DEVELOPMENT OF INDUSTRIALLIZED Pd/BETA BASED CATALYST FOR WASTE TIRE PYROLYSIS

Pisit Akarapatanakul

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2011

728375634

Thesis Title:	Development of Industrialized Pd/Beta based Catalyst for
	Waste Tire Pyrolysis
By:	Pisit Akarapatanakul
Program:	Petroleum Technology
Thesis Advisor:	Assoc. Prof. Sirirat Jitkarnka

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

nn N

(Assoc. Prof. Sirirat Jitkarnka)

T. Suthy

(Asst. Prof. Thammanoon Sreethawong)

(Dr. Khavinet Lourvanij)

ABSTRACT

5273015063: Petroleum Technology Program Pisit Akarapatanakul: Development of Industrialized Pd/Beta based Catalyst for Waste Tire Pyrolysis Thesis Advisor: Assoc. Prof. Sirirat Jitkarnka 111 pp.

Keywords: Pyrolysis/ Waste Tires/ Naphtha/ Palladium/ BETA/ Bifunctional Catalysts/ Matrix

Catalytic waste tires pyrolysis is one alternative that has recieved a great deal of attention in handling many kinds of waste materials such as plastic and tires. In a previous work, 0.25 wt % of palladium supported on beta zeolite has been proven to be the best catalyst in producing naphtha range hydrocarbons. In this research, further investigation on two different Si/Al ratios of beta zeolite support and two different kinds of natural clay matrixes were studied. The agglomerated catalysts composed of various percentages of active component (5, 20, and, 40 wt %.) in the presence of alumina binder (10 wt %.) and a matrix were investigated to find the one that gave the optimum naphtha yields at a high content in the oil obtained from the catalytic pyrolysis of waste tire. According to the results, it was found that each clay matrix itself was not catalytically inactive as it helped reduce the heavy hydrocarbon content and enhanced the production of light oil fraction. The best agglomerated catalyst composition for the naphtha production, which provided the highest concentration of naphtha in the oil product, was found to be 20 wt. % of active Pd/Beta zeolite (Si/Al = 250), 70 wt. % of bentonite, and 10 wt% of α alumina. Moreover, this agglomerated catalyst composition also gave the maximum yield of the overall naphtha produced from catalytic waste tire pyrolysis. The synergistic effect between the mild cracking activity of the matrix and the cracking activity of active component is the cause of this high naphtha selectivity.

บทคัดย่อ

พิสิฐ อัครพัฒนากูล: การพัฒนาตัวเร่งปฏิกิริยาพาลาเดียมบนเบต้าซีโอไลท์เพื่อ อุตสาหกรรม (Development of Industriallized Pd/Beta based Catalysts for Waste Tire Pyrolysis) อ. ที่ปรึกษา รศ. ดร. ศิริรัตน์ จิตการค้า 111 หน้า

