DESULFURIZATION OF HYDROCARBON FEEDS BY Π-COMPLEXATION ADSORPTION: CHARACTERIZATION OF COPPER HALIDES IMPREGNATED ON MESOPOROUS AND MACROPOROUS ALUMINAS

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2011

128374939

Thesis Title:	Desulfurization of Hydrocarbon Feeds by II-Complexation
	Adsorption: Characterization of Copper Halides Impregnated
	on Mesoporous and Macroporous Aluminas
By:	Thanawat Aryusanil
Program:	Petroleum Technology
Thesis Advisors:	Asst. Prof. Pomthong Malakul
	Dr. Michel Thomas

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof. Pomthong Malakul)

(Dr. Michel Thomas)

-1h/,

(Asst. Prof. Siriporn Jongpatiwut)

It C.

(Assoc. Prof. Metta Chareonpanich)

ABSTRACT

5273025063: Petroleum Technology Program Thanawat Aryusanil: Desulfurization of Hydrocarbon Feeds by П-Complexation Adsorption: Characterization of Copper Halides Impregnated on Mesoporous and Macroporous Aluminas. Thesis Advisors: Asst. Prof. Pomthong Malakul and Dr. Michel Thomas 158 pp.

Keywords: Activated alumina/ Adsorptive desulfurization/ Dispersing agent/ Impregnation/ Inverse gas chromatography (IGC)/ Π-complexation

developed Π -complexation sorbents have been for adsorptive desulfurization during the last decade. They were used to selectively remove organosulfur molecules from hydrocarbon feeds like diesel and gasoline. The Cu⁺ impregnated on mesoporous and macroporous aluminas adsorbents were studied. This research aimed to characterize these adsorbents with various methods, such as BET surface area analysis, particle density, structural density and pore volume analysis, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Temperature-Programmed Reduction (TPR), Temperature-Programmed Desorption (TPD). To determine if there is a good adsorptive desulfurization, Inverse Gas Chromatography (IGC) was used to investigate. For IGC theory, there are stationary phase (non-impregnated alumina, Al₂O₃, and impregnated alumina, Cu/Al₂O₃) and mobile phase (He). Normal alkanes (C_6-C_{10}) were used as probe molecules (as a reference), toluene and thiophene were used as polar probe molecules. The results expressed the distinction of surface properties between Al₂O₃ and Cu/Al₂O₃ by the specific interaction (I^{sp}). The I^{sp} of toluene on m-Al₂O₃ at 200, 225 and 250 °C were 34.3. 32.9 and 31.8 mJ/m², respectively, and on 30% Cu/m-Al₂O₃ they were 29.2, 27.1 and 26.8 mJ/m², respectively; and the I^{sp} of thiophene on m-Al₂O₃ were 61.8, 58.8 and 56.3 mJ/m², respectively and on 30% Cu/m-Al₂O₃ were 57.1, 56.1 and 56.0 mJ/m², respectively. Cu/m-Al₂O₃ has shown to be better in selective removal of organosulfur molecules than Al₂O₃.

บทคัดย่อ

ธนวรรษ อาขุสะนิล : การกำจัดสารประกอบกำมะถันจากสารประกอบไฮโดรคาร์บอน โดยกระบวนการดูดซับด้วยพันธะไพ: การวิเคราะห์ตัวดูดซับที่ถูกทำให้ชุ่มด้วยสารละลายเกลือ คลอไรด์ของคอปเปอร์บนอะลูมินาที่มีรูพรุนขนาดกลางและขนาดใหญ่ (Desulfurization of Hydrocarbon Feeds by II-Complexation Adsorption: Characterization of Copper Halides Impregnated on Mesoporous and Macroporous Aluminas) อ. ที่ปรึกษา : ผศ. ดร. ปมทอง มาลากุล ณ อยุธยา ดร. มิเชล โทมัส 158 หน้า

