REFERENCES

- Atireklapwarodom, J. (2009). Desulfurization of diesel fuel by adsorption via πcomplexation using activated carbon and alumina modified with Cu(I) and Ni(II). M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok Thailand.
- Babich, I.V., and Moulijn, J.A. (2003). Science and technology of novel processed for deep desulfurization of oil refinery streams: a review. <u>Fuel</u>, 82, 607–631.
- Bailey, R.A., and Persaud, K.C. (1998). Application of inverse gas chromatography to characterisation of a polypyrrole surface. <u>Analytica Chimica Acta</u>, 363, 147–156.
- Bakr, A., Salem, S.H., and Hamid, H.S. (1997). Removal of sulfur compounds from naphtha solutions using solid adsorbents. <u>Chemical Engineering</u> <u>Technology</u>, 20, 342–347.
- Baumgarten, E., Weinstrauch, F., and Höffkes, H. (1977). Adsorption isotherms of hydrocarbons on γ-alumina. <u>Chromatography A</u>, 138, 347–354.
- Bhandari, V.M., Ko, C.H., Park, J.G., Han, S., Cho, S., and Kim, J. (2006). Desufurization of diesel using ion-exchanged zeolites. <u>Chemical</u> Engineering Science, 61, 2599–2608.
- Brendlé E., and Papirer, E. (1997a). A new topological index for molecular probes used in inverse gas chromatography for the surface nanorugosity evaluation. <u>Colloid and Interface Science</u>, 194, 207–216.
- Brendlé E., and Papirer, E. (1997b). A new topological index for molecular probes used in inverse gas chromatography. <u>Colloid and Interface Science</u>, 194, 217–224.
- Cárdenas-Guerra, J.C., López-Arenas, T., Lobo-Oehmichen, R., and Pérez-Cisneros,
 E.S. (2010). A reactive distillation process for deep hydrodesulfurization of diesel: Multiplicity and operation aspects. <u>Computers and Chemical Engineering</u>, 34, 196–209.
- Delon, O. (2009). <u>Crude Oil/Petroleum Product Generals and Main Properties</u>. France: IFP School.

- "Department of Energy Business, Ministry of Energy." Announcement of Quality of Diesel. 8 May 2010 <http://www.dede.go.th/dede/fileadmin/usr/bers/biodiesel_picture/quality_d iesel 2 50.pdf>
- Díaz, E., Ordóñez, S., Vega, A., and Coca, J. (2004a). Adsorption properties of a Pd/γ-Al₂O₃ catalyst using inverse gas chromatography. <u>Microporous and</u> <u>Mesoporous Materials</u>, 70, 109–118.
- Díaz, E., Ordóñez, S., Vega, A., and Coca, J. (2004b). Adsorption characterisation of different volatile organic compounds over alumina, zeolites and activated carbon using inverse gas chromatography. <u>Chromatography A</u>, 1049, 139– 146.
- Díaz, E., Ordóñez, S., Vega, A., and Coca, J. (2006). Inverse GC investigation of the adsorption of thiophenic compounds on zeolites. <u>Chromatographia</u>, 64, 207–213.
- "Dispersing Agent." *IUPAC Compendium of Chemical Terminology*. 18 May 2007. 20 December 2010.

<http://old.iupac.org/goldbook/DT07266.pdf>

- "Emission Standards." Standards. 8 May 2010 <http://www.dieselnet.com/standards/>
- Ertl, G., Knozinger, H., and Weitkamp, J. (1997). <u>Handbook of Heterogeneous</u> <u>Catalysis</u>. France: VCH Verlagsgesellschaft mbH, Weinhelm (Federal Republic of Germany).
- Gary, J.H., and Handwerk G.E. (4th Eds.). (2001). <u>Petroleum Refining Technology</u> <u>and Economics</u>. New York: Marcel Dekker.
- Gates, B.C., and Topsøe, H. (1997). Reactivities in deep catalytic hydrodesulfurization: challenges, opportunities, and the importance of 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene. <u>Polyhedron</u>, 16(18), 3213–3217.
- Golden, T.C., Kraz, W.C., Wilhelm, F.C., Pierantozzi, R. and Rokicki, A. (1992). Highly dispersed cuprous compositions. <u>United States Patent</u>, 5,175,137.
- Golden, T.C., Schwarz, A., Hsiung, T., H-L., Taylor, F.W., (2003). Purification of Gases. United States Patent, 6,572,681.

- Grant, M.H. (1992). <u>Encyclopedia of chemical technology</u>. United States of America: John Willey & Sons, Inc.
- Gui, L.L., Guo,L., Xie, Y.C., and Tang, Y.Q. (1984). An investigation of the dispersion of cuprous chloride on γ-alumina surface the adsorption of ethylene on cuprous chloride/γ-alumina and other supported transition metal salts. Scientia Sinica, Series B: Chemical, Biological, Agricultural, Medical and Earth Sciences, 27(5), 445–455.
- Haji, S., and Erkey, C. (2003). Removal of dibenzothiophene from model diesel by adsorption on carbon aerogels for fuel cell applications. <u>Industrial and</u> <u>Engineering Chemistry Research</u>, 42, 6933–6937.
- Henning, K.D. and Degal, J. "Activated Carbon for Solvent Recovery." PURIFICATION OF AIR, WATER AND OFF GAS – SOLVENT RECOVERY. 20 March 1990. 9 May 2009 < http://www.activatedcarbon.com/solrec3.html>
- Hernández-Maldonado, A.J., and Yang, R.T. (2003). Desulfurization of commercial liquid fuels by selective adsorption via π-complexation with Cu(I)-Y zeolites. <u>Industrial and Engineering Chemistry Research</u>, 42, 3103–3110.
- Hernández-Maldonado, A.J., Stamatis, S.D., Yang, R.T., He, A.Z., and Cannella, W. (2004a). New sorbent for desulfurization of diesel fuels via π-complexation: layered bed and regeneration. <u>Industrial and Engineering Chemistry Research</u>, 43, 769–776.
- Hernández-Maldonado, A.J., and Yang, R.T. (2004b). Desulfurization of commercial jet fuels by adsorption via π-complexation with vapor phase ion exchanged Cu(I)-Y zeolites. <u>Industrial and Engineering Chemistry</u> <u>Research</u>, 43, 6142–6149.
- Hernández-Maldonado, A.J., and Yang, R.T. (2004c). Desulfurization of diesel fuels via π-complexation with nickel(II)-exchanged X- and Y- zeolites. <u>Industrial and Engineering Chemistry Research</u>, 43, 1081–1089.
- Hernández-Maldonado, A.J., and Yang, R.T. (2004d). Desulfurization of transportation fuels by adsorption. <u>Catalyst Reviews</u>, 46(2), 111–150.

- Hernández-Maldonado, A.J., Yang, F.H., Qi, G., and Yang, R.T. (2005a). Desulfurization of transportation fuels by □-complexation sorbents: Cu(I)-, Ni(II)-, and Zn(II)-zeolites. <u>Applied Catalysis B: Environmental</u>, 56, 111– 126.
- Hernández-Maldonado, A.J., Yang, F.H., Qi, G., and Yang, R.T. (2005b). Desulfurization of commercial fuels by π -complexation: Monolayer CuCl/ γ -Al₂O₃. <u>Applied Catalysis B: Environmental</u>, 61, 212–218.
- Herry, C., Baudu, M., and Raveau, D. (2001). Estimation of the influence of structural elements of activated carbons on the energetic components of adsorption. Carbon, 39, 1879–1889.
- Ho Ngoc, L. (2007). Adsorptive removal of sulfur compounds from transportation fuels by using zeolitic adsorbents. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok Thailand.
- Hsu, C.S., and Robinson, P.R. (2006). <u>Practical Advances in Petroleum Processing</u>. New York: Springer Science + Business Media, Inc.
- "Incipient Wetness Impregnation." *WIKIPEDIA*. 26 January 2011. 22 February 2011 http://en.wikipedia.org/wiki/Incipient_wetness_impregnation
- Jiang, M., Ng, F.T.T, Rahman, A., and Patel, V. (2005). Flow calorimetric and thermal gravimetric study of adsorption of thiophenic sulfur compounds on NaY zeolite. <u>Thermochim Acta</u>, 434, 27–36.
- Kabe, T., Ishihara, A., and Tajima, H. (1992). Hydrodesulfurization of sulfurcontaining polyaromatic compounds in light oil. <u>Industrial and Engineering</u> <u>Chemistry Research</u>, 31(6), 1577–1580.
- Kaewboran, J. (2005). Continuous removal of thiophenic sulfur compounds from transportation fuels by using X zeolite. M.S. Thesis, The Petroleum and Petrochemical College, Bangkok, Thailand.
- Kim, J.H., Ma, X., Zhou, A., and Song, C. (2006). Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: A study on adsorptive selectivity and mechanism. <u>Catalysis</u> <u>Today</u>, 111, 74–83.