กระบวนการไพโรไลซิสโคยใช้ตัวเร่งปฏิกิริยา เป็นทางเลือกหนึ่งที่ได้รับความสนใจเป็น ้อย่างมากเพื่อใช้จัดการกับวัสดุเหลือทิ้ง เช่น ขยะพลาสติกและยางหมคสภาพ ในงานวิจัยที่ผ่านมา ชิ้นหนึ่งพบว่า 0.25 wt.% พาลาเดียมบนเบต้าซีโอไลท์เป็นตัวเร่งปฏิกิริยาที่ดีที่สุดในการผลิต ในงานวิจัยนี้ได้นำตัวเร่งปฏิกิริยานี้มาศึกษาต่อโดยใช้ ผลิตภัณฑ์ไฮโครการ์บอนในช่วงแนฟทา เบต้าซีโอไลท์ที่มีอัตราส่วนของซีลิก้าต่ออะลูมินาที่ต่างกันสองชนิด และใช้ดินธรรมชาติที่ต่างกัน อีกสองชนิคเป็นเมทริกซ์ของตัวเร่งปฏิกิริยาคังกล่าว โคยมีจุคประสงค์เพื่อหาองค์ประกอบของ ตัวเร่งปฏิกิริยาที่ดีที่สุด ที่ให้ความเข้มข้นและปริมาณของแนฟทาในน้ำมันที่ได้จากกระบวนการ ใพโรไลซิสของยางหมดสภาพสูงที่สุด จึงได้ทคลองเปลี่ยนแปลงปริมาณของตัวเร่งปฏิกิริยาที่เป็น ตัวว่องไวจากร้อยละ 5, 20 และ 40 โดยน้ำหนักโดยมีองค์ประกอบของตัวประสานคงที่ที่ร้อยละ 10 ที่เหลือเป็นตัวรองรับ จากผลการทคลองพบว่า คินธรรมชาติเพียงอย่างเดียวก็มีส่วนร่วมในการ เนื่องจากมันสามารถช่วยลดปริมาณของไฮโครการ์บอนหนักและเพิ่มปริมาณของ ทำปฏิกิริยา ้ไฮโครคาร์บอนเบาในน้ำมันได้ ตัวเร่งปฏิกิริยาที่มีอัตราส่วนของพาลาเคียมบนเบต้าซีโอไลท์ซึ่งมี ้ส่วนประกอบของซีลิกาต่ออะลูมินาเท่ากับ 250 ร้อยละ 20 ในตัวเมทริกซ์ที่เป็นคินชนิคเบนโท ในท์ปริมาณร้อยละ 70 และอัลฟาอะลูมินาร้อยละ 10 นั้น สามารถเพิ่มความเข้มข้นของแนฟทาใน นอกจากนี้ยังพบว่า องค์ประกอบของตัวเร่งปฏิกิริยาที่อัตราส่วนคังกล่าว น้ำมันได้มากที่สุด สามารถให้ปริมาณการผลิตแนฟทามากที่สุดอีกด้วย จากผลการทดลอง มีความเป็นไปได้ว่าตัวเมท ริกซ์ที่ใช้นั้นมีความเป็นกรดอ่อนซึ่งสามารถช่วยเสริมความสามารถในการแตกตัวของตัวว่องไวได้

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my appreciation for those who had been so significantly influential and responsible for my achievement in order to complete this thesis.

This research work could not have been accomplished without the assistance and supports from all these individuals and organizations.

First and foremost, I would like to express my sincerest gratitude to my advisor, Assoc. Prof. Sirirat Jitkarnka, for the valuable guidance, attentive encouragement, and all the helpful supports throughout this thesis work.

Unforgettably, appreciation is forwarded to all my family and friends for their cheerful encouragement, understanding and generous supports at all time.

My sincere appreciation also extends to all staff members at The Petroleum and Petrochemical College who have provided helpful assistance and many useful technical supports at various occasions.

Lastly, I would like to thank the National Center of Excellent for Petroleum, Petrochemicals, and Advance Materials, the petroleum and Petrochemicals College, Chulalongkorn University, Thailand Research Fund, and the Commission on Higher Education for the mutual financial support.

TABLE OF CONTENTS

			PAGE
Title	Page		i
Abst	ract (in English)		iii
Abst	ract (in Thai)		iv
Ackr	nowledgements		v
Tabl	e of Contents		vi
List	of Tables		ix
List	of Figures		xiv
·			
СНАРТЕ	R		
I	INTRODUCTION		1
(*)			
п	THERETICAL BACKGROUND AND		
-	LITERATURE REVIEW		3
III	EXPERIMENTAL	*	20
	3.1 Materials		20
	3.2 Equipment		20
	3.3 Chemicals and Solvents		21
	3.4 Experimental		21
	3.4.1 Catalyst Preparation		21
	3.4.2 Pyrolysis Process		23
	3.4.3 Product Analysis		23
	3.4.4 Catalyst Characterization		25
IV	RESULTS AND DISCUSSION		27
	4.1 Catalyst Characterization		27
	4.1.1 Temperature-Programmed Reduction (TPR)		27