ในช่วงทศวรรษที่ผ่านมา ได้มีการพัฒนาตัวดูดซับสำหรับการกำจัดสารประกอบ ้กำมะถันโดยกระบวนการดูคซับด้วยพันธะไพ ซึ่งตัวดูคซับเหล่านี้ถูกนำมาใช้ในการกำจัด สารประกอบกำมะถันอย่างเฉพาะเจาะจงจากสารประกอบไฮโครการ์บอนจำพวกน้ำมันคีเซลและ แก๊ส โซลีน การวิจัยนี้ทำการศึกษาตัวดูดซับที่ถูกทำให้ชุ่มด้วยสารละลายเกลือคลอไรด์ของคอป เปอร์บนอะลูมินาที่มีรูพรุนขนาคกลางและขนาคใหญ่ ซึ่งถูกนำมาวิเคราะห์ด้วยหลายวิธีการ ได้แก่ การวิเคราะห์พื้นที่ผิวแบบ B.E.T. การวิเคราะห์ความหนาแน่นและปริมาตรรูพรุน การวิเคราะห์ ด้วย Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Temperature-Programmed Reduction (TPR) และ Temperature-Programmed Desorption (TPD) นอกจากนี้ ยังทำการวิเคราะห์ความสามารถในการคูดซับสารประกอบกำมะถันด้วยวิธี Inverse Gas Chromatography (IGC) ซึ่งประกอบด้วยสถานะที่อยู่นิ่ง คือ ตัวดูคซับที่ถูกทคสอบ (ตัวดูค ้ชับอะลูมินาก่อนและหลังทำให้ชุ่มด้วยสารละลายเกลือคลอไรด์ของคอปเปอร์) และสถานะที่ เคลื่อนที่ (แก๊สฮีเลียม) ในการวิเคราะห์หาค่ามาตรฐานจะใช้แอลเคน (C₆–C₁₀) เป็นโมเลกุล ตรวจสอบแบบไม่มีขั้ว และใช้โทลูอีนและไทโอฟีนเป็นโมเลกุลตรวจสอบแบบมีขั้ว งานวิจัยนี้ใช้ ้ก่าอันตรกริยาจำเพาะในการแยกแยะคุณสมบัติของพื้นผิวตัวคูคซับเพื่ออธิบายความสามารถในการ ้กำจัดสารประกอบกำมะถันที่แตกต่างกัน ค่าอันตรกริยาจำเพาะระหว่างโทลอีนกับอะลมินาที่ อุณหภูมิ 200, 225 และ 250 °C คือ 34.3, 32.9 และ 31.8 mJ/m² ตามลำคับ และระหว่างโทลู-อื่นกับอะลูมินาที่ถูกทำให้ชุ่ม (30% monolayer) มีค่าเท่ากับ 29.2, 27.1 และ 26.8 mJ/m² ตามลำดับ ส่วนระหว่างไทโอฟีนกับอะลูมินา มีค่าเท่ากับ 61.8, 58.8 และ 56.3 mJ/m² ตามลำดับ และระหว่างไทโอฟีนกับอะลูมินาที่ถูกทำให้ชุ่ม (30% monolayer) คือ 57.1, 56.1 และ 56.0 mJ/m² ตามถำดับ ผลการศึกษาแสดงให้เห็นว่า ตัวดูคซับอะลูมินาที่ถูกทำให้ชุ่มมีความสามารถใน การกำจัดสารประกอบกำมะถันได้คึกว่าตัวดูคซับอะลูมินาที่ไม่ถูกทำให้ชุ่ม

ACKNOWLEDGEMENTS

I would like to sincerely express my thanks and gratitude to the following people and organization. Without their help, this thesis could not be very fruitful.

First of all, I would sincerely like to thank my advisors, Asst. Prof. Pomthong Malakul and Dr. Michel Thomas, for their help and guidance on a day to day basis during my doing research at the Petroleum and Petrochemical College and IFP Energies nouvelles. I would really appreciate their advice, suggestions, and comments.

I would like to give special thanks to Mr. Patrick Peslerbe, Ms. Christine Bounie, Ms. Sandra Montpeyroux, Ms. Sophie Drozdz, and Ms. Michèle Maricar-Pichon for their kind during my work at IFP Energies nouvelles.