No. of the second second

- King, D.L., and Faz, C. (2006). Desulfurization of Tier 2 gasoline by divalent copper-exchanged zeolite Y. <u>Applied Catalysis B: Environmental</u>, 311, 58– 65.
- Kulprathipanja, S. (2010). <u>Petrochemical Industry: Technology and Economics</u>. Des Plaines: UOP, A Honeywell Company.
- Lee, S.H.D., Kumar, R., and Krumpelt, M. (2002). Sulfur removal from diesel fuelcontaminated methanol. <u>Separation and Purification Technology</u>, 26, 247– 258.
- Ma, X., Sakanishi, K., and Mochida, I. (1994). Hydrodesulfurization reactivities of various sulfur compounds in diesel fuel. <u>Industrial and Engineering</u> Chemistry Research, 33, 218–222.
- Ma, X., Sakanishi, K., and Mochida, I. (1996b). Hydrodesulfurization reactivities of various sulfur compounds in vacuum gas oil. <u>Industrial and Engineering</u> <u>Chemistry Research</u>, 35, 2487–2494.
- Ma, X., Sakanishi, K., Isoda, T., and Mochida, I. (1997). Determination of sulfur compounds in non-polar fraction of vacuum gas oil. <u>Fuel</u>, 76, 329–339.
- Ma, X., Sun, L. and Song, C. (2002). A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications. <u>Catalysis Today</u>, 77, 107–116.
- Milonjić, S.K. (1999). Surface properties of metal ions modified silicas. <u>Colloids</u> and Surfaces A: Physicochemical and Engineering Aspects, 149, 461–466.
- Montes-Morán, M.A., Martínez-Alonso, A., and Tascón, J.M.D. (2002). Adsorption of polar probe molecules on plasma-oxidised high-strength carbon fibres. <u>Fuel Processing Technology</u>, 77–78, 359–364.
- Mukhopadhyay, P., and Schreiber, H.P. (1995). Aspects of acid-base interactions and use of inverse gas chromatography. <u>Colloids and Surfaces A:</u> <u>Physicochemical and Engineering Aspects</u>, 100, 47-71
- Muzic, M., Sertic-Bionda, K., Gomzi, Z., Podolski, S., and Telen, S. (2010). Study of diesel fuel desulfurization by adsorption. <u>Chemical Engineering</u> <u>Research and Design</u>, 88, 487–495.
- "Organosulfur Compounds." WIKIPEDIA. 11 May 2009. 13 May 2010 <http://en.wikipedia.org/wiki/Organosulfur_compounds>

- Perruchot, C., Chehimi, M.M., Vaulay, M-J., and Benzarti, K. (2006). Characterisation of the surface thermodynamic properties of cement components by inverse gas chromatography at infinite dilution. <u>Cement and</u> Concrete Research, 36, 305–319.
- Prateepamornkul, S. (2008). Adsorptive Removal of Sulfur Compounds from Diesel Using Activated Carbon and Alumina Modified with Cu(I) and Ni(II). M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok Thailand.
- Riazi, M.R. (1st Eds.). (2005). <u>Characterization and Properties of Petroleum</u> <u>Fractions</u>. United States of America: ASTM International.
- Rinaldi, N., Kubota, T., and Okamoto, Y. (2010). Effect of citric acid addition on the hydrodesulfurization activity of MoO₃/Al₂O₃ catalysts. <u>Applied</u> <u>Catalysis A: General</u>, 374, 228–236.
- Rinaldi, N., Usman, Al-Dalama, K., Kubota, T., and Okamoto, Y. (2009). Preparation of Co–Mo/B₂O₃/Al₂O₃ catalysts for hydrodesulfurization: Effect of citric acid addition. <u>Applied Catalysis A: General</u>, 360, 130–136.
- Rousseau, R.W. (1987). <u>Handbook of separation process technology</u>. United States of America: John Willey & Sons, Inc.
- Ruthven, D.M. (1984). <u>Principles of adsorption and adsorption processes</u>. United States of America: John Willey & Sons, Inc.
- Sano, Y., Choi, K.H., Korai, Y., and Mochida, I. (2004a). Adsorptive removal of sulfur and nitrogen species from a straight run gas oil over activated carbons for its deep hydrodesulfurization. <u>Applied Catalysis B: Environmental</u>, 49, 219–225.
- Sano, Y., Choi, K.H., Korai, Y. and Mochida, I. (2004b). Selection and further activation of activated carbons for removal of nitrogen species in gas oil as a pretreatment for its deep hydrodesulfurization. <u>Energy and Fuels</u>, 18, 644– 651.
- Sano, Y., Sugahara, K., Choi, K., Korai, Y., and Mochida, I. (2005). Two-step adsorption process for deep desulfurization of diesel oil. <u>Fuel</u>, 84, 903–910.

- Song, C. (2002). Fuel processing for low-temperature and high-temperature fuel cells, Challenges, and opportunities for sustainable development in the 21st century. <u>Catalysis Today</u>, 77, 17–49.
- Song, C. (2003). An overview of new approaches to deep desulfurization for ultraclean gasoline, diesel fuel and jet fuel. <u>Catalysis Today</u>, 86, 221–263.
- Song, C., and Ma, X. (2003). New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. <u>Applied Catalysis B:</u> <u>Environmental</u>, 41, 207–238.
- Srivastav, A., and Srivastava, V.C. (2009). Adsorptive desulfurization by activated alumina. <u>Hazardous Materials</u>, 170, 1133–1140.
- Takahashi, A. Yang, F.H., and Yang, R.T. (2000). Aromatics/aliphatics separation by adsorption: New sorbents for selective aromatics adsorption by π complexation. <u>Industrial and Engineering Chemistry Research</u>, 39, 3856– 3867.
- "Thai refiners ready for 350 ppm diesel sulfur limit for 2004." *Diesel Fuel News*. 21 July 2003. BNET. 26 May 2010

<http://findarticles.com/p/articles/mi_m0CYH/is_13_7/ai_106026629/>

- Thielmann, F. (2004). Introduction into the characterisation of porous materials by inverse gas chromatography. <u>Chromatography A</u>. 1037, 115–123.
- Thielmann, F., and Baumgarten, E. (2000). Characterization of microporous aluminas by inverse gas chromatography. <u>Colloid and Interface Science</u>, 229, 418–422.
- Wang, Y., and Yang, R.T. (2007). Desulfurization of liquid fuels by adsorption on carbon-based sorbents and ultrasound-assisted sorbent regeneration. <u>Langmuir</u>, 23, 3825–3831.
- "World Travel: The Fuel Challenge." *EXPEDITION PORTAL*. 31 March 2009. 26 May 2010

<http://www.expeditionportal.com/forum/showthread.php?t=25516>

Xue, M., Chitrakar, R., Sakane, K. Hirotsu, T., Ooi, K. Yoshimura, Y., Feng, Q., and Sumida, N. (2005). Selective adsorption of thiophene and 1benzothiophene on metal-ion-exchanged zeolites in organic medium. <u>Colloid and Interface Science</u>, 285, 487–492.

