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ABSTRACT

5181002063 Petrochemical Technology Program
Atiporn Chongterdtoonskul: Ethylene Epoxidation over Ag Catalysts:
Effects of Support, Second Metal, Promoter, and Diluent Gas.
Thesis Advisors: Prof. Sumagth Chavadej and Prof. Johannes .
Schwank, 169 pp.

Keywords:  Ethylene epoxidation/ Mesoporous-assembled titanate support/
SITiCh support/ Bimetallic catalyst/  promoter/ Diluent gas

The ethylene epoxidation reaction was conducted in a packed-bed tubular
reactor to produce ethylene oxide in this work. The effects of oxide supports (of-
ATO03 Al203 ¢, ATO3aca SIO; 90, TiO:, SrTi03 MgTi03 CaTi03 and BaTio3),
second metals (Au, Cu, Ba, Pd and ), and the diluent gases in the reactant feed (He,
Ar, N2 cra, and CHa balanced with He) were investigated in order to find the
optimum reaction conditions for the epoxidation of ethylene, leading to an
improvement of the catalytic activity in terms of hoth EO selectivity and EO yield.
Among the investigated supports, SrTi03was found to be the best support, relating to
Sr atoms that are incorporated in the SrTi0s support that made this support more
selective in EO formation. The most effective catalyst was the bimetallic 1.39 wt.%
Cu-17.16 wt% Ag/SrTi0s catalyst with 0.32 wt%  promoter. The superior
performance of this catalyst might be due to its high oxygen and ethylene uptakes.
Moreover, the tin promoter enhanced the long-term stability of the catalyst, resulting
from the decrease in the rate of carbonaceous species formation. Under the optimum
experimental conditions, the EO selectivity was found to be extremely high up to
99.5 % at 6 hand could maintain at 96 % after 7 days of time on stream, together
with the maximum EO yield of 5.5 % at 6 h and 4.9 % at 7 days of time on stream.
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