CARBON DIOXIDE REMOVAL FROM FLUE GAS USING HYBRID SOLVENT ABSORPTION

Marita Rattanacom

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan. The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2011

T28375300

Thesis Title: Carbon Dioxide Removal from Flue Gas Using Hy	
	Solvent Absorption
By:	Marita Rattanacom
Program:	Petroleum Technology
Thesis Advisors:	Asst. Prof. Thammanoon Sreethawong
	Prof. Sumaeth Chavadej
	Dr. Santi Kulprathipanja

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

T. Smithey

(Asst. Prof. Thammanoon Sreethawong)

(Prof. Sumaeth Chavadej)

Senti Kulr

(Dr. Santi Kulprathipanja)

amoel

(Assoc. Prof. Pramoch Rangsunvigit)

(Dr. Natthakorn Kraikul)

บทคัดย่อ

มาริตา รัตนาคม : การแยกก๊าซคาร์บอนไดออกไซด์ออกจากฟลูก๊าซโดยใช้ กระบวนการดูดซึมด้วยตัวทำละลายผสม (Carbon Dioxide Removal from Flue Gas Using Hybrid Solvent Absorption) อ. ที่ปรึกษา : ผศ. ดร. ธรรมนูญ ศรีทะวงศ์ ศ. ดร. สุเมธ ชวเดช และ ดร. สันติ กุลประทีปัญญา 46 หน้า

โดยปกติแล้วฟลูก๊าซที่ถูกปล่อยออกสู่บรรยากาศมาจากอุตสาหกรรมเป็นส่วนใหญ่ซึ่ง รวมไปถึงโรงงานอุตสาหกรรมปิโตรเคมี ฟลูก๊าซประกอบด้วยก๊าซไนโตรเจนประมาณร้อยละ 80, ก๊าซคาร์บอนไดออกไซด์ประมาณร้อยละ 15, และก๊าซออกซิเจนประมาณร้อยละ 5 ซึ่งฟลูก๊าซที่ ได้จากการเผาไหม้เชื้อเพลิงฟอสซิลจะประกอบไปด้วยก๊าซคาร์บอนไดออกไซด์ ซึ่งก่อให้เกิด ปรากฏการณ์เรือนกระจก ในการลดปริมาณการปล่อยก๊าซเรือนกระจก กระบวนการดูคซึมด้วยตัว ทำละลายของเหลวถือเป็นเทคโนโลยีทางการก้าที่สำคัญที่สุดในการกำจัดก๊าซคาร์บอนออกไซด์ เนื่องจากมีประสิทธิภาพสูง ตัวทำละลายที่นิยมใช้กันอย่างกว้างขวางคือโมโนเอทานอลเอมีน นอกจากนี้เอมินที่มีตัวขัดขวางและไดเอมินยังได้รับความสนใจใช้เป็นตัวทำละลายเนื่องจากมีป กามจุในการดูคซึมและความด้านทานต่อการย่อยสลายสูง ดังนั้นวัตถุประสงค์ของงานนี้คือเพื่อ ศึกษาตัวทำละลายผสมที่เหมาะสมระหว่างโมโนเอทานอลเอมีนเกี่มอบกำละลายเอมีนอื่น ๆ โดย ผลการทดลองพบว่าตัวทำละลายโมโนเอทานอลเอมีนที่มีความเข้มข้นร้อยละ 30 โดยน้ำหนัก นอกจากจะมีประสิทธิภาพในการกำจัดก๊าซคาร์บอนไดออกไซด์สูงสุดแล้ว ยังมีอัตราการดูดซึม และความจุในการดูดซึมก็เซการ์บอนไดออกไซด์สูงด้วย นอกจากนี้เมื่อมีการผสมโมโนเอทานอล เอมินกับตัวทำละลายเอมินอื่นๆในสัดส่วนที่เหมาะสมพบว่าเมื่อผสมตัวทำละลายเอมินอื่นๆลงไป จะส่งผลให้ทั้งอัตราการดูดซึมและความจุในการดูดซึมมีแนวโน้มเพิ่มขึ้น

ABSTRACT

5273007063: Petroleum Technology Program
Marita Rattanacom: Carbon Dioxide Removal from Flue Gas Using
Hybrid Solvent Absorption
Thesis Advisors: Asst. Prof. Thammanoon Sreethawong,
Prof. Sumaeth Chavadej, and Dr. Santi Kulprathipanja 46 pp.
Keywords: Carbon dioxide/ Monoethanolamine/ Sterically hindered amine/
Piperazine/ Solvent absorption

.