I would really appreciate Asst. Prof. Siriporn Jongpatiwut and Assoc. Prof. Metta Chareonpanich, for kindly serving on my thesis committee.

I would also like to thank all my professors for their experience through their courses, giving me a chance to get knowledge about my thesis.

I am grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College; and the National Center of Excellence for Petroleum. Petrochemicals, and Advanced Materials, Thailand, and I would also like to express my special thank to EGIDE for financial support during conducting my research in France.

Thanks to all of staffs in PPC, the IFP Energies nouvelles's technicians and all the graduate students at PPC, who helped me over the year.

Thanks to all friends in Thailand and France, without their help and friendship, my beautiful experience in France can not complete.

Finally, special thanks to my family who always stand beside me in every moment. Without their support this thesis would not have been possible.

TABLE OF CONTENTS

-	Title Pa	ige			i
1	Abstrac	t (in	Englis	h)	iii
	Abstrac	t (in	Thai)		iv
	Acknov	vled	gement	S	V
	Table o	f Co	ontents		vi
]	List of '	Tabl	es		ix
	List of I	Figu	res		xi
CHAI	PTER				
	I	INT	RODU	JCTION]
	II	LIT	ERAT	URE REVIEW	3
		2.1	Crude	Oil	3
			2.1.1	Hydrocarbon in General	3
			2.1.2	Composition of Crude Oil	3
		2.2	Petrole	eum Fractions and Products	7
		2.3	Hydro	carbon Feeds and Sulfur Specifications	12
		2.4	Organo	osulfur Compounds	15
			2.4.1	Hydrogen Sulfide	15
			2.4.2	Mercaptans	15
			2.4.3	Sulfides	16
			2.4.4	Thiocyclic Compounds	16
		2.5	Desulf	Turization Process	20
			2.5.1	Conventional Hydrodesulfurization (HDS)	22
			2.5.2	Challenges of Ultra Deep Desulfurization	23
			2.5.3	Developing New Processes	34
			2.5.4	Adsorptive Desulfurization	35

.

vii

		2.5.5 П-Complexation Sorbents	52
		2.5.6 Fixed-Bed Adsorption	54
	2.6	Inverse Gas Chromatography (IGC) Characterization	56
		2.6.1 IGC Theory	56
		2.6.2 Topological Index	58
	2.7	Previous Studies on the Use of Adsorbents for Selective	
		Sulfur Removal at PPC	59
III	EX	PERIMENTAL	61
	3.1	Materials	61
	3.2	Equipments	63
	3.3	Methodology	64
		3.3.1 Adsorbents Preparation	64
		3.3.2 Reduction	66
		3.3.3 Characterization of the Adsorbents	66
		3.3.4 Preparation of the Simulated Hydrocarbon Feeds	73
		3.3.5 Adsorption of DBT in Toluene on Activated Alumina	73
IV	RE	SULTS AND DISCUSSION	74
	4.1	BET Surface Area, Particle Density, Structural Density and	
		Pore Volume of the Adsorbents	74
	4.2	Temperature-Programmed Reduction (TPR) Characterization	75
	4.3	Scanning Electron Microscopy (SEM)	78
	4.4	X-Ray Diffraction (XRD)	82
	4.5	X-Ray Photoelectron Spectroscopy (XPS)	86
	4.6	Temperature-Programmed Desorption (TPD) Experiments	
		By Using Thermogravimetric Analysis Coupled with Mass	
		Spectrometer (TGA-MS)	88
		4.6.1 Desorption Behavior	88