- Yang, R.T. (2003). <u>Adsorbents Fundamentals and Applications</u>. United States of America: John Willey & Sons, Inc.
- Yang, R.T., and Foldes, R. (1996). New adsorbents based on principles of chemical complexation: monolayer-dispersed nickel(II) for acetylene separation by πcomplexation. <u>Industrial and Engineering Chemistry Research</u>, 35, 1006– 1011.
- Yang, R.T., Takahashi, A., and Yang, F. H. (2001). New sorbents for desulfurization of liquid fuels by π -complexation. <u>Industrial and</u> Engineering Chemistry Research. 40, 6236–6239.
- Zhang, Z.Y., Shi, T.B., Jia, C.Z., Ji, W.J., Chen, Y., and He, M.Y. (2008).
 Adsorptive removal of aromatic organosulfur compounds over the modified Na-Y zeolites. <u>Applied Catalysis B: Environmental</u>, 82, 1–10.

APPENDICES

Appendix A Sample Preparation Calculations

In this work, several different adsorbents were used in this study, prepared by incipient wetness impregnation method with two different pore size aluminas including mesoporous and macroporous aluminas. The metal precursors deposited on the adsorbents were CuCl₂ and NiCl₂. To modify the dispersion property, citric acid (CA) was used as a dispersing agent, with molar ratios of CuCl₂/CA by 5 and 10, respectively. The physical properties of those components are listed in Table A1. They were tabulated in order to be used in further calculations.

		Chemical											
Property	m- Al ₂ O ₃	M- Al ₂ O ₃	CuCl ₂	CuCl	NiCl ₂	NiCl ₂ .6H ₂ O	CA						
BET surface area (m^2/g)	278	194	-	_	_		-						
Pore volume (cm^3/g)	_0.761	0.674		_	-	-	_						
Molecular weight (g/mol)	-	-	134.45	99.00	129.62	237.62	192.12						
Density (g/cm ³)	0.914	1.008	3.386	4.145	3.550	1.920	1.665						

Table A1 Physical properties of chemical used in sample preparation step

A1 Amount of Metal Precursor (in gram) Calculation

Example: Amount of $CuCl_2$ (in gram) to be impregnated on m-Al₂O₃ vary by the percentage of $CuCl_2$ monolayer coverage on the adsorbent.

Remark: Concentration of metal-containing solution corresponds to $CuCl_2$ monolayer coverage on alumina.

From CuCl monolayer =
$$\left(\frac{0.095 \text{ g}_{\text{CuCl}}}{100 \text{ m}_{\text{Al}_2\text{O}_3}^2}\right)$$
, (Gui *et al.*, 1984)
 \therefore CuCl monolayer on m-Al₂O₃ = $\left(\frac{0.095 \text{ g}_{\text{CuCl}}}{100 \text{ m}_{\text{Al}_2\text{O}_3}^2}\right) \times \left(278 \frac{\text{m}^2}{\text{g}_{\text{adsorbent}}}\right)$

$$= 0.2641 \frac{g_{cuc1}}{g_{adsorbent}}$$

$$= 0.2641 \frac{g_{cuc1}}{g_{adsorbent}} \times \frac{mol}{99.00 g_{cuc1}}$$

$$\therefore CuCl \text{ monolayer} = 2.668 \frac{mmol}{g_{adsorbent}}$$
From $mol_{cuc1_2} = mol_{cuc1}$

$$CuCl_2 \text{ monolayer} = 2.668 \frac{mmol}{g_{adsorbent}}$$

$$= 2.668 \frac{mmol}{g_{adsorbent}} \times 134.45 \frac{g_{cuc1_2}}{mol} \times 134.45 \frac{g_{cuc1_2}}{mol} \times 134.45 \frac{g_{cuc1_2}}{mol} \times 134.45 \frac{g_{cuc1_2}}{mol} \times 10 \text{ g of m-Al}_{2O_3};$$
Thus, amount of CuCl₂ = 3.59 g_{cuc1_2}
20% monolayer = 0.359 g_{cuc1_2}
and 30% monolayer = 1.077 g_{cuc1_2}

A2 Amount of Dispersing Agent (Citric Acid), in gram, Calculation

Example: Amount of CA (in gram) with the molar ratio (CuCl₂/CA) of 10 and 30% monolayer coverage of CuCl₂, impregnated on mAl_2O_3 .

From
$$\frac{mol_{CuCl_2}}{mol_{CA}} = 10$$

 $\therefore mol_{CA} = \frac{mol_{CuCl_2}}{10}$
 $\frac{m_{CA}}{M_{CA}} = \frac{mol_{CuCl_2}}{10}$

For

$$m_{CA} = \frac{M_{CA} \times mol_{CuCl_2}}{10}$$

$$= 192.12 \frac{g_{CA}}{mol} \times \frac{1.077 g_{CuCl_2}}{10 \times (134.45 g_{CuCl_2}/mol)}$$

$$= 0.154 g_{CA}$$

A3 Volume of Metal-Containing Solution (DI water) Calculation

Example: The volume of solvent (DI water, cm^3) for 30% Cu/m-Al₂O₃ modified with dispersing agent (CA). The ratio of Cu/CA is 10 and the amount of adsorbent used is 10 g.

	From	$V_{\rm DI}$	=	$V_{\rm pore} - V_{\rm solute}$,	(1)
where		V_{solute}	=	$V_{\rm metal} + V_{\rm dispersing agent}$,	· · · (2)
	From	$V_{ m metal}$	=	$rac{m_{ m metal}}{ ho_{ m metal}}$	
			=	$\frac{1.077 \ g_{CuCl_2}}{3.386 \ g_{CuCl_2}/cm^3}$	
			=	0.32 cm^3	
and		$V_{ m dispersing \ agent}$	=	$\frac{m_{\rm CA}}{\rho_{\rm CA}}$	
			=	$\frac{0.154 \text{ g}_{\text{CA}}}{1.665 \text{ g}_{\text{CA}}/\text{cm}^3}$	
			=	0.09 cm^3	
substitu	te all of the val	ue in Equation	(2):		
	.÷.	$V_{\rm solute}$	=	$0.32 + 0.09 \text{ cm}^3$	
			Ξ	0.41 cm^3	
	For 10 g of m	-Al ₂ O ₃ ;			
		V _{pore}	=	7.61 cm^3	
substitu	te all of the val	lue in Equation	(1):		
	<i>.</i>	$V_{\rm DI}$	=	$7.61-0.32 \text{ cm}^3$	
			=	7.29 cm^3	

As mentioned above, the adsorbents used in this work were prepared by incipient wetness impregnation method. The way of calculation to make an appropriate metal-containing solution to be impregnated on various types of adsorbents, namely mesoporous and macroporous alumina, in desired percentage of monolayer coverage is shown in Appendix A. The calculation of all the prepared adsorbents is summarized in Table A2.

