and (c) reflux temperature for a day FTIR spectrum of 2 ¹ H NMR spectrum of 2	67 77 78 79	
5.1 5.2 5.3 5.4	DS CHAPTER V FTIR spectra of (a) nitromethanetripropionic acid, and the reaction between nitromethanetripropionic acid and SOCl ₂ at (b) room temperature for 3 days, and (c) reflux temperature for a day FTIR spectrum of 2 ¹ H NMR spectrum of 2 ESI-MS spectrum of 2	67 77 78 79 79	
5.1 5.2 5.3 5.4 5.5	DS CHAPTER V FTIR spectra of (a) nitromethanetripropionic acid, and the reaction between nitromethanetripropionic acid and SOCl ₂ at (b) room temperature for 3 days, and (c) reflux temperature for a day FTIR spectrum of 2 ¹ H NMR spectrum of 2 ESI-MS spectrum of 3	67 77 78 79 79 80	
5.1 5.2 5.3 5.4 5.5 5.6	DS CHAPTER V FTIR spectra of (a) nitromethanetripropionic acid, and the reaction between nitromethanetripropionic acid and SOCl ₂ at (b) room temperature for 3 days, and (c) reflux temperature for a day FTIR spectrum of 2 ¹ H NMR spectrum of 2 ESI-MS spectrum of 3 ¹ H NMR spectrum of 3	67 77 78 79 79 80 81	

PAGE

LIST OF TABLES

TABLE

PAGE

CHAPTER II

2.1	Characteristics of different types of fuel cell (Boudghene et.	
	al., 2002 and Carrette et. al., 2001)	4

CHAPTER III

3.1	Crystal data and structure refinement parameters for B-1 to						
	B-3	÷					25
3.2	VFT parameters	obtained	from	fitting	the	proton	
	conductivity data to Eq. (3)					32	

CHAPTER IV

4.1	Effect of bPEI:MBz feeding ratios to % yield of the	
	products, percent contents of hydrogen, carbon and nitrogen	
	and calculated degree of substitution	48
4.2	$T_{\text{d}},$ percent residue, and T_{g} of the MPEIs compared with	
	bPEI	53
4.3	Parameters obtained from curve fitting of temperature	
	dependence proton conductivity with VTF equation	65