CHAPTER

 \mathbf{V}

	4.6.2	The Effect of Type of the Adsorbents	91
	4.6.3	The Effect of Dispersing Agent on the Metal	
		Dispersion	91
	4.6.4	The Effect of Aromatics on Adsorptive	
		Desulfurization	93
4.7	Inverse	e Gas Chromatography (IGC) Experiments	96
	4.7.1	Influence of Injection Volume on the Measurements	96
	4.7.2	Enthalpy of Adsorption	99
	4.7.3	Free Energy of Adsorption	105
	4.7.4	Effect of Adsorption Temperature	108
	4.7.5	Surface Free Energy	108
	4.7.6	Effect of Type of Adsorbent	114
	4.7.7	Effect of Type of Metal Impregnation	116
	4.7.8	Effect of Amount of Metal Loading	118
	4.7.9	Effect of Dispersing Agent	118
CO	ONCLU	SIONS AND RECOMMENDATIONS	120
5.1	Conclu	usions	120
5.2	Recon	nmendations	121
RF	EFERE	NCES	122
AF	PPEND	CES	130
Ap	opendix	A Sample Preparation Calculations	130
Aŗ	opendix	B Topological Index (χ_T) Calculations	137
Ap	opendix	C IGC Characterization Calculations	141

CURRICULUM VITAE	158
CURRICULUM VITAE	130

LIST OF TABLES

TABL	E	PAGE
2.1	Different types of hydrocarbons and their physical and chemical	
	properties	4
2.2	Composition (mol%) and properties of various reservoir fluids and	
	a crude oil	5
2.3	Properties of 21 selected crude oils	6
2.4	Boiling ranges of typical crude oil fractions	8
2.5	True boiling point (TBP) cut points for various crude oil fractions	9
2.6	Destinations for straight-run distillates	11
2.7	Typical compositions of transportation fuels	12
2.8	Clean fuels: limits on sulfur	14
2.9	Physical constants of the principal sulfur compounds	18
2.10	Typical process conditions for hydrotreating different petroleum	
	fractions	23
2.11	Parameters of physical adsorption and chemisorption	36
2.12	Adsorbents in commercial adsorption separations	38
2.13	Pore sizes in typical activated carbon	41
3.1	Properties of activated alumina adsorbents	62
3.2	Physical and chemical properties of chemicals used	62
4.1	Properties of adsorbents characterized by nitrogen	
	adsorption/desorption method at 77 K	74
4.2	Properties of adsorbents by using the Mercury porosimetry	74
4.3	At peak TPR results of 30% Cu/m-Al ₂ O ₃	77
4.4	XPS analysis results (reference chemicals) (wt%)	86
4.5	XPS analysis results (wt%)	87
4.6	Adsorption enthalpies $(-\Delta H_{ads})$ (kJ/mol) for the compounds	
	studied over the different adsorbents	103

TABLE

4.7	Standard free energy, $-\Delta G_{ads}$ (kJ/mol), for listed <i>n</i> -alkanes with m-	
	Al ₂ O ₃ , reduced 30% Cu/m-Al ₂ O ₃ and M-Al ₂ O ₃	107
4.8	ΔG_{CH_2} (kJ/mol) at different temperature	110
4.9	Dispersive component of the surface free energy, $\gamma_s^d(mJ/m^2)$ at	
	different temperature	110
4.10	Specific interaction, I^{sp} (mJ/m ²) at different temperature	
	(determined by toluene polar probe)	111
4.11	Specific interaction, I^{sp} (mJ/m ²) at different temperature	
	(determined by thiophene polar probe)	111
4.12	The specific interaction ratio of thiophene over toluene on various	•
	adsorbents examined by IGC experiments obtained at 200 °C	1
	which toluene and thiophene were used as polar probe solutes	113
Al	Physical properties of chemical used in sample preparation step	130
A2	Summary of Adsorbent Preparation Calculations	134
Bl	k_r values for different types of bonds	138
Cl	Summary of IGC data (an average of retention time, min)	142
C2	Parameters used in calculations (exclusively for reduced 30%	
	Cu/m-Al ₂ O ₃ adsorbent)	144
C3	Summary of particle density of the adsorbents	147
C4	Physical properties of polar probe molecules (toluene and	
	thiophene) for IGC calculations	154

