DEVELOPMENT OF MAGNETIC CHITOSAN NANOPARTICLES

Sutima Chatrabhuti

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2013

I 28372864 561050

Thesis Title:	Development of Magnetic Chitosan Nanoparticles
By:	Sutima Chatrabhuti
Program:	Polymer Science
Thesis Advisors:	Prof. Suwabun Chirachanchai

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

..... Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof. Pomthong Malakul)

(Asst. Prof. Manit Nithithanakul)

Lurachenali

(Prof. Suwabun Chirachanchai)

Tolesan. A angions.

(Dr. Rangrong Yoksan)

Surachai Ngamratanapaiboon

(Dr. Surachai Ngamratanapaiboon)

ABSTRACT

5192002063:	Polymer Science Program			
	Sutima Chatrabhuti: Development of Magnetic Chitosan			
	Nanoparticles.			
	Thesis Advisors: Prof. Suwabun Chirachanchai 92 pages			
Keywords:	Chitin-chitosan, Magnetic nanoparticles, Surface modification			
	Silane coupling agent			

The present work focuses on preparing the magnetic nanoparticles and chitin- chitosan hybrids materials via secondary forces and covalent bond in waterbased system. In the first part, the hybridization via physical interactions and factors related to colloidal stabilization is clarified. The work shows that particle size, surface charge, and morphology can be controlled by pH and polarity of the surrounded environment. The work also extends to implement for genomic DNA isolation. In the second part, the work shows the simple and effective synthesis pathway to fabricate magnetic nanoparticles and chitin- chitosan hybrids materials via covalent bond through simple silane coupling reaction. The epoxy functional group of silane coupling agent is ready to react with hydroxyl group of chitin/ chitosan. In the last part, another potential approach of hydrogel incorporated magnetic nanoparticles is to achieve hydrogel/aerogel responsive to the magnetic field. The high porosity and surface area of aeroges is expected to enhance the ability to adsorb substances.

บทคัดย่อ

สุติมา ฉัตรภูติ : การพัฒนาแมกเนติกไคโตซานนาโนพาร์ติเคิล (Development of Magnetic Chitosan Nanoparticles) อ. ที่ปรึกษา : ศาสตราจารย์ คร. สุวบุญ จิรชาญชัย 92 หน้า

วิทยานิพนธ์ฉบับนี้มุ่งเน้นไปที่การเตรียมของผสมระหว่างแมกเนติกนาโนพาร์ติเกิลกับ วัสดุจำพวกไคติน-ไตโตซานโดยแรงอันตรกิริยาแบบอ่อนและพันธะโควาเลนต์ในระบบน้ำ ใน ส่วนแรก การทำของผสมผ่านแรงอัตรกิริยาแบบอ่อนและปัจจัยที่ส่งผลต่อความเสถียรของ คอลลอยด์ได้พิสูจน์ให้กระจ่าง งานนี้แสดงให้เห็นว่าขนาดอนุภาค, ประจุบนพื้นผิว, และมอร์ ฟอลอจีสามารถถูกควบคุมได้ด้วยค่าพิเอซและความเป็นขั้วของสารละลายแวดล้อม งานวิจัยนี้ยัง ได้ขยายผลไปถึงการนำไปใช้สกัดดีเอ็นเอด้วย ในส่วนที่สอง งานวิจัยแสดงให้เห็นถึงขั้นตอนการ เตรียมของผสมระหว่างแมกเนติกนาโนพาร์ติเกิลกับวัสดุจำพวกไคติน-ไตโตซานโดยพันธะโควา เลนต์แบบง่ายและมีประสิทธิภาพผ่านปฏิกิริยาไซเลนคัปปลิง ซึ่งหมู่ฟังก์ชันอีพอกซีของสารไซ เลยคัปปลิงเอเจ้นนั้นมีความว่องไวในการเกิดปฏิกิริยากับหมู่ไฮครอกซีของไคโตซานได้ดี ใน งานวิจัยส่วนสุดท้าย การนำไคโตซานไฮโดรเจลที่ถูกเติมแมกเนติกนาโนพาร์ติเกิลเข้าไปสู่การเป็น วัสดุที่สามารถตอบสนองต่อสนามแม่เหล็กจากภายนอกได้ถูกนำเสนอ โดยกาดว่าแอโรเจลที่มี ความเป็นรูพรุนและมีพื้นที่ผิวมากจะมีความสามารถในการดูคซับสารต่างๆ ได้ดี

ACKNOWLEDGEMENTS

The author would like to express her deep appreciation to her advisor, Professor Suwabun Chirachanchai. Without his support, encouragement and inspiration during her valuable years of being a Ph.D. student under his supervision. Thanks for never giving up on her.

She would like to acknowledge the scholarship from Center for Petroleum, Petrochemical and Advanced Materials, the Petroleum and Petrochemical College, Chulalongkorn University. Japan Student Service Organization for her 9 months experience in Japan.