No. IFP			Ads	sorbent	(Alum	ina)			Metal In	npregnat	ion		Dispersing Agent		Solution	n (cm ³)	Time
Cata Sepa	No.	Label	m- Al ₂ O ₃	M- Al ₂ O ₃	Amt (g)	V _{pore}	CuCl ₂	NiCl ₂	Loading (%)	gmetal	g Cu/Ni	\mathbf{V}_{metal}	CA Cu/CA Amt (g)	Сл	Solute	DI	(h)
94795	01	mCu1024	V		10	7.61	\checkmark		10	0.359	0.170	0.11			0.11	7.50	24
94796	02	mCu2024	\checkmark		10	7.61	\checkmark		20	0.718	0.339	0.21			0.21	7.40	24
94797	03	mCu3024			10	7.61	\checkmark		30	1.077	0.509	0.32			0.32	7.29	24
94798	04	MCu1024		\checkmark	10	6.74	\checkmark		10	0.250	0.118	0.07			0.07	6.67	24
94799	05	MCu2024		\checkmark	10	6.74	\checkmark		20	0.500	0.236	0.15			0.15	6.59	24
94800	06	MCu3024			10	6.74	\checkmark		30	0.750	0.354	0.22			0.22	6.52	24
94801	07	mNi1024	\checkmark		10	7.61		Ń	10	0.161	0.073	0.05			0.05	7.56	24
94802	08	mNi2024	\checkmark		10	7.61		\checkmark	20	0.322	0.146	0.09			0.09	7.52	24
94803	09	mNi3024	\checkmark		10	7.61		\checkmark	30	0.483	0.219	0.14			0.14	7.47	24
94804	10	MNi1024		\checkmark	10	6.74		\checkmark	10	0.112	0.051	0.03			0.03	6.71	24
94805	11	MNi2024		\checkmark	10	6.74		\checkmark	20	0.224	0.101	0.06			0.06	6.68	24
94806	12	MNi3024		\checkmark	10	6.74		\checkmark	30	0.336	0.152	0.09			0.09	6.65	24
94807	13	mCu1012			10	7.61	\checkmark		10	0.359	0.170	0.11			0.11	7.50	12
94808	14	mCu2012	\checkmark		10	7.61	\checkmark		20	0.718	0.339	0.21			0.21	7.40	12
94809	15	mCu3012			10	7.61	\checkmark		30	1.077	0.509	0.32			0.32	7.29	12
94810	16	MCu1012		\checkmark	10	6.74	\checkmark		10	0.250	0.118	0.07			0.07	6.67	12
94811	17	MCu2012		\checkmark	10	6.74	\checkmark		20	0.500	0.236	0.15			0.15	6.59	12
94812	18	MCu3012		\checkmark	10	6.74	\checkmark		30	0.750	0.354	0.22			0.22	6.52	12
94813	19	mNi1012	\checkmark		10	7.61		\checkmark	10	0.161	0.073	0.05			0.05	7.56	12
94814	20	mNi2012	\checkmark		10	7.61		\checkmark	20	0.322	0.146	0.09			0.09	7.52	12
94815	21	mNi3012	\checkmark		10	7.61		\checkmark	30	0.483	0.219	0.14			0.14	7.47	12
94816	22	MNi1012		\checkmark	10	6.74		\checkmark	10	0.112	0.051	0.03			0.03	6.71	12
94817	23	MNi2012		\checkmark	10	6.74		\checkmark	20	0.224	0.101	0.06			0.06	6.68	12
94818	24	MNi3012		\checkmark	10	6.74		\checkmark	30	0.336	0.152	0.09			0.09	6.65	12

 Table A2
 Summary of Adsorbent Preparation Calculations

No. IFP			Ads	orbent	(Alur	nina)			Metal I	mpregna	tion		I	Dispersin	g Age	nt	Solution	1 (cm ³)	Time
Cata Sepa	No.	Label	m- Al ₂ O ₃	M- Al ₂ O ₃	Amt (g)	V _{pore}	CuCl	2 NiCl ₂	Loading (%)	gmetal	g _{Cu/Ni}	\mathbf{V}_{metal}	СА	Cu/CA	Amt (g)	V _{CA}	Solute	DI	(h)
94819	25	mCu1006	\checkmark		10	7.61	\checkmark		10	0.359	0.170	0.11					0.11	7.50	6
94820	26	mCu2006	\checkmark		10	7.61	\checkmark		20	0.718	0.339	0.21					0.21	7.40	6
94821	27	mCu3006			10	7.61			30	1.077	0.509	0.32					0.32	7.29	6
94822	28	MCu1006		\checkmark	10	6.74	\checkmark		10	0.250	0.118	0.07					0.07	6.67	6
94823	29	MCu2006			10	6.74	\checkmark		20	0.500	0.236	. 0.15		¥.2			0.15	6.59	6
94824	30	MCu3006			10	6.74	\checkmark		30	0.750	0.354	0.22					0.22	6.52	6
94825	31	mNi1006	\checkmark		10	7.61		\checkmark	10	0.161	0.073	0.05					0.05	7.56	6
94826	32	mNi2006	\checkmark		10	7.61		\checkmark	20	0.322	0.146	0.09					0.09	7.52	6
94827	33	mNi3006			10	7.61		\checkmark	30	0.483	0.219	0.14					0.14	7.47	6
94828	34	MNi1006		\checkmark	10	6.74		\checkmark	10	0.112	0.051	0.03					0.03	6.71	6
94829	35	MNi2006		\checkmark	10	6.74		\checkmark	20	0.224	0.101	0.06					0.06	6.68	6
94830	36	MNi3006		\checkmark	10	6.74		\checkmark	30	0.336	0.152	0.09					0.09	6.65	6
94831	37	mCu1003			10	7.61	\checkmark		10	0.359	0.170	0.11					0.11	7.50	3
94832	38	mCu2003	\checkmark		10	7.61	\checkmark		20	0.718	0.339	0.21					0.21	7.40	3
94833	39	mCu3003			10	7.61	\checkmark		30	1.077	0.509	0.32					0.32	7.29	3
94834	40	MCu1003		\checkmark	10	6.74	\checkmark		10	0.250	0.118	0.07					0.07	6.67	3
94835	41	MCu2003		\checkmark	10	6.74	\checkmark		20	0.500	0.236	0.15					0.15	6.59	3
94836	42	MCu3003		\checkmark	10	6.74	\checkmark		30	0.750	0.354	0.22					0.22	6.52	3
94837	43	mNi1003	\checkmark		10	7.61		\checkmark	10	0.161	0.073	0.05					0.05	7.56	3
94838	44	mNi2003	\checkmark		10	7.61		\checkmark	20	0.322	0.146	0.09					0.09	7.52	3
94839	45	mNi3003	\checkmark		10	7.61		\checkmark	30	0.483	0.219	0.14					0.14	7.47	3
94840	46	MNi1003		\checkmark	10	6.74		\checkmark	10	0.112	0.051	0.03					0.03	6.71	3
94841	47	MNi2003		\checkmark	10	6.74		\checkmark	20	0.224	0.101	0.06					0.06	6.68	3
94842	48	MNi3003		\checkmark	10	6.74		\checkmark	30	0.336	0.152	0.09					0.09	6.65	3
94843	49	m-Al ₂ O ₃	\checkmark		10	7.61													
94844	50	M-Al ₂ O ₃			10	6.74										=			

Table A2 (Cont.) Summary of Adsorbent Preparation Calcula	lations
--	---------

a second a second second

No. IFP			Adso	rbent	(Alum	ina)	Metal Impregnation				Dispersing Agent					Solution	Time	
Cata Sepa	No.	Label	m- Al ₂ O ₃	M- Al ₂ O ₃	Amt (g)	Vpore	CuCl ₂ NiCl ₂	Loading (%)	g _{metal}	g Cu/Ni	V _{metal}	CA	Cu/CA	Amt (g)	V _{CA}	Solute	DI	(h)
94845	51	mCA1024	\checkmark		10	7.61						\checkmark	10	0.051	0.03	0.031	7.58	24
94846	52	MCA1024		\checkmark	10	6.74							10	0.036	0.02	0.021	6.72	24
94847	53	mCA10Cu1024	\checkmark		10	7.61	\checkmark	10	0.359	0.170	0.11		10	0.051	0.03	0.137	7.58	24
94848	54	MCA10Cu1024		\checkmark	10	6.74		10	0.250	0.118	0.07	\checkmark	10	0.036	0.02	0.095	6.72	24
94849	55	mCA10Cu3024	\checkmark		10	7.61	\checkmark	30	1.077	0.509	0.32	\checkmark	10	0.154	0.09	0.411	7.52	24
94850	56	MCA10Cu3024		\checkmark	10	6.74	\checkmark	30	0.750	0.354	0.22	\checkmark	10	0.107	0.06	0.286	6.68	24
94851	57	mCA10Cu10024	\checkmark		10	7.61	\checkmark	100	3.590	1.697	1.06	\checkmark	10	0.513	0.31	1.368	7.30	24
94852	58	MCA10Cu10024		\checkmark	10	6.74	\checkmark	100	2.500	1.182	0.74	\checkmark	10	0.357	0.21	0.953	6.53	24
94853	59	mCA05Cu1024	\checkmark		10	7.61	.	10	0.359	0.170	0.11	\checkmark	5	0.103	0.06	0.168	7.55	24
94854	60	MCA05Cu1024			10	6.74	\checkmark	10	0.250	0.118	0.07	\checkmark	5	0.071	0.04	0.117	6.70	24
94855	61	mCA05Cu3024	\checkmark		10	7.61	\checkmark	30	1.077	0.509	0.32	\checkmark	5	0.308	0.18	0.503	7.43	24
94856	62	MCA05Cu3024			10	6.74	\checkmark	30	0.750	0.354	0.22	\checkmark	5	0.214	0.13	0.350	6.61	24