LIST OF FIGURES

FIGURE

2.1	Sulfur and nitrogen versus API gravity for selected crude oils.
2.2	Crude distillation.
2.3	Products and composition of Alaska crude oil.
2.4	Regulated sulfur levels in diesel fuel in EU, US and Thailand.
2.5	Structure of thiophene and its properties.
2.6	Structure of benzothiophene and its properties.
2.7	Examples of sulfur compounds in petroleum.
2.8	GC-FPD chromatograms of gasoline, jet fuel and diesel for
	identification of sulfur compounds.
2.9	Classification of desulfurization processes based on
	organosulfur compound transformation.
2.10	Desulfurization technologies classified by nature of a key
	process to remove sulfur.
2.11	Structures of related polycyclic sulfur compounds found in
	diesel fuels.
2.12	Dependence of reactivity of sulfur compounds versus their ring
	size and substitution patterns (for sulfur compounds in gasoline,
	jet fuel and diesel fuel feedstock).
2.13	Simulated HDS of diesel to meet 15 and 0.1 ppm level on the
	basis of a conventional single-stage reactor, assuming 1.0 wt%
	S in feed; HDS kinetic model: $C_{\text{S.total}} = C_{\text{S10}} e^{-k_1 t} + C_{\text{S20}} e^{-k_2 t} + C_{$
	$C_{\rm S30} \mathrm{e}^{-k3t} + C_{\rm S40} \mathrm{e}^{-k4t}.$
2.14	Reaction pathways for dibenzothiophene hydrodesulfurization.

2.15	Reaction pathways for 4,6-dimethyldibenzothiophene				
	hydrodesulfurization.	29			

PAGE

2.16	Personal vision for research towards comprehensive and	
	effective utilization of hydrocarbon resources in the 21 st	
	century.	31
2.17	Concept of proton-exchange membrane fuel cell (PEMFC)	
	system using on-board or on-site fuel processor, or on-board H_2	
	fuel tank.	32
2.18	Concepts and steps for fuel processing of gaseous, liquid and	
	solid fuels for high-temperature and low-temperature fuel cell	
	applications.	33
2.19	Preparation scheme for precipitated catalyst. Optional	
	preparation steps are indicated by square brackets.	46
2.20	Schematic diagram showing the various steps of a sol-gel	
	process.	48
2.21	Schematic representation for desulfurization of 4.6-DMDBT	
	with molybdenum-based (A) and copper(I)-based (B)	
	adsorbents. Case (B) corresponds to π -complexation.	53
2.22	Copper ions occupying faujasite 6-ring windows sites (A); σ -	
	donation of π -electrons of thiophene to the 4s orbital of	
	copper(I) (B); $d-\pi^*$ backdonation of electrons from 3d orbitals	
	of copper(I) to π^* orbitals of thiophene (C). Here 3d represents	
	d_{xy} , d_{yz} or d_{xz} , or 3 of the 53d orbitals.	53
2.23	Means of interaction for a DBT molecule with NiY,	
	corresponding to π -complexation.	54
2.24	Idealized breakthrough curve of a fixed-bed adsorber.	54
4.1	Temperature-programmed reduction (TPR) of 30% Cu/m-Al ₂ O ₃	
	in 4.95% H ₂ in N ₂ at 900 °C.	76