She thanks Dr. Surachai Ngamrattanapaiboon for supporting her work in biochemistry field such as DNA isolation study. This work requires a lot of patience and skill. Without him, the DNA isolation study would not be at this success.

She wishes to thank Professor Mitsuru Akashi for valuable advices and kind support during her short term research in Osaka University.

She thanks all of Suwabun's lab members for being such a good friends, giving her encouragement through the tough moment. She will never forget the wonderful memories with them.

She wishes to thanks her family for never lose hope on her. They always believe that she can pursue her dream for being a good researcher.

TABLE OF CONTENTS

PA	G	E
----	---	---

Title Page	i
Abstract (in English)	111
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Schemes	ix
List of Table	х
List of Figures	xiv

CHAPTER

I	INTRODUCTION	1		
Π	LITERATURE REVIEW	2		
	2.1 Magnetic Nanoparticles (MAG)	2		
	2.1.1 Synthesis and General Properties	2		
	2.1.2 Magnetic Nanoparticles Coating	5		
	2.1.3 Applications of Magnetic Nanoparticles	10		
	2.2 Chitin-chitosan	12		
	2.2.1 Functionalization of Chitin-chitosan	13		
	2.3 Chitosan as a Coating Material and/ or Stabilizer for MAG	16		
	2.4 Point of Study	21		
III	CHITOSAN CORE-CORONA NANOSPHERES: A			
	CONVENIENT MATERIAL TO TAILOR pH AND SOLVENT			
	RESPONSIVE MAGNETIC NANOPARTICLES	22		
	3.1 Abstract	22		

3.2 Introduction	23
3.3 Experimental	25

	PAGE
3.4 Results and discussion	28
3.5 Conclusions	38
3.6 Acknowledgement	38
3.7 References	39
SINGLE STEP COUPLING FOR MULTI-RESPONSI	VE
WATER-BASED CHITIN/CHITOSAN MAGNETIC	
NANOPARTICLES	43
4.1 Abstract	43
4.2 Introduction	44
4.3 Experimental	46
4.4 Results and discussion	50
4.5 Conclusions	64
4.6 Acknowledgements	64
4.7 References	65
MAGNETIC -RESPONSIVE CHITOSAN HYDROGE	CLS AND
AEROGELS	68
5.1 Abstract	68
5.2 Introduction	69

V	MAGNETIC -RESPONSIVE CHITOSAN HYDROGELS AN
	AEROGELS
	5.1 Abstract

5.4	Results and discussion
5.5	Conclusions
5.6	Acknowledgements
5.7	References

VI CONCLUSIONS

5.3 Experimental

CHAPTER

IV

REFERENCES	82

70

71

79

79

80

81

CHAPTER		

PAGE

CURRICULUM VITAE

91

LIST OF SCHEMES

SCHE	ME		PAGE
2.1	Chemical structures of (a	CHAPTER II) cellulose, (b) chitin, and (c) chitosan	13
3.1	Synthesis of CSNS	CHAPTER III	27
		CHAPTER IV	

4.1	Preparation of	CTWK-MAG and	WSCS-MAG.	48
-----	----------------	--------------	-----------	----

LIST OF TABLES

TABLE

CHAPTER II

2.1 Physical and chemical properties of hematite, magnetite, and maghemite 5

CHAPTER III

3.1	Content of CSNS and MAG in CSNS-MAG	37
3.2	E. coli DNA binding content from various type of samples	39
3.3	S. aureus DNA binding content of CSNS-MAG in pH 10 buffer solution	
	from various extraction methods	40

LIST OF FIGURES

FIGURE

CHAPTER II

2.1	Types of magnetism: paramagnetism (a), ferromagnetism (b),	
	antiferromagnetism (c), and (d) ferrimagnetism.	3
2.2	Suggested mechanism for sodium dodecyl sulfate adsorption on	
	MAG surface	7
2.3	Co-precipitation of MAG in PEO-PPO grafted copolymer with	
	poly(acrylic acid) solution.	8
2.4	Dendrimer generation on surface of amino silane modified MAG	9
2.5	Ligand exchanging of chemisorbed oleic acid on MAG surface by	
	silanes. Purposed different silanes with wide variety of end groups	10
2.6	MRI cross section of the U87MG tumors implanted in mice: (a)	
	without MAG, and (b) with the injection of 300 μ g of peptide	
	c(RGDyK)-modified MAG	11
2.7	Preparation procedure of water-in-oil microemultion	17
2.8	Scheme of amide linkage formation between the carboxylic group	
	on the particle surface and the amino group found in chitosan, via	
	carbodiimide activation	18
2.9	Principle of in situ mineralization of MAG in chitosan hydrogel	20

CHAPTER III

3.1	Chemical structure, TEM micrographs, and schematic draws of	
	CSNS in water (a); TEM micrographs, and schematic draws of	
	CSNS-MAG (b,d), and CSNS-O-MAG (c,e).	29
3.2	Z-average particle size of CSNS-MAG in toluene ($^{\bigcirc}$), THF ($^{\bigcirc}$),	
	DMF (\Box), ethanol (\blacksquare), and water (\triangle).	30

FIGURE

Photographs (left), TEM micrographs (middle), and schematic 3.3 draws (right) of CSNS-MAG in water (a, d, g), DMF (b, e, h), 32 and toluene (c, f, i). 3.4 Z-average particle sizes of CSNS-MAG in water with various 33 isopropanol contents. Particle size (a) and zeta potential (b) of CSNS (°), MAG (□), and 3.5 CSNS-MAG (△) in (pH adjusted) water from pH 2.2 to pH 10; TEM images of CSNS-MAG in (pH adjusted) water pH 3 (c), and pH 6 (d); schematic draws of CSNS-MAG in acidic or basic pHs (e), and 36 neutral pH (f).