Table A2 (Cont.) Summary of Adsorbent Preparation Calculations

Appendix B Topological Index (χ_T) Calculations

Brendlé and Papirer (1997) have proposed the method to determine the topological index by using Weiner's index. The idea of their work is to use relative scales, centered around C, which is based on the weighing of the elements of the distance matrix D starting with atomic numbers of the elements that built the molecules, to adapt Wiener's (W) index to molecules other than hydrocarbons.

B1 Computation of the Elements of the Diagonal of Matrix D

Initially all the elements of the diagonal are equal since they correspond solely to carbon atoms and their value is fixed equal to zero ($d_u = 0$). The new procedure suggests one to determine the diagonal coefficients of the matrix by taking into account the total number of electrons (Z_i) of atom *i* according to the following relationship:

$$d_n = 1 - \left(\frac{6}{Z_i}\right). \tag{1}$$

B2 <u>Computation of the Elements that do not Belong to the Diagonal of</u> <u>Matrix **D**</u>

For alkanes, the sole bonds are C–C bonds whose length is arbitrarily taken as equal to 1. Hence for calculating d_{ij} , one simply has to count the number of bonds joining *i* and *j*. Now, when the molecule contains heteroatoms, all bonds will not have the same lengths. The d_{ij} terms that do not belong to the diagonal are then computed as the sum of the lengths *r* of the bonds between *i* and *j*, using

$$d_{ij} = \sum_{r} k_{r}$$
 (2)

(this sum is made on all *r* bonds existing between *i* and *j* with i' = 1, 2, ..., number of bonds between *i* and *j*). k_r is the length of the *r*th bond and is determined for each of them through

$$k_r = \frac{1}{b_r} \times \frac{36}{Z_i \cdot Z_{j'}}, \qquad (3)$$

where $Z_{i'}$ and $Z_{j'}$ are the (total) numbers of electrons of atoms i' and j' entering in the *r*th bond; b_r takes values equal to 1, 2, or 3 according to the type of bond (simple bond $b_r = 1$, double $b_r = 2$, or triple $b_r = 3$). Table B2 gives some values of parameter k_r .

Type of b	oond	k,
С-С	1. A.	1
C=C		0.5
C≡C	÷	0.333
C-C aromatic		0.67
C—N		0.857
C=N	1	0.429
C-N aromatic	1	0.571
С—О		0.75
C=O		0.375
N—N		0.735
N=N		0.368
C—F		0.667
C-Cl		0.353

Table B1 k_r values for different types of bonds

B3 Extension of Parameter χ_T to Polar Molecules

There are three steps to calculate for χ_T : determination of the graph and the matrix distance of the molecule, calculation of the corresponding Wiener index, and finally evaluation of χ_T . This procedure is best illustrated on the hand of an example (CHCl₃). Figure B1 illustrates the graph of chloroform from which matrix D is computed.

Figure B1 Graph and matrix *D* of chloroform.

The following step is the determination of the Weiner index according to

$$W = \frac{1}{2} \sum_{i=1}^{n} d_{ii} + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij} \qquad (4)$$

Finally, parameter χ_{τ} is obtained by application of the relation

$$\chi_{\rm T}(W) = 1.8789 \times W^{0.3271}.$$
 (5)

Example: The χ_{τ} of thiophene.

Figure B2 Thiophene structure.

Calculating d_n value by performing Equation (1) gives

$$d_{ii}: \quad d_{11} = 0.625$$

$$d_{22} = 0$$

$$d_{33} = 0$$

$$d_{44} = 0$$

$$d_{55} = 0$$

$$\therefore \quad \sum_{i=1}^{5} d_{ii} = 0.625$$

Calculating k_r value by performing Equation (3) gives

$$k_r:$$
 C--C = 1
C=C = 0.5
C--S = 0.375

Calculating d_{ij} by performing Equation (2) (the shortest path calculations) gives

$$\therefore \sum_{i=1}^{5} \sum_{j=1}^{5} d_{ij} = \sum_{i=1}^{5} \sum_{j=1}^{5} \left(\sum_{r} k_{r} \right)$$

$$= \begin{bmatrix} 0.625 & 0.375 & 0.875 & 0.875 & 0.375 \\ 0.375 & 0 & 0.5 & 1.5 & 0.75 \\ 0.875 & 0.5 & 0 & 1 & 1.5 \\ 0.875 & 1.5 & 1 & 0 & 0.5 \\ 0.375 & 0.75 & 1.5 & 0.5 & 0 \end{bmatrix}$$

$$= 17.125$$

From Equation (4), it becomes

$$W = \frac{1}{2} \sum_{i=1}^{5} d_{ii} + \frac{1}{2} \sum_{i=1}^{5} \sum_{j=1}^{5} d_{ij}$$
$$= \frac{1}{2} (0.625 + 17.125)$$
$$= 8.875$$

Then, $\chi_{\scriptscriptstyle T}$ value is obtained by performing Equation (5)

$$\chi_{T} = 1.8789 \times W^{0.3271}$$

$$= 1.8789 \times (8.875)^{0.3271}$$

$$= 3.84$$

 \therefore The topological index ($\chi_{_T}$) of thiophene is 3.84.

the second second

Appendix C IGC Characterization Calculations

The IGC experiments were carried out at different temperatures ranging between 200–250 °C. Injection of normal alkanes (Hexane–Decane, namely C₆–C₁₀) as probe molecules (reference) and toluene ($\chi_T = 6.26$) and thiophene ($\chi_T = 3.84$) as polar probe molecules to the stationary phases (different adsorbents to be studied) were performed and the retention time (ι_R) measured. The experimental data were averaged as shown in Table C1.

For further calculations, the reduced 30% Cu/m-Al₂O₃ adsorbent was selected as an example. The conditions used in the experiments with 30% Cu/m-Al₂O₃ adsorbent as stationary phase are summarized in Table C2.