 \mathbf{V}

4.1.2 Physical Properties	29
4.1.3 CO Pulse Chemisorptions	29
4.1.4 X-ray Diffraction Pattern	30
4.2 Effect of Different Si/Al Ratio of Beta Zeolite Supports	31
4.2.1 Product Distributions	31
4.2.2 Gas Compositions	33
4.2.3 Liquid Products	34
4.2.3.1 Petroleum Fractions	35
4.2.3.2 Chemical Compositions	37
4.3 Agglomerated Extrudates	40
4.3.1 Product Distributions	40
4.3.2 Gas Compositions	44
4.3.3 Liquid Products	46
4.3.3.1 Petroleum Fractions	46
4.3.3.2 Chemical Compositions	50
4.3.4 Asphalthene Content in the Oil Product	52
4.3.5 Coke Formation on the Spent Extrudates	53
4.3.6 Sulfur Content in the Oil Products	54
CONCLUSIONS AND RECOMMENDATIONS	57
5.1 Conclusions	57
5.2 Recommendations	58
REFERENCES	59
APPENDICES	63
Appendix A Operating Temperature (°C)	63
Appendix B Yields of Pyrolysis Products	80
Appendix C The Pyrolysis Gas Compositions	82

CHAPTER

PAGE

Appendix D	Amount of Asphaltene in Pyrolysis Oil	84
Appendix E	Chemical Compositions of Maltenes	85
Appendix F	True Boiling Point of Maltenes	87
Appendix G	True Boiling Point of Maltenes, Saturated	
	Hydrocarbons, Mono-, Di-, Poly-, and	
	Polar-aromatics in Maltenes	92
Appendix H	Petroleum Fractions of Derived Oils	109
	÷	
CURRICUL	UM VITAE	111

.

LIST OF TABLES

TAB	TABLE	
2.1	The experiment designs in this research	19
3.1	The optimized composition and volumes of mobile phases	
	for maltenes separation by liquid adsorption chromatography	24
4.1	Physical properties of each component used in the catalyst	
	extrudates	29
4.2	Percentage of palladium dispersion using CO chemisorptions	30
4.3	The boiling point cuts and carbon ranges of refinery products	36
4.4	Relative ratio of naphtha yield (Catalytic / Non-catalytic	3
	case): (a) Pd/Beta (Si/Al = 13.5), and (b) Pd/Beta (Si/Al = 13.5)	2 A.
	250)	50
4.5	Weight percentage of coke formation on the spent extrudates	54
Al	Pyrolysis conditions: Non-catalytic Pyrolysis	63
A2	Pyrolysis conditions: Bentonite Clay	64
A3	Pyrolysis conditions: Ball Clay	65
A4	Pyrolysis conditions: Pd/Beta 13.5 Pure Active	
	(0.25 wt.% Pd)	66
A5	Pyrolysis conditions: Pd/Beta 250 Pure Active	
	(0.25 wt.% Pd)	67
A6	Pyrolysis conditions: 0.25Pd/Beta 13.5 with Bentonite	
	(5% Active)	68
A7	Pyrolysis conditions: 0.25Pd/Beta 13.5 with Bentonite	
	(20% Active)	69
A8	Pyrolysis conditions: 0.25Pd/Beta 13.5 with Bentonite	
	(40% Active)	70
A9	Pyrolysis conditions: 0.25Pd/Beta 250 with Bentonite	
	(5% Active)	71

