REFERENCES

- Abrusci, C., Martin-Gonzalez, A., Del, A.A., Corrales, T., and Catalina, F. (2004).
 Biodegradation of type-B gelatin by bacteria isolated from cinematographic films. <u>Polymer Degradation and Stability</u>, 86, 283-291.
- A-sasutjarit, R., Sirivat, A., and Vayumhasuwan, P. (2005). Viscoelastic properties of carbopol 940 gels and their relationships to piroxicam diffusion coefficients in gel bases. <u>Phamaceutical Research</u>, 22, 2134-2140.
- Avena-Bustillous, R.J., Olsen C.W., Olson D.A., Chiou, B., Yee, E. Bechtel, P.J., and Mchugh, T.H. (2006). Water vapor permeability of mammalian and fish gelatin films. Journal of Food Science, 71, 202-207.
- Bohidar, H.B. (1998). Hydrodynamic properties of gelatin in dilute solutions. International Journal of Biological Macromolecules, 23, 1-6.
- Baj, H.J., Darby, D.O., Kimmel, R.M., Park, H.J., and Whiteside, W.S. (2009). Effects of transglutaminase-induced cross-linking on properties of fish gelatin-nanoclay composite film. <u>Food Chemistry</u>, 114, 180-189.
- Chiou, B.R., Roberto J.A.B., Bechtel, P.J., Jafri, H., Narayan, R., Imama, H.S., Glenn, G.M., and Orts, W.J. (2008). Cold water fish gelatin films: Effects of cross-linking on thermal, mechanical, barrier, and biodegradation properties. <u>A European Polymer Journal</u>, 44, 3748-3753.
- Derosa, R.L. (2008). <u>Intrinsic viscosity and characterization of PS and PMMA</u>. Inamori School of Engineering Alfred University.
- Deiber, J.A., Ottone, L.M., Piaggio, M.V., and Peirotti M.B. (2009). Characterization of cross-linked polyampholytic gelatin hydrogels through the rubber elasticity and thermodynamic swelling theories. <u>Polymer</u>, 50, 6065-6075.
- Enrione, I.J., Saez, C., Lopez, D., Skurtys, O., Acevedo, C., Osorio, F., MacNaughtan, W., and Hill, S. (2011). Structural relaxation of salmon gelatin films in the Glassy state. <u>Food Bioprocess Technology</u>, 1-8.
- Farris, S., Song, J., and Huang, Q. (2010). Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyd. <u>Journal Agricultural Food</u> <u>Chemistry</u>, 58, 998-1003.

- Gudeman, L.F., and Peppas, N.A. (1995). pH-Sensitive membranes from poly(vinyl alcohol)/poly(acrylic acid) interpenetrating networks. <u>Journal of Membrane Science</u>, 107, 239-248.
- Gupta, P., Vermani, K., and Garg, S. (2002). Hydrogels: From controlled release to pH-responsive drug delivery. <u>Drug Discovery Today</u>, 7, 569-579.
- Ganji, F., and Abdekhodaie, M.J. (2008). Synthesis and characterization of a new thermoreversible chitosan PEG diblock copolymer. <u>Carbohydrate Polymer</u>, 74, 435-441.
- Gomez-Guillen, M.C., Perez-Mateos, M.J., Gomez-Estaca, E., Lopez-Caballero, B.G., and Montero, P. (2009). Fish gelatin: A renewable material for developing activebiodegradable films. <u>Trends in Food Science and Technology</u>, 20, 3-16.
- Ganjil, F., Samira, V.F., and Ebrahim, V.F. (2010). Theoretical description of hydrogel swelling. Iranian Polymer Journal, 19, 375-398.
- Hidaka, S., and Liu, S.Y. (2003). Effects of gelatins on calcium phosphate precipitation: a possible application for distinguishing bovine bone gelatin from porcine skin gelatin. <u>Journal of Food Composition and Analysis</u>, 16, 477-483.
- Hosseinkhani, H., Hosseinkhani, M., and Khademhosseini, A. (2006). Enhanced an giogenesis through controlled release of basic fibroblast growth factor from peptide amphiphile for tissue regeneration. <u>Biomaterials</u>, 27, 5836-5844.
- Hosseinkhani, H., Hosseinkhani, M., and Kobayashi, H. (2006). Design of tissueengineered nanoscaffold through self-assembly of peptide amphiphile. Journal Bioactive and Compatible Polymer, 21, 277-296.
- Hosseinkhani, H., and Hosseinkhani, M. (2009). Biodegradable polymer-metal complexes for gene and drug delivery. <u>Current Drug Safety</u>, 4, 79-83.
- Hisamitsu-Phamarceutical.co.inc. "Transdermal Drug Delivery System" 10 April 2012. http://www.hisamitsu.co.jp/english/company/operations/tdds.html
- Im, J.S., Bai, B.C., and Lee, Y.S. (2010). The effect of carbon nanotubes on drug delivery in an electro-sensitive transdermal drug delivery system. <u>Biomaterials</u>, 31, 1414-1419.