		Average Retention Time (min)											
Temperature	Probe Molecules	mAA	MAA	mCu10 24H2	mCu20 24H2	mCu30 24H2	mCA05 Cu3024 H2	mNi10 24H2	mNi20 24H2	mNi30 M 24H2 2	MCu10 24H2	MCu20 24H2	MCu30 24H2
	Hexane	0.72	0.65	0.77	0.74	0.74	0.72	0.57	0.78	0.76	0.6	0.51	0.56
	Heptane	1.42	1.23	1.51	1.45	1.21	1.38	1.09	1.58	1.55	1.15	0.90	1.11
	Octane	2.87	2.50	3.00	2.84	2.24	2.79	2.07	3.19	3.10	2.29	1.78	2.27
200	Nonane	5.82	5.16	6.24	5.82	4.41	5.71	3.96	6.61	6.34	4.67	3.60	4.5
	Decane	11.86	10.34	12.68	11.84	8.50	11.44	7.52	13.23	12.74	9.45	7.24	9.01
	Toluene	4.80	4.31	5.72	5.91	3.97	5.42	4.02	6.20	7.12	4.78	4.03	4.99
	Thiophene	2.04	1.87	2.28	4.25	2.14	4.14	1.72	2.49	2.82	1.91	2.00	3.42
	Hexane	0.47	0.41	х	х	0.49	0.44	х	х	x	x	х	х
	Heptane	0.82	0.69	x	х	0.75	0.77	х	x	х	х	х	х
	Octane	1.52	1.33	х	х	1.27	1.44	х	х	х	х	х	х
225	Nonane	2.90	2.50	х	х	2.35	2.78	х	x	х	х	х	х
	Decane	5.51	4.58	х	х	3.97	5.04	х	х	х	х	х	
	Toluene	2.38	2.10	x	x	2.01	2.52	x	х	x	х	х	
	Thiophene	1.08	0.99	х	x	1.22	2.01	x	х	x	x	x	x

 Table C1
 Summary of IGC data (an average of retention time, min)

		Average Retention Time (min)												
Temperature	Probe Molecules	mAA	МАА	mCu10 24H2	mCu20 24H2	mCu30 24H2	mCA05 Cu3024 H2	mNi10 24H2	mNi20 24H2	mNi30 24H2	MCu10 24H2	MCu20 24H2	MCu30 24H2	
	Hexane	0.30	0.28	x	x	0.34	0.28	x	x	x	x	x	x	
	Heptane	0.50	0.45	х	x	0.49	0.42	x	х	х	х	х	х	
	Octane	0.87	0.75	x	х	0.74	0.70	x	х	x	х	x	х	
250	Nonane	1.49	1.35	х	х	1.30	1.27	x	х	х	х	х	x	
	Decane	2.70	2.44	x	x	2.10	2.19	x	х	x	х	x	х	
	Toluene	1.27	1.11	х	х	1.16	1.19	x	x	х	х	х	х	
	Thiophene	0.62	0.54	х	x	0.74	0.92	x	х	х	x	х	x	

Table C1 (Cont.) The summary of IGC data (an average of retention time, min)

 Table C2
 Parameters used in calculations (exclusively for reduced 30% Cu/m-Al₂O₃ adsorbent)

Parameters	Value
He flowrate, $F(\text{cm}^3/\text{min})$	33.33
Ambient temperature, T_{amb} (K)	298.15
Solid mass, $m_{\text{solid}}(g)$	4.10
Density of mesoporous alumnina. $\rho_{m-Al_2O_1}$ (g/cm ³)	0.914
Solid density, ρ_{solid} (g/cm ³)	0.986 ^a
Ideal Gas constant, R (J/mol K)	8.314
Column diameter, D (cm)	1
Column length, L (cm)	10

C1 Retention Volume (V_o) Calculation

Example: The retention volume (V_g) of thiophene injected on reduced 30% Cu/m-Al₂O₃ adsorbent at 225 °C.

From
$$V_{\rm g} = Fj \frac{(t_{\rm R} - t_{\rm M})}{m} \left(\frac{T}{T_{\rm amb}}\right),$$
 (1)

where $t_{\rm R}$ is the retention time (min), $t_{\rm M}$ the retention time of non-adsorbing marker (hold up time), p_0 the outlet column pressure, p_i the inlet pressure, T the column temperature, $T_{\rm amb}$ the ambient temperature (K), and j the James–Martin compressibility factor defined as:

$$j = \frac{3}{2} \left[\frac{(p_i / p_0)^2 - 1}{(p_i / p_0)^3 - 1} \right].$$
 (2)

As there was no pressure drop along the column within the experiment, so the term j (James–Martin compressibility factor) can be neglected. So Equation (1) becomes;

$$V_{\rm g} = \frac{Ft_{\rm R} - Ft_{\rm M}}{m} \left(\frac{T}{T_{\rm amb}}\right)$$

$$V_{\rm g} = \frac{Ft_{\rm R} - V_{\rm I}}{m} \left(\frac{T}{T_{\rm amb}}\right). \tag{3}$$

$$V_{1} = V_{C} \times \varepsilon_{B}, \qquad (4)$$

$$V_{C} = S \times L, \qquad (5)$$

 $\frac{\pi D^2 L}{4}$

$$S \times L$$
, (5)

substitute in Equation (5): $V_{\rm C}$

From

and

and

$$= \frac{\pi (1 \text{ cm})^{2} (10 \text{ cm})}{4}$$

= 7.85 cm³.
= $1 - \frac{\rho_{\text{B}}}{\rho_{\text{G}}}$,

$$\frac{m_{\rm solid}/V_{\rm C}}{m_{\rm solid}/V_{\rm solid}} = \frac{V_{\rm solid}}{V_{\rm C}}, \qquad (7)$$

substitute (7) in (6):
$$\varepsilon_{\rm B} = 1 - \frac{V_{\rm solid}}{V_{\rm C}} = \frac{V_{\rm C} - V_{\rm solid}}{V_{\rm C}}$$
, (8)
substitute (8) in (4): $V_{\rm I} = V_{\rm C} - V_{\rm solid}$, (9)

=

 \mathcal{E}_{B}

 $\rho_{\rm B}$

$$= 7.85 - \frac{m_{\text{solid}}}{\rho_{\text{solid}}}$$

$$= 7.85 \text{ cm}^3 - \frac{4.10 \text{ g}_{\text{mCu}3024\text{H2}}}{1.047 \text{ g}_{\text{mCu}3024\text{H2}}/\text{cm}^3}$$

$$\therefore V_1 = 3.93 \text{ cm}^3.$$

The experiment was carried out at 225 °C, the retention volume of thiophene was 1.10 min, substitute all the parameters and Equation (9) in (3) then

$$V_{\rm g} = \frac{\left(33.33 \ {\rm cm}^3/{\rm min}\right)(1.10 \ {\rm min}\right) - 3.93 \ {\rm cm}^3}{4.10 \ {\rm g}} \left(\frac{225 + 273.15 \ {\rm K}}{298.15 \ {\rm K}}\right)$$
$$= 13.34 \ {\rm cm}^3/{\rm g}.$$

The retention volume of thiophene injected on reduced 30% Cu/m-.... Al₂O₃ adsorbent at 225 °C is 13.34 cm³/g.

(6)

Example: Particle density (ρ_{mAA}^1) of reduced 30% Cu/m-Al₂O₃ adsorbent.

From (1)

 $\rho_{\rm mAA} = \frac{m_{\rm mAA}}{V_{\rm mAA}},$ $\rho_{\rm mAA}^{\rm I} = \frac{m_{\rm mAA}^{\rm I}}{V_{\rm mAA}},$ and (2)

where ρ_{mAA} is the density of mesoporous alumina, ρ_{mAA}^{1} is the density of impregnated mesoporous alumina, then divide Equation (2) by Equation (1):

$$\frac{\rho_{\text{mAA}}^{\text{I}}}{\rho_{\text{mAA}}} = \frac{m_{\text{mAA}}^{\text{I}}}{m_{\text{mAA}}} = \frac{m_{\text{mAA}}^{\text{I}} + m^{\text{I}}}{m_{\text{mAA}}}$$
$$= 1 + \frac{m^{\text{I}}}{m_{\text{mAA}}}, \qquad (3)$$

from Table A2:

from

$$m_{mAA} = 10 \text{ g, and} \quad m_{CuCl_2} = 1.077 \text{ g},$$

$$mol_{CuCl_2} = mol_{CuCl}$$

$$\frac{m_{CuCl}}{M_{CuCl}} = \frac{m_{CuCl_2}}{M_{CuCl_2}}$$

$$m_{CuCl} = \frac{m_{CuCl_2} \times M_{CuCl_2}}{M_{CuCl_2}},$$
(4)

substitute the data from Table A1 and Table A2 in Equation (4);

$$\therefore \qquad m_{CuCl} = \frac{1.077 \text{ g}_{CuCl} \times 99.00 \text{ g}_{CuCl}/\text{mol}}{134.45 \text{ g}_{CuCl_2}/\text{mol}}$$

$$= 0.793 \text{ g}$$
from Equation (3): $\rho_{mAA}^{1} = \rho_{mAA} \left(1 + \frac{m^{1}}{m_{mAA}}\right)$

$$= 0.914 \frac{\text{g}}{\text{cm}^{3}} \left(1 + \frac{0.793 \text{ g}}{10 \text{ g}}\right)$$

$$= 0.986 \text{ g/cm}^{3}$$

... The particle density of reduced 30% Cu/m-Al₂O₃ is 0.986 g/cm³.

particle density of the adsorbents that were used for IGC The characterization was summarized as shown in Table C3.