FIGURE

	4.2	SEM images of 30% Cu/m-Al ₂ O ₃ : (a) cross section of 30%	
		$Cu/m-Al_2O_3$, (b) cluster on the edge of 30% $Cu/m-Al_2O_3$, (c)	
		form of clusters deposited on the surface of 30% Cu/m-Al ₂ O ₃ .	79
	4.3	SEM images of 30% Cu/m-Al ₂ O ₃ modified with CA with the	
		molar ratio Cu/CA of 10: (a) cross section of 30% Cu/m-Al ₂ O ₃	
		modified with CA with the molar ratio Cu/CA of 10, (b) metal	
		occupy the surface, (c) and (d) a "bug chestnut" type cluster.	80
	4.4	SEM images of reduced 30% Cu/m-Al ₂ O ₃ : (a) cross section of	
		reduced 30% Cu/m-Al ₂ O ₃ , (b) clusters form.	81
	4.5	SEM images of reduced 30% Cu/m-Al $_2O_3$ modified with CA	
		with the molar ratio Cu/CA of 10: (a) "bug chestnut" typed	
		clusters, (b) a "bug chestnut" type cluster.	81
	4.6	Chromatograms of 30% Cu/m-Al_2O_3 and 30% Cu/m-Al_2O_3	
		modified with CA adsorbents.	83
	4.7	Diffractograms of CuCl ₂ .	83
	4.8	Chromatograms of reduced 30% Cu/m-Al ₂ O ₃ and reduced 30%	
		Cu/m-Al ₂ O ₃ modified with CA.	84
	4.9	Diffractograms of CuCl.	85
2	4.10	Desorption profiles of pure toluene, 3 wt% DBT in toluene and	
		pure thiophene solutions adsorbed on m-Al ₂ O ₃ .	89
4	4.11	Desorption profiles of pure toluene, 3 wt% DBT in toluene and	
		pure thiophene solutions adsorbed on M-Al ₂ O ₃ .	89
4	4.12	Desorption profiles of 0, 1, 3 and 5 wt% DBT in toluene	
		adsorbed on m-Al ₂ O ₃ .	91
4	4.13	Desorption profiles of pure thiophene solution adsorbed on m-	
		$Al_2O_3,\ reduced\ 30\%\ Cu/m-Al_2O_3$ and reduced $30\%\ Cu/m-$	
		Al_2O_3 modified with CA (Cu/CA=10).	92

4.14	Desorption profiles of pure thiophene solution adsorbed on M-	
	Al2O3, reduced 30% Cu/M-Al2O3 and reduced 30% Cu/M-	
	Al ₂ O ₃ modified with CA (Cu/CA=10).	92
4.15	Desorption profiles of pure toluene and pure thiophene	
	solutions adsorbed on reduced 30% Cu/m-Al ₂ O ₃ modified with	
	CA (Cu/CA=10).	94
4.16	Desorption profiles of pure toluene and pure thiophene	
	solutions adsorbed on reduced 30% Cu/M-Al2O3 modified with	
	CA (Cu/CA=10).	94
4.17	Typical gas chromatogram showing output signal following the	
	consecutive injection of <i>n</i> -alkane probes $(n-C_6-n-C_{10})$ and polar	
	probes (toluene and thiophene) at the same acquisition on m-	
	Al ₂ O ₃ obtained at 225 °C.	97
4.18	specific retention volume as a function of injection volume for	
	<i>n</i> -octane at 250 °C on m-Al ₂ O ₃ (•), reduced 30% Cu/m-Al ₂ O ₃	
	(\blacktriangle), reduced 30% Cu/m-Al ₂ O ₃ modified with CA (Cu/CA = 5)	
	(\blacksquare) and M-Al ₂ O ₃ (×).	98
4.19	Determination of adsorption enthalpies of non-polar probes (n-	
	alkanes) on m -Al ₂ O ₃ at the temperature range between 200–	
	250 °C: hexane (•), heptane (\blacktriangle), octane (\blacksquare), nonane (×) and	
	decane (+).	99
4.20	Determination of adsorption enthalpies of non-polar probes (n-	
	alkanes) on reduced 30% Cu/m-Al $_2O_3$ at the temperature range	
	between 200–250 °C: hexane (\bullet), heptane (\blacktriangle), octane (\blacksquare),	
	nonane (×) and decane (+).	100