Pyrolysis conditions: 0.25Pd/Beta 250 with Bentonite	
(20% Active)	72
Pyrolysis conditions: 0.25Pd/Beta 250 with Bentonite	
(40% Active)	73
Pyrolysis conditions: 0.25Pd/Beta 13.5 with Ball Clay	
(5% Active)	74
Pyrolysis conditions: 0.25Pd/Beta 13.5 with Ball Clay	
(20% Active)	75
Pyrolysis conditions: 0.25Pd/Beta 13.5 with Ball Clay	
(40% Active)	76
Pyrolysis conditions: 0.25Pd/Beta 250 with Ball Clay	
(5% Active)	77
Pyrolysis conditions: 0.25Pd/Beta 250 with Ball Clay	
(20% Active)	78
Pyrolysis conditions: 0.25Pd/Beta 250 with Ball Clay	
(40% Active)	79
Weight percentage of pyrolysis products obtained from each	
pure component	80
Weight percentage of pyrolysis products obtained from the	
Pd/Beta based extrudates (Si/Al = 13.5) composed of	
bentonite clay	80
Weight percentage of pyrolysis products obtained from the	
Pd/Beta based extrudates (Si/Al = 13.5) composed of ball	
clay	80
Weight percentage of pyrolysis products obtained from the	
Pd/Beta based extrudates (Si/Al = 250) composed of	
bentonite clay	81
	Pyrolysis conditions: 0.25Pd/Beta 250 with Bentonite (20% Active) Pyrolysis conditions: 0.25Pd/Beta 250 with Bentonite (40% Active) Pyrolysis conditions: 0.25Pd/Beta 13.5 with Ball Clay (5% Active) Pyrolysis conditions: 0.25Pd/Beta 13.5 with Ball Clay (20% Active) Pyrolysis conditions: 0.25Pd/Beta 13.5 with Ball Clay (40% Active) Pyrolysis conditions: 0.25Pd/Beta 250 with Ball Clay (5% Active) Pyrolysis conditions: 0.25Pd/Beta 250 with Ball Clay (20% Active) Pyrolysis conditions: 0.25Pd/Beta 250 with Ball Clay (20% Active) Pyrolysis conditions: 0.25Pd/Beta 250 with Ball Clay (20% Active) Pyrolysis conditions: 0.25Pd/Beta 250 with Ball Clay (40% Active) Weight percentage of pyrolysis products obtained from each pure component Weight percentage of pyrolysis products obtained from the Pd/Beta based extrudates (Si/Al = 13.5) composed of bentonite clay Weight percentage of pyrolysis products obtained from the Pd/Beta based extrudates (Si/Al = 13.5) composed of ball clay Weight percentage of pyrolysis products obtained from the Pd/Beta based extrudates (Si/Al = 13.5) composed of ball clay

B5	Weight percentage of pyrolysis products obtained from the	
	Pd/Beta based extrudates (Si/Al = 250) composed of ball	
	clay	81
Cl	Weight percentage of gas product obtained from each from	
	each pure component	82
C2	Weight percentage of gas product obtained from the Pd/Beta	
	based extrudates (Si/Al = 13.5) composed of bentonite clay	82
C3	Weight percentage of gas product obtained from the Pd/Beta	
	based extrudates (Si/Al = 13.5) composed of ball clay	83
C4	Weight percentage of gas product obtained from the Pd/Beta	
	based extrudates (Si/Al = 250) composed of bentonite clay	83
C5	Weight percentage of gas product obtained from the Pd/Beta	
	based extrudates (Si/AI = 250) composed of ball clay	84
DI	Amount of asphaltene in pyrolysis oil	84
El	Chemical compositions of maltenes obtained from each from	
	each pure component	85
E2	Chemical compositions of maltenes obtained from the	
	Pd/Beta based extrudates (Si/Al = 13.5) composed of	
	bentonite clay	85
E3	Chemical compositions of maltenes obtained from the	
	Pd/Beta based extrudates (Si/Al = 13.5) composed of ball	
	clay	85
E4	Chemical compositions of maltenes obtained from the	
	Pd/Beta based extrudates (Si/Al = 250) composed of	
	bentonite clay	86
E5	Chemical compositions of maltenes obtained from the	
	Pd/Beta based extrudates (Si/Al = 250) composed of ball	
	clay	86