- Jensen, M., Hansen, P.B., Murdan, S., Alexander, S. F., and Florence, T. (2002). Loading into and electro-stimulated release of peptides and proteins from chondroitin 4-sulphate hydrogels. <u>European Journal of Pharmaceutical</u> Sciences, 15, 139-148.
- Juntanon, K., Niamlang, S., Rujiravanit, R., and Sirivat, A. (2008). Electrically controlled release of sulfosalicylic acid from crosslinkedpoly(vinyl alcohol) hydrogel International. Journal of Pharmaceutics, 356, 1-11.
- Kim, J., Kim, W.J., Kim, S.J., Cho, C.W., and Shin, S.C., (2006). Release characteristics of quinupramine from the ethylene-vinyl acetate matrix. International Journal of Pharmaceutics, 315, 134-139.
- Karim, A.A., and Bhat, R. (2009). Fish gelatin: Properties, challenges, and prospects as an alternative to mammalian gelatins. <u>Food Hydrocolloids</u>, 23, 563-574.
- Lee, W.F., and Lee, S.C. (2007). Effect of gelatin on the drug release behaviors for the organic hybrid gels based on *N*-isopropylacrylamide and gelatin. Journal of Materials Science: Materials in Medicine, 18, 1089-1096.
- Liu, K.H., Liu, T.Y., Chen, S.Y., and Liu, D.M. (2008). Drug release behavior of chitosan-montmorillonite nano composite hydrogels following electro stimulation. Acta Biomaterialia, 4, 1038-1045.
- Muyonga, J.H., Cole, C.G.B., and Duodu, K.G. (2004). Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). <u>Food Chemistry</u>, 86, 325-332.
- Mohan, J. (2004). Organic Spectroscopy : Principles and Application. U.K.:Harrow.
- Niamlang, S. (2008). Development of poly (p-phenylene vinylene) for actuator and controlled drug delivery application. Dissertation Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Niamlang, S., and Sirivat, A. (2009). Electrically controlled release of salicylic acid from poly(p-phenylene vinylene)/ polyacrylamide hydrogels. <u>International</u> <u>Journal of Pharmaceutics</u>, 371, 126-133.
- Oh, W.K., Yoon, H., and Jang, J. (2010). Size control of magnetic carbon nanoparticles for drug delivery. <u>Biomaterials</u>, 31, 1342-1348.

- Peppas, N.A., and Wright, S.L. (1996). Solute diffusion in poly(vinyl alcohol)/poly (acrylicacid) interpenetrating networks. <u>Macromolecules</u>, 29, 8798-8804.
- Peppas, N.A. (1997) Hydrogels and drug delivery. <u>Current Opinion in Colloid and</u> <u>Interface Science</u>, 2, 531-537.
- Peppas, N.A., and Wright, S.L. (1998). Drug diffusion and binding in ionisable interpenetrating networks from poly(vinyl alcohol) and poly(acrylic acid). European Journal of Pharmaceutics and Biopharmaceutics, 4, 15–29.
- Pal, K., Banthia, A.K., and Majumdar D.K. (2006). Biomedical evaluation of polyvinyl alcohol-gelatin esterified hydrogel for wound dressing. <u>Journal of</u> <u>Materials Science: Materials in Medicine</u>, 18, 1889-1894.
- Phamar-Crunch.net. "Controlled Release Drug Delivery System" 12 June 2011. http://pharmacrunch.net/archives/novel-drug-delivery-system/
- Paradee, N., Sirivat, A., Niamlang, S., and Prissanaroon-Ouajai, W. (2012). Effects of crosslinking ratio, model drugs, and electric field strength on electrically controlled release for alginate-based hydrogel. <u>The Journal of Materials Science: Materials in Medicine</u>, 23, 999-1010.
- Ritger, L.P., and Peppas, A.N. (1987). A simple equation for the description of solute release. II. Fickian and anomalous release from swellable devices. <u>Journal</u> <u>of Controlled Release</u>, 5, 37-42.
- Rujitanaroj, P.O., Pimpha, N., and Supaphol, P. (2008). Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. <u>Polymer</u>, 49, 4723-4732.
- Raghanaveen. "Biodegradable Polymers in Controlled Drug Delivery II" 14 April 2009. 24 April 2011. http://www.pharmainfo.net/raghanaveen/biodegrade able-polymers-controlled-drug-delivery-ii>
- Serra, L., Domenech, and J., Peppas, N.A. (2006). Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol)hydrogels. <u>Biomaterials</u>, 27, 5440-5451.
- Sutter, M., Siepmann, J., Hennink, W.E., and Jiskoot, W. (2007). Recombinant gelatin hydrogels for the sustained release of proteins. <u>Journal of Controlled</u> <u>Release</u>, 119, 301-312.

- Songchotikunpan P., Tattiyakul J., and Supaphol P. (2008). Extration and eletrospinning of gelatin from fish skin. <u>International Journal of Biological Macromolecules</u>, 42, 247-255.
- Stancu, I.C. (2010). Gelatin hydrogels with PAMAM nanostructured surface and high density surface-localized amino groups. <u>Reactive and Functional</u> <u>Polymers</u>, 70, 314–324.
- Schacht, E.H. "Polymer chemistry and hydrogel systems" 13 May 2011. http://iopscience.iop.org/1742-6596/3/1/004
- Taepaiboon, P., Rungsardthong, U., and Supaphol, P. (2006). Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs. <u>Nanotechnology</u>, 17, 2317–2329.
- Venkatesh, S., Hodgin, L., Hanson, P., and Suryanarayanan, R. (1992). In vitro release kinetics of salicylic acid from hydrogel patch formulations. <u>Journal</u> <u>of Controlled Release</u>, 18, 13-18.
- Vandelli, M.A., Rivasi, F., Guerra, P., Forni, F., and Arlett, R. (2001). Gelatin microspheres crosslinked with D,L-glycerraldehyde as apotential drug delivery system: preparation, characterization, in vitro and vivo studies. <u>International Journal of Pharmaceutics</u>, 215, 175-184.
- VamsikrishnaReddy B. "Types of Controlled Drug Release Systems" 20 April 2012. http://www.authorstream.com/Presentation/vamsikrishnareddy-255033-drug-release-mechanisms-kinetics-mechanism-science-technology-ppt-powerpoint/
- Yu, H., and Xiao, C. (2008). Synthesis and properties of novel hydrogels from oxidized konjac glucomanan crosslinked gelatin for