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ABSTRACT

5592001063:  Polymer Science Program
Tidarat Komolwanich: Production of Bioethanol from Thai
Grasses.
Thesis Advisors: Assoc. Prof. Sujitra Wongkasemjit, and Assoc.
Prof. Thanyalak Chaisuwan 166 pp.
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Two-stage microwave pretreatment (microwave/NaOIl pretreatment
followed by microwave/EESCK pretreatment) successfully released monomeric
sugars from various types of Thai grasses, namely. Mission grass (Pennisetum
polystachyon). Kans grass (Saccharum spontuneum). Giant reed (Anmdo donax),
and Tiger grass (Thyscmolaenu maxima). The optimum conditions of the
pretreatment were investigated, and the maximum monomeric sugar yields were
compared. The microwave-assisted NaOH and H2SOa pretreatments with 15:1
liquid-to-solid ratio were studied by varying chemical concentration, reaction
temperature, and reaction time to optimize the amount of the monomeric sugars.
The changes in structure of grasses were characterized using fourier transform
infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Of all
grasses studied, the one giving the most amount of monomeric sugar was chosen
to stud)' the ethanol production. After the grass underwent through the two-stage
pretreatment, it was subjected to enzymatic hydrolysis. Glucose, the source of ethanol
fermentation, was obtained after the hydrolysis process. The grass hydrolyzate was
overlimed at various pHs; and then sodium sulfite was added to remove inhibitory
compounds and degradation products, such as furfural and hydroxymethylfurfural.
Yeast population count was studied under a microscope. The change of glucose
concentration in the hydrolyzate was detected by high performance liquid
chromatography (HPLC), and the production of ethanol was determined using gas
chromatography (GC).
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