Adsorbents	Particle density ^a (g/cm ³)
Support: Mesoporous Alumina	
m-Al ₂ O ₃	0.914
Reduced 10% Cu/m-Al ₂ O ₃	0.938
Reduced 20% Cu/m-Al ₂ O ₃	0.962
Reduced 30% Cu/m-Al ₂ O ₃	0.986
Reduced 30% Cu/m-Al ₂ O ₃ modified with CA (Cu/CA=5)	0.986 ^b
10% Ni/m-Al ₂ O ₃	0.943
20% Ni/m-Al ₂ O ₃	0.973
30% Ni/m-Al ₂ O ₃	1:002
Support: Macroporous Alumina	4 A. 4
M-Al ₂ O ₃	1.008
Reduced 10% Cu/M-Al ₂ O ₃	1.027
Reduced 20% Cu/M-Al ₂ O ₃	1.045
Reduced 30% Cu/M-Al ₂ O ₃	1.064

 Table C3
 Summary of particle density of the adsorbents

^a Corresponding to the parameter value stated in Table A2.

^b CA mixed with metal-containing solution in impregnation step was decomposed by the reduction temperature at which 300 °C before using as an stationary phase in IGC. Thus, the amount of CA does not take into account for the particle density calculation.

C3 Enthalpy of Adsorption Calculation

Example: Heat of adsorption (ΔH_{ads}) of thiophene injected as polar probe molecule on reduced 30% Cu/m-Al₂O₃ adsorbent at different temperature ranging between 200–250 °C.

At low surface coverage, the heat of adsorption is obtained by plotting $\ln V_g$ against 1/T, according to Equation (1):

$$\Delta H_{\rm ads} = -R \frac{\partial \left(\ln V_{\rm g} \right)}{\partial \left(1/T \right)}. \tag{1}$$

The experimental data plotted in the graph was shown in Figure C1.

Figure C1 $\ln V_g$ against 1/T graph of thiophene injected on reduced 30% Cu/m-Al₂O₃ adsorbent at different temperature ranging between 200–250 °C.

According to the Figure C1, the equation of linear line was obtained by using the Microsoft Office Excel software, as shown in Equation (2):

$$y = 5298.4132x - 7.9302.$$
 (2)

From Equation (1) is consistent with Figure C1 and Equation (2), the slope

of the graph,
$$\frac{\partial (\ln V_g)}{\partial (1/T)}$$
, is 5298.41 K.

Substitute the value in Equation (1) gives

$$\Delta H_{ads} = -(8.314 \text{ J/mol} \cdot \text{K})(5298.41 \text{ K})\left(\frac{1 \text{ kJ}}{1000 \text{ J}}\right)$$
$$= -44.1 \text{ kJ/mol}.$$

 \therefore The heat of adsorption (ΔH_{ads}) of thiophene injected as polar probe molecule on reduced 30% Cu/m-Al₂O₃ adsorbent is – 44.1 kJ/mol.

C4 Free energy of Adsorption of a Methylene Group Calculation

Example: The free energy of adsorption of a methylene group (ΔG_{CH_2}) as *n*-alkanes (C₆-C₁₀) were injected as probe molecules on reduced 30% Cu/m-Al₂O₃ adsorbent at 225 °C.

The term, ΔG_{CH_2} , corresponds to the free energy of adsorption of a methylene group and is defined as the energy difference for the adsorption of two successive alkanes, and may be calculated from:

$$\Delta G_{\text{CH}_2} = -RT \ln \frac{V_{g(n)}}{V_{g(n+1)}}, \qquad (1)$$

where $V_{g(n)}$ and $V_{g(n+1)}$ are the specific retention volumes of two consecutive *n*-alkanes having *n* and (n + 1) carbon atoms, respectively. ΔG_{CH_2} is independent of the reference state of the adsorbed molecule. The slope of the linear functions given in Figure D2 represent the increment in ΔG_{CH_2} .

The value of ΔG_{CH_2} is obtained by plotting $-RT \ln V_g$ against χ_T (shown in Figure C2) according to Equation (1). The slope of this curve is ΔG_{CH_2} .

Figure C2 Free energy of adsorption of a methylene group based on *n*-alkanes, 30% $Cu/m-Al_2O_3$ adsorbent at 225 °C.

According to the Figure C2, the equation of linear line was obtained by using the Microsoft Office Excel software. as shown in Equation (2):

$$y = -2453.3x + 8600.$$
 (2)

From Equation (1) is consistent with Figure C1 and Equation (2), the slope

of the graph,
$$-RT \ln \frac{V_{g(n)}}{V_{g(n+1)}}$$
, is - 2453.3 J/mol.

Substitute the value in Equation (1) gives

$$\Delta G_{\rm CH_2} = -2.45 \text{ kJ/mol.}$$

The free energy of adsorption of *n*-alkanes on reduced 30% Cu/m-Al₂O₃ adsorbent at 225 °C is - 2.45 kJ/mol.

C5 Surface Free Energy: Specific and Dispersive Component Calculations

As in the case of the free energy of adsorption, the surface free energy of the adsorbent, γ_s (J/m²), may be split into dispersion, γ_s^d , and specific, γ_s^s , contributions, corresponding to the dispersion and specific interactions, respectively:

$$\gamma_{s} = \gamma_{s}^{s} + \gamma_{s}^{d}. \qquad (1)$$

The dispersive component, intrinsic and unspecific for all molecules, is due to London forces and is given by:

$$\gamma_s^d = \frac{1}{4} \frac{\Delta G_{CH_s}^2}{\gamma_{CH_s} N^2 a_{CH_s}^2}, \qquad (2)$$

where N is the Avogadro number, a_{CH_2} is the area occupied by a $-CH_2$ group (0.06 nm²), and γ_{CH_2} (mJ/m²) is the surface tension of a surface consisting of CH₂ groups, which is a function of temperature:

$$\gamma_{\rm CH_2} = 35.6 + 0.058(20 - T), \qquad (3)$$

where T is the column temperature in $^{\circ}$ C.

The specific component (γ_s^s) of the surface free energy is closely related with the parameter of specific interaction of polar solutes (I^{sp}) . This parameter involves the surface properties in terms of potential and acid-base interactions and may be determined from the difference of free energy of adsorption, $\Delta(\Delta G)$, between a polar solute and the real or hypothetical *n*-alkanes with the same surface area:

$$\gamma_{\rm s}^{\rm s} = I^{\rm sp} = \frac{\left|\Delta(\Delta G)\right|}{Na_{\rm p}},$$
 (4)

where a_p is the polar solute surface area. In this work, a_p , is calculated from the liquid density, ρ , and the molar weight of the solute, M, assuming spherical molecular shape in a hexagonal close-packed configuration:

$$a_{\rm p} = 1.09 \times 10^{14} \left(\frac{M}{\rho N}\right)^{2/3},$$
 (5)

where 10^{14} is the conversion factor (convert cm² to nm²).

Example: The dispersive component (γ_s^d) of *n*-alkanes injected as probe molecules on reduced 30% Cu/m-Al₂O₃ adsorbent at 225 °C.