4.21	Determination of adsorption enthalpies of non-polar probes (n-	
	alkanes) on M-Al ₂ O ₃ at the temperature range between $200-250$	
	°C: hexane (•), heptane (\blacktriangle), octane (\blacksquare), nonane (×) and decane	
	(+).	100
4.22	Determination of adsorption enthalpies of polar probes (toluene	
2	and thiophene) on m-Al ₂ O ₃ at the temperature range between	
	200–250 °C: toluene (\blacklozenge) and thiophene (\blacktriangle).	101
4.23	Determination of adsorption enthalpies of polar probes (toluene	
	and thiophene) on reduced 30% Cu/m-Al ₂ O ₃ at the temperature	
	range between 200–250 °C: toluene (\blacklozenge) and thiophene (\blacktriangle).	101
4.24	Determination of adsorption enthalpies of polar probes (toluene	
	and thiophene) on $M-Al_2O_3$ at the temperature range between	
	200–250 °C: toluene (\blacklozenge) and thiophene (\blacktriangle).	102
4.25	Adsorption enthalpies of <i>n</i> -alkanes on $m-Al_2O_3$ (\circ), reduced	
	30% Cu/m-Al ₂ O ₃ (\blacktriangle) and M-Al ₂ O ₃ (\square).	103
4.26	Adsorption free energies of <i>n</i> -alkanes on $m-Al_2O_3$ (\circ), reduced	
	30% Cu/m-Al ₂ O ₃ (Δ) and M-Al ₂ O ₃ (\Box) at 200 °C.	105
4.27	Free energy of different probe adsorptions on m-Al ₂ O ₃ at	
	different temperatures: 200 °C (\bullet), 225 °C (\blacktriangle) and 250 °C (\blacksquare).	106
4.28	Dispersive component of the surface energy, $\gamma_s^d,$ of $m\text{-}Al_2\mathrm{O}_3$	
	(•) and reduced 30% Cu/m-Al ₂ O ₃ (\blacktriangle) as a function of	
	temperature.	109
4.29	Specific interaction, I ^{sp} , of m-Al ₂ O ₃ (•), reduced 30% Cu/m-	
	Al ₂ O ₃ (\blacktriangle) and reduced 30% Cu/m-Al ₂ O ₃ modified with CA	
	(Cu/CA=5) (.) determined by thiophene polar probe as a	
	function of temperature.	112

4.30	Specific interaction of toluene and thiophene on both aluminas	
	as a function of temperature: I^{sp} of toluene on m-Al ₂ O ₃ ($^{\circ}$),	
	I^{sp} of toluene on M-Al ₂ O ₃ (Δ), I^{sp} of thiophene on m-Al ₂ O ₃ (\bullet)	
	and I^{sp} of thiophene on M-Al ₂ O ₃ (\blacktriangle).	114
4.31	Specific interaction of toluene and thiophene on reduced Cu/m-	
	Al ₂ O ₃ and reduced Cu/M-Al ₂ O ₃ as a function of metal loading:	
	I^{sp} of toluene reduced Cu/m-Al ₂ O ₃ ($^{\circ}$), I^{sp} of toluene on	
	reduced Cu/M-Al ₂ O ₃ (Δ), I^{sp} of thiophene on reduced Cu/m-	
	Al ₂ O ₃ (•) and I^{sp} of thiophene on reduced Cu/M-Al ₂ O ₃ (\blacktriangle)	
	obtained at 200 °C.	115
4.32	Specific interaction of toluene on reduced $Cu/m-Al_2O_3$ and	
	Ni/m-Al ₂ O ₃ as a function of metal loading obtained at 200 °C.	117
4.33	Specific interaction of thiophene on reduced $Cu/m-Al_2O_3$ and	
	Ni/m-Al ₂ O ₃ as a function of metal loading obtained at 200 °C.	117
4.34	Specific interaction of toluene and thiophene on reduced 30%	
	$Cu/m\text{-}Al_2\mathrm{O}_3$ and reduced 30% $Cu/m\text{-}Al_2\mathrm{O}_3$ modified with CA	
	(Cu/CA=5) obtained at 200 °C.	119
B1	Graph and matrix D of chloroform.	139
B2	Thiophene structure.	139
C1	$\ln V_{\rm g}$ against 1/T graph of thiophene injected on reduced 30%	
	Cu/m-Al ₂ O ₃ adsorbent at different temperature ranging between	
	200–250 °C.	148
C2	Free energy of adsorption of a methylene group based on n-	
	alkanes, 30% Cu/m-Al ₂ O ₃ adsorbent at 225 °C.	150
C3	Specific interaction parameter, reduced 30% Cu/m-Al $_2O_3$ at	
	225 °C: <i>n</i> -alkanes (continuous line), thiophene (•).	155