CHAPTER IV

4.1	A) FTIR spectra of (a) S-MAG, (b) CTWK-MAG, and (c) WSCS-	
	MAG; B) curve fitting of (a) S-MAG, (b) CTWK-MAG, and (c)	
	WSCS-MAG; and C) integral ratio of oxirane peak at 900 cm ⁻¹ to Si-	
	O peak at 1087 cm ⁻¹ of a) S-MAG, b) CTWK-MAG, and c) WSCS-	
	MAG.	51
4.2	TGA thermograms of (a) O-MAG, (b) S-MAG, (c) CTWK-MAG,	
	and (d) WSCS-MAG.	53
4.3	TEM micrographs of (a) MAG, (b) O-MAG, (c) CTWK. (d) WSCS,	
	(e) CTWK-MAG, (f) WSCS-MAG, and (g) CTWK-MAG under	
	magnetic field. Circles in Figure (e-g) indicate MAG.	55
4.4	A) Photographs of colloidal appearances of (a) MAG, (b) S-MAG,	
	(c) CTWK-MAG, and (d) WSCS-MAG; and B) relative absorbance	
	of MAG ($^{\bigcirc}$), S-MAG ($^{\Box}$), CTWK-MAG ($^{\bigtriangleup}$), and WSCS-MAG ($^{\diamondsuit}$)	
	in water as a function of time.	57

PAGE

FIGURE

A) Photographs of CTWK-MAG dispersed in various solvents in 4.5 relation to the dielectric constant value (k): toluene (k=2.38), chloroform (k=4.81), THF (k=7.58), DMF (k=19.9), ethanol (k=24.5), methanol (k=32.7), DMSO (k=46.7), and water (k=80.1) at 0 min, 30 min, 60 min, 120 min, and 180 min after sonication; B) relative absorbance of CTWK-MAG in various solvents: water (O), DMSO (•), methanol (\Box), ethanol (\blacksquare), DMF (\triangle), THF (\blacktriangle), chloroform (+), and toluene (×); and C) schematic illustration of solvent interactions to CTWK-MAG in (a) water, (b) DMF, and (c) toluene. 59 4.6 Figure 4.6. A) Zeta potential and particle size of (a) MAG, (b) S-MAG, (c) CTWK-MAG, and (d) WSCS-MAG at pH 2.2 to pH 10 in water (pH adjusting by NaOH and HCl); B) schematic illustrations of CTWK-MAG in water at (a) pH 2–4, (b) pH 5–7, and (c) pH 8–10; and C) schematic illustrations of WSCS-MAG in water at (a) pH 2–3, (b) pH 3–7, and (c) pH 8–10. 62

CHAPTER V

5.1	Appearances of magnetic chitosan hydrogels of; (a) MAG-added. and	
	(b) S-MAG-added in hydrogel with various mole ratio.	72
5.2	ATR-FTIR spectra of; (a) chitosan, (b) chitosan aerogel, (c) chitosan	
	aerogel containing MAG, and (d) chitosan aerogel containing S-MAG.	73
5.3	Magnetization curves for (a) MAG-chitosan aerogel and (b) S-MAG-	
	chitosan aerogel at various MAG and S-MAG content.	74
5.4	XRD patterns of; (a) MAG, (b) chitosan aerogel, (c) MAG-chitosan	
	aerogel, and (d) S-MAG-chitosan aerogel.	75

SEM micrographs at 15 keV of chitosan aerogel (a), MAG-chitosan 5.5 aerogels (b-e), S-MAG-chitosan aerogels (f-i). Magnetic loading content 0.5% (b, f), 2.5% (c, g), 5.0% (d, h) and 10.0% (e, i). Scale 76 bar, 10 μm. 77 5.6 Swelling ratio of magnetic chitosan hydrogels. 5.7 Relative drug release as a function of time of (a) unmodified MAG-OFF magnetic field, (b) unmodified MAG-ON magnetic field, (c) silane-modified MAG-OFF magnetic field, and (d) silane-modified MAG-ON magnetic field. No magnetic nanoparticle added (°), 0.5% added (\Box), 5.0% added (Δ), and 10.0% added (x). C_{inf} represents cumulative mass release at 24 h (N=3). The degrees of crosslinking of all samples were fixed at 50%. 78