Normally, flue gas released into the atmosphere from most industries, including the petrochemical industry, contains approximately 80 % N₂, 15 % CO₂, and 5 % O₂. The flue gas produced by the combustion of fossil fuels, which is composed of CO₂, is therefore considered to cause the greenhouse effect. To reduce greenhouse gas emission, the liquid solvent absorption process, the most important commercial technology for CO₂ removal, can be efficiently applied. The widely used solvent is monoethanolamine (MEA). Sterically hindered amines and diamines have also been introduced because of their advantages in high absorption capacity and high degradation resistance. Hence, the aim of this work was to investigate hybrid solvents blended between MEA and other amine additives. The experimental results showed that the MEA aqueous solvent with MEA concentration of 30 wt.% provided the maximum CO₂ removal efficiency, as well as high CO₂ absorption rate and CO₂ loading capacity. When MEA was blended with a suitable amine additive at an appropriate blending ratio, both the absorption rate and CO₂ loading capacity tended to increase.

ACKNOWLEDGEMENTS

This thesis work would have never been possible without the assistance of the following persons and organizations.

First of all, I would like to express my deepest appreciation to Asst. Prof. Thammanoon Sreethawong, Prof. Sumaeth Chavadej, and Dr. Santi Kulprathipanja for all of their excellent guidance, useful recommendations, creative comments, intensive attention, and encouragement throughout the course of my work.

I would like to express special thanks to Assoc. Prof. Pramoch Rangsunvigit and Dr. Natthakorn Kraikul for kindly serving on my thesis committee. Their sincere suggestions are definitely imperative for accomplishing my thesis.

Furthermore, I would like to express my sincere thank to the National Excellence Center for Petroleum, Petrochemicals, and Advanced Materials under the Ministry of Education, Thailand and National Research University Project of CHE and the Ratchadaphiseksomphot Endowment Fund (Project code: CC557A) for providing the financial support for this thesis work.

Finally, I would like to take this opportunity to thank all of my PPC friends for their friendly assistance, cheerfulness, and encouragement. Also, I am greatly indebted to my parents and my family for their support, love, and understanding.

TABLE OF CONTENTS

		PAGE
	Title Page	i
	Abstact (in English)	iii
	Abstact (in Thai)	iv
	Acknowledgements	v
	Table of Contents	vi
	List of Tables	ix
List of Figures		x
CHA	PTER	
	I INTRODUCTION	1
•	II LITERATURE REVIEW	3
	2.1 Global Warming	3
	2.2 CO ₂ Generation	3
	2.2.1 Source of CO_2	3
	2.2.2 Flue Gas Characteristics	5
2.3 CO ₂ Removal Processes		5
	2.3.1 Adsorption Processes	5
	2.3.2 Membrane Processes	6
	2.3.3 Cryogenic Liquefaction Processes	6
	2.3.4 Physical and Chemical Absorption Processes	7
	2.4 Chemical Absorption with Alkanolamines	8
	2.4.1 Alkanolamine Solution	8
	2.4.1.1 Monoethanolamine (MEA)	11
	2.4.1.2 Diethanolamine (DEA)	12
	2.4.1.3 Methyldiethanolamine (MDEA)	12
	2.4.1.4 Mixed Amines	13
	2.4.1.5 Sterically Hindered Amines	14

	2.4.1.6 Other amines	15
	2.5 Amine Degradation	16
	2.6 Related Works	18
III	EXPERIMENTAL	21
	3.1 Materials	21
	3.2 Equipments	21
	3.3 Methodology	22
	3.3.1 Feed Gas Section	22
	3.3.2 Reactor Section	23
	3.3.3 Analytical Section	23
	3.4 Studied Conditions	24
IV	RESULTS AND DISCUSSION	24
	4.1 CO ₂ Absorption by MEA Single Solvent	25
	4.1.1 Effect of Absorption Time	25
	4.1.2 Effect of MEA Concentration	28
	4.1.3 Effect of Flue Gas Flow Rate	31
	4.2 Amine Degradation	33
	4.3 CO ₂ Absorption by Hybrid Solvents	35
	4.3.1 Effect of Blending MEA with Various Amine	
	Additives	35
	4.3.2 Effect of MEA/PZ Ratio	41
V	CONCLUSIONS AND RECOMMENDATIONS	42
	5.1 Conclusions	42
	5.2 Recommendations	42

CHAPTER

PAGE

CHAPTER	PAGE	
REFERENCES	43	
CURRICULUM VITAE	46	

LIST OF TABLES

TABLEPAGE2.1Structural formulas of common alkanolamines92.2Typical operating conditions and data for amines114.1Effect of O2 exposure on CO2 absorption rate and CO2 loading
capacity of 30 wt.% MEA aqueous solutions (Flue gas flow rate of
50 cm³/min, inlet CO2 concentration of 15 vol.% (0.3 mmol/min), and
initial absorption temperature of 25 °C)35

