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ABSTRACT
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Tharaporn Permpool: Polydiphenylamine/Zeolite Y Composites and
Electrical Conductivity Response toward Halogenated
Hydrocarbons.
Thesis Advisors: Prof. Anuvat Sirivat, and Dr. Darunee
Aussawasathien 173 pp.
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Discriminant analysis

Composites of polydiphenylamine (D-PDPA) and zeolite Y with HT as the
cation (YH) was fabricated to be used as a sensing material towards halogenated
solvents which are toxic towards human and environment and have been widely used
as solvents in various industries. The electrical conductivity and sensitivity of the
composites towards the solvents was higher than the pristine PDPA by about 1 order
of magnitude. The composite possessed maximum electrical conductivity sensitivity
values towards dichloromethane, but they did not respond to hexane. Generally, the
sensitivity of the composites increased with increasing zeolite content and vapor
concentration. In order to enhance the sensing properties of the composites. PDPA
was synthesized in nanoscale (nPDPA) by emulsion polymerization and YH was
modified by the dealumination process (DYH) to increase the silicon and alumina
ratios. The composite of nPDPA and DYH showed a higher sensitivity when exposed
to the solvents than the pristine nPDPA and zeolite. The interactions between the
composite and hydrocarbon vapors were investigated by FT-IR spectroscopy and
UV-Vis spectrophotometry. Statistic discriminant analysis confirmed that the
response patterns of the composite toward each chemical solvent could be

distinguished among non polai and low polar solvents, but not high polar solvents.
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