TABLE

PAGE

14

Fl	True boiling point of maltenes obtained from each pure	
	component	87
F2	True boiling point of maltenes obtained from the Pd/Beta	
	based extrudates (Si/Al = 13.5) composed of bentonite clay	88
F3	True boiling point of maltenes obtained from the Pd/Beta	
	based extrudates (Si/Al = 13.5) composed of ball clay	89
F4	True boiling point of maltenes obtained from the Pd/Beta	
	based extrudates (Si/Al = 250) composed of bentonite clay	90
F5	True boiling point of maltenes obtained from the Pd/Beta	
	based extrudates (Si/Al = 250) composed of ball clay	91
Gl	Batch 1 Non Cat	92
G2	Batch 2 0.25 wt. % Pd/Beta Si/Al = 13.5 Pure active	93
G3	Batch 3 0.25 wt. % Pd/Beta Si/Al = 250 Pure active	94
G4	Batch 4 Bentonite clay	95
G5	Batch 5 Ball clay	96
G6	Batch 6 0.25Pd/Beta 13.5 with Bentonite clay (5% Active)	97
G7	Batch 7 0.25Pd/Beta 13.5 with Bentonite clay (20% Active)	98
G8	Batch 8 0.25Pd/Beta 13.5 with Bentonite clay (40% Active)	99
G9	Batch 9 0.25Pd/Beta 13.5 with Ball clay (5% Active)	100
G10	Batch 10 0.25Pd/Beta 13.5 with Ball clay (20% Active)	101
G11	Batch 11 0.25Pd/Beta 13.5 with Ball clay (40% Active)	102
G12	Batch 12 0.25Pd/Beta 250 with Bentonite clay (5% Active)	103
G13	Batch 13 0.25Pd/Beta 250 with Bentonite clay (20% Active)	104
G14	Batch 14 0.25Pd/Beta 250 with Bentonite clay (40% Active)	105
G15	Batch 15 0.25Pd/Beta 250 with Ball clay (5% Active)	106
G16	Batch 16 0.25Pd/Beta 250 with Ball clay (20% Active)	107
G17	Batch 17 0.25Pd/Beta 250 with Ball clay (40% Active)	108

24

H1	Petroleum fractions of derived oils obtained from each pure	
	component	109
H2	Petroleum fractions of derived oils obtained from the	
	Pd/Beta based extrudates (Si/Al = 13.5) composed of	
	bentonite clay	109
H3	Petroleum fractions of derived oils obtained from the	
	Pd/Beta based extrudates (Si/Al = 13.5) composed of ball	
	clay	109
H4	Petroleum fractions of derived oils obtained from the	
	Pd/Beta based extrudates (Si/Al = 250) composed of	
	bentonite clay	110
H5	Petroleum fractions of derived oils obtained from the	
	Pd/Beta based extrudates (Si/Al = 250) composed of ball	
	clay	110

xiii

LIST OF FIGURES

FIGU	GURE	
2.1	Picture demonstrating the swelling and shrinking of clay	
	mineral	3
2.2	Diagram of groups and families of silicate minerals	4
2.3	Single silica tetrahedron (a), and sheet structure of silica	
	tetrahedra arranged in hexagonal network (b), a single	
	octahedral unit (c), and a sheet structure of octrahedral units	5
2.4	Examples of natural and synthetic rubbers	7
2.5	Vulcanized poly-isoprene with disulfide cross-links	8
3.1	Autoclave-type pyrolysis reactor (750ml)	22
3.2	Process flow scheme of waste tire pyrolysis	22
4.1	TPR profile of the individual active 0.25 wt. % Pd/Beta	
	catalysts (Si/Al = 13.5 and 250)	28
4.2	XRD patterns of the pure Beta zeolites (Si/Al = 13.5 and	
	250) and the 0.25 wt. % Pd/Beta catalysts (Si/Al = 13.5 and	
	250)	30
4.3	Product distribution of catalytic waste tire pyrolysis using	
	0.25 wt. % Pd/Beta catalysts (Si/Al = 13.5 and 250)	32
4.4	Gas composition of catalytic waste tire pyrolysis using	
	Pd/Beta catalysts (Si/Al = 13.5 and 250)	33
4.5	Examples of hydrocarbon species obtained from waste tire	
	pyrolysis	35
4.6	Petroleum fraction of the derived maltene from catalytic	
	waste tire pyrolysis using Pd/Beta catalysts (Si/Al = 13.5 and	
	250)	36