From Eq. (2)
$$\gamma_{s}^{d} = \frac{1}{4} \frac{\Delta G_{CH_{2}}^{2}}{\gamma_{CH_{2}} N^{2} a_{CH_{2}}^{2}},$$

calculate for γ_{CH_2} , as the experiment was carried out at T = 225 °C, by substituting the value of *T* in Equation (3) gives

$$\gamma_{CH_2}$$
 = 35.6 + 0.058(20 - 225)
= 23.71 mJ/m².

From ΔG_{CH_2} calculation in Appendix C4,

$$\Delta G_{\rm CH_2} = -2453.3 \text{ J/mol}$$

Substitute all of the value in Equation (2):

$$\therefore \gamma_{s}^{d} = \frac{1}{4} \left[\frac{(-2453.3)^{2} \left(\frac{J}{mol}\right)^{2}}{(23.71)^{\frac{mJ}{m^{2}}} (6.02 \times 10^{23})^{2} (mol^{-1})^{2} (0.06 \times 10^{-18})^{2} (m^{2})^{2}} \right]$$

$$= \frac{1}{4} \left[\frac{(-2453.3)^{2} \left(\frac{J}{mol}\right)^{2} \cdot (10^{3} \frac{mJ}{J})^{2}}{(23.71) \frac{mJ}{m^{2}} (6.02^{2} \times 10^{46}) (mol^{-1})^{2} (0.06^{2} \times 10^{-36}) (m^{2})^{2}} \right]$$

$$= \frac{1}{4} \left[\frac{(-2453.3)^{2} \left(\frac{J}{mol}\right)^{2} \cdot 10^{-4} \left(\frac{mJ}{J}\right)^{2}}{(23.71) \frac{mJ}{m^{2}} \cdot 6.02^{2} (mol^{-1})^{2} \cdot 0.06^{2} (m^{2})^{2}} \right]$$

$$= 48.6 \text{ mJ/m^{2}}$$

:. The dispersive component (γ_s^d) of *n*-alkanes injected as probe molecules on reduced 30% Cu/m-Al₂O₃ adsorbent at 225 °C is 48.6 mJ/m².

C5.2 Specific Component Calculation

Example: The specific component (γ_s^s) of thiophene injected as polar probe molecules on reduced 30% Cu/m-Al₂O₃ adsorbent at 225 °C.

From Eq. (4)
$$\gamma_s^s = I^{sp} = \frac{\Delta(\Delta G)}{Na_p}$$
,

calculate for a_p , by using the parameters those are shown in Table C4.

Table C4 Physical properties of polar probe molecules (toluene and thiophene) forIGC calculations

Chemicals	Chemical Formula	Structure	Molecular Weight (g/mol)	Boiling Point (°C)	Melting Point (°C)	Density (g/cm ³)
Toluene	C ₇ H ₈	CH ₃	92.14	110.6	-93	0.865
Thiophene	C ₄ H ₄ S	S	84.14	84	-38	1.051

Substitute the value in Equation (5) gives

$$a_{p} = 1.09 \times 10^{14} \left(\frac{84.14 \frac{g}{\text{mol}}}{1.051 \frac{g}{\text{cm}^{3}} \cdot 6.02 \times 10^{23} \text{ mol}^{-1}} \right)^{2/3}$$

= $1.09 \times \left(10^{14} \frac{\text{nm}^{2}}{\text{cm}^{2}} \right) \left(\frac{84.14}{1.051 \cdot 6.02 \times 10^{23}} \text{ cm}^{3} \right)^{2/3}$
= $1.09 \times \left(10^{14} \frac{\text{nm}^{2}}{\text{cm}^{2}} \right) \left(\frac{84.14}{1.051 \cdot 6.02 \times 10^{23}} \right)^{2/3} \text{ cm}^{2}$
= 0.2839 nm^{2}

Figure C3 Specific interaction parameter, reduced 30% Cu/m-Al₂O₃ at 225 °C: *n*-alkanes (continuous line), thiophene (\bullet).

According to the Figure C3, the equation of reference line was obtained by using the Microsoft Office Excel software, as shown in Equation (6):

y = -2453.3x + 8600or $\Delta G_{\text{Ref}} = -2453.3 \chi_{\text{T}} + 8600.$ (6)
For thisphene: $\chi_{\text{T}} = 3.84$

Note: the calculation of equivalent carbon number was shown in Appendix B.

Substitute the value of χ_T in Equation (6) gives

$$\Delta G_{\text{Ref}} = -2453.3 (3.84) + 8600$$

= -821 J/mol.

From the experiment, the retention time for the thiophene on reduced 30% Cu/m-Al₂O₃ adsorbent at 225 °C is 1.10 min. Calculation of V_g was shown in Appendix C1. The value of V_g is 13.34 cm³/g.

Calculate for the ΔG_{Polar} according to Equation (6):

$$\Delta G_{\text{Polar}} = -RT \ln V_g + C , \qquad (6)$$

$$\Delta G_{\text{Polar}} = -8.314 \frac{\text{J}}{\text{mol} \cdot \text{K}} \cdot (225 + 373.15) \text{K} \cdot \ln(13.34)$$

= -10759 J/mol
$$\therefore |\Delta (\Delta G)| = |\Delta G_{\text{Polar}} - \Delta G_{\text{Ref}}|$$

= |-10759 - (-821)|
= 9939 J/mol

Substitute all of the value in Equation (4):

$$\therefore \qquad \gamma_{s}^{s} = \frac{9939 \frac{J}{mol}}{6.02 \times 10^{23} \text{ mol}^{-1} \cdot 0.2839 \text{ nm}^{2}} \cdot \left(\frac{10^{3} \text{ mJ}}{J}\right) \cdot \left(\frac{10^{18} \text{ nm}^{2}}{\text{m}^{2}}\right)$$
$$= 58.1 \text{ mJ/m}^{2}.$$

The specific component (γ_s^s) of thiophene injected as polar probe molecules on reduced 30% Cu/m-Al₂O₃ adsorbent at 225 °C is 58.1 mJ/m². C5.3 Surface Free Energy Calculation

Example: The surface free energy (γ_s) of thiophene injected as polar probe molecules on reduced 30% Cu/m-Al₂O₃ adsorbent at 225 °C.

The surface free energy of thiophene on reduced 30% Cu/m-Al₂O₃ was obtained according to Equation (7):

	γ_{s}	=	$\gamma_s^d + \gamma_s^s$,	(7)
from Appendix C5.1:	γ^d_s	=	48.6 mJ/m^2	
and from Appendix C5.2:	γ_s^s	=	58.1 mJ/m^2	
substitute all of the value in Equation (7) gives				
	γ_s	=	48.6 + 58.1	

. The surface free energy (γ_s) of reduced 30% Cu/m-Al_2O_3 adsorbent at 225 °C is 106.7 mJ/m².

= 106.7 mJ/m².

CURRICULUM VITAE

Name: Mr. Thanawat Aryusanil

Date of Birth: October 13, 1986

Nationality: Thai

University Education:

2005-2009 Bachelor Degree of Engineering (Chemical Engineering), Faculty of Engineering, Kasetsart University. Bangkok, Thailand

Work Experiences:

1. Completing training course "Desulfurization of Hydrocarbon Feeds by Adsorption with Π -Complexation", IFP Energies nouvelles, Lyon, France. from the 4th of October 2010 to the 25th of March 2011.

Completing IEAGHG-GCCS1 Student Mentoring Programme at GHGT Amsterdam, The Netherlands, from the 19th to 23rd of September 2010.

3. Completing training course "Refining Industry, Sustainable Development, International Business Development", TOTAL Professeurs Associés, France, from the 30th of November to the 4th of December 2009.

Proceeding:

1. Aryusanil, T.; Malakul. P.; and Thomas, M. (2011, April 26) Desulfurization of hydrocarbon feeds by π -complexation adsorption: Characterization of copper halides impregnated on mesoporous and macroporous aluminas. <u>The 2nd Research Symposium on Petroleum, Petrochemicals, and</u> <u>Advanced Materials and The 17th PPC Symposium on Petroleum, Petrochemicals,</u> <u>and Polymers</u>, Bangkok, Thailand.