LIST OF FIGURES

FIGURE

2.1	Sources of CO_2 emissions in the U.S. in 2006, where y-axis units	
	are teragrams of CO ₂ equivalent	4
2.2	Structural formula of 2-amino-2-methyl-1-propanol (AMP).	15
2.3	Structural formular of piperazine (PZ)	16
3.1	Schematic of CO ₂ absorptiontion system	20
4.1	Effect of absorption time on outlet amounts of (a) CO_2 , (b) O_2 ,	
	and (c) N_2 using MEA aqueous solutions with various MEA	
	concentrations (Flue gas flow rate of 180 $cm^{3/min}$, inlet CO ₂	
	concentration of 15 vol.% (1.2 mmol/min), inlet O_2	
	concentration of 5 vol.% (0.4 mmol/min), inlet N_2	
	concentration of 80 vol.% (6.4 mmol/min), MEA concentration	
	of 20-40 wt.%, and initial absorption temperature of 25 °C)	26
4.2	Effect of absorption time on temperature of MEA aqueous	
	solutions with various MEA concentrations (Flue gas flow	
	rate of 180 cm ³ /min, inlet CO ₂ concentration of 15 vol.%	
	(1.2 mmol/min), MEA concentration of 20-40 wt.%, and initial	
	absorption temperature of 25 °C)	27
4.3	Effect of MEA concentration on maximum CO ₂ removal efficiency	
	of MEA aqueous solutions (Flue gas flow rate of 180 cm ³ /min,	
	inlet CO ₂ concentration of 15 vol.% (1.2 mmol/min), MEA	
	concentration of 20-40 wt.%, and initial absorption temperature	
	of 25 °C)	28
4.4	Effect of MEA concentration on CO2 absorption rate and viscosity	
	of MEA aqueous solutions (Flue gas flow rate of 180 cm ³ /min,	
	inlet CO ₂ concentration of 15 vol.% (1.2 mmol/min), MEA	
	concentration of 20-40 wt.%, and initial absorption temperature	
	of 25 °C)	30

FIGURE

4.5	Effect of MEA concentration on CO ₂ loading capacity of	
	MEA aqueous solutions (Flue gas flow rate of 180 cm ³ /min,	
	inlet CO ₂ concentration of 15 vol.% (1.2 mmol/min), MEA	
	concentration of 20-40 wt.%, and initial absorption temperature	
÷.	of 25 °C)	30
4.6	Effect of flue gas flow rate on outlet CO ₂ amount using	
•	MEA aqueous solutions (Inlet CO ₂ concentration of 15 vol.%,	
	MEA concentration of 30 wt.%, and initial absorption temperature	
	of 25 °C)	32
4.7	Effect of flue gas flow rate on CO ₂ absorption rate and CO ₂ loading	
	capacity of MEA aqueous solutions (Inlet CO2 concentration of	
	15 vol.%, MEA concentration of 30 wt.%, and initial absorption	
	temperature of 25 °C)	32
4.8	Effect of O_2 exposure on outlet amounts of (a) CO_2 , (b) O_2 , and	
	(c) N_2 using 30 wt.% MEA aqueous (Flue gas flow rate of	
	50 cm ³ /min, inlet CO ₂ concentration of 15 vol.% (0.3 mmol/min),	
	inlet O_2 concentration of 5 vol.% (0.1 mmol/min), inlet N_2	
	concentration of 80 vol.% (1.7 mmol/min), and initial	
	absorption temperature of 25 °C)	34
4.9	Effect of blending MEA with various amine additives on outlet	
	CO2 amount using MEA-based aqueous solutions containing 5 wt.%	
	various amine additives (Flue gas flow rate of 50 cm ³ /min, inlet	
	CO ₂ concentration of 15 vol.% (0.3 mmol/min), total amine	
	concentration of 30 wt.%, and initial absorption temperature of 25 °C	2) 36

FIGURE

- 4.10 Effect of type of amine additive on CO₂ absorption rate and CO₂ loading capacity of MEA-based aqueous solutions containing various 5 wt.% amine additives (Flue gas flow rate of 50 cm³/min, inlet CO₂ concentration of 15 vol.% (0.3 mmol/min), total amine concentration of 30 wt.%, and initial absorption temperature of 25 °C) 38
- 4.11 Molecular structures of MEA, AMP, AMPD, AEPD, and PZ
- 4.12 Effect of blending MEA with various amine additives on temperature of MEA-based aqueous solutions containing 5 wt.% various amine additives (Flue gas flow rate of 50 cm³/min, inlet CO₂ concentration of 15 vol.% (0.3 mmol/min), total amine concentration of 30 wt.%, and initial absorption temperature of 25 °C)
- 4.13 Effect of MEA/PZ ratio on CO₂ absorption rate and CO₂ loading capacity of MEA-PZ aqueous solutions (Flue gas flow rate of 50 cm³/min, inlet CO₂ concentration of 15 vol.% (0.3 mmol/min), total amine concentration of 30 wt.%, and initial absorption temperature of 25 °C)

41

39

PAGE

39