FIGURE

PAGE

xv

4.7	Chemical composition in maltene from the catalytic	
	pyrolysis of waste tire using Pd/Beta catalysts (Si/Al = 13.5	
	and 250)	38
4.8	Product distribution of catalytic waste tire pyrolysis using	
	Pd/Beta-based extrudates composed of different clay	
	matrixes: Bentonite clay (Left), and Ball clay (Right)	41
4.9	Light olefins production from using the Pd/Beta-based	
	extrudates composed of two different clay matrixes: (a)	
	bentonite clay, and (b) ball clay	43
4.10	Overall gas composition using the Pd/Beta-based extrudates	
	produced from mixing with bentonite clay	44
4.11	Product compositions of mixed C_5 and C_{6+} hydrocarbons	
	from using Pd/Beta-based extrudates composed of two	
	different clay matrixes: (a) bentonite clay, and (b) ball clay	45
4.12	Petroleum fractions in maltene from using Pd/Beta-based	
	extrudates (Si/Al = 13.5) composed of two different clay	
	matrixes: (a) bentonite clay, and (b) ball clay	47
4.13	Petroleum fractions in maltene from using Pd/Beta-based	
	extrudates (Si/Al = 250) composed of two different clay	
	matrixes: (a) bentonite clay, and (b) ball clay	48
4.14	Chemical compositions in maltenes obtained from using the	
	Pd/Beta-based extrudates (Si/Al = 13.5) composed of two	
	different clay matrixes: (a) Bentonite clay, and (b) Ball clay	52
4.15	Weight percentage of asphalthene in maltenes from using	
	Pd/Beta-based (Si/Al = 13.5) extrudates	53
4.16	Weight percentage of sulfur in the pyrolytic oils from using	
	various extrudates composed of two with different clay	
	matrixes: (a) bentonite clay, and (b) ball clay	56

FIGURE

-

Al	Operating temperatures vs time on stream of non-catalytic		
	pyrolysis		63
A2	Operating temperatures vs time on stream of Bentonite Clay		64
A3	Operating temperatures vs time on stream of Ball Clay		65
A4	Operating temperatures vs time on stream of Pd/Beta 13.5		
	Pure Active (0.25 wt.% Pd)	22	66
A5	Operating temperatures vs time on stream of Pd/Beta 250	2	
	Pure Active (0.25 wt.% Pd)	· .	67
A6	Operating temperatures vs time on stream of 0.25Pd/Beta		
	13.5 on Bentonite (5% Active)	-1	68
A7	Operating temperatures vs time on stream of 0.25Pd/Beta		
	13.5 on Bentonite (20% Active)		69
A8	Operating temperatures vs time on stream of 0.25Pd/Beta	5	
	13.5 on Bentonite (40% Active)	1	70
A9	Operating temperatures vs time on stream of 0.25Pd/Beta		
	250 on Bentonite (5% Active)		71
A10	Operating temperatures vs time on stream of 0.25Pd/Beta		
	250 on Bentonite (20% Active)		72
A11	Operating temperatures vs time on stream of 0.25Pd/Beta		
	250 on Bentonite (40% Active)		73
A12	Operating temperatures vs time on stream of 0.25Pd/Beta		
	13.5 on Ball Clay (5% Active)		74
A13	Operating temperatures vs time on stream of 0.25Pd/Beta		
	13.5 on Ball Clay (20% Active)		75
A14	Operating temperatures vs time on stream of 0.25Pd/Beta		
	13.5 on Ball Clay (40% Active)		76
A15	Operating temperatures vs time on stream of 0.25Pd/Beta		
	250 on Ball Clay (5% Active)		77

xvi

č

FIGURE		PAGE
A16	Operating temperatures vs time on stream of 0.25Pd/Beta 250	
	on Ball Clay (20% Active)	78
A17	Operating temperatures vs time on stream of 0.25Pd/Beta 250	
	on Ball Clay (40% Active)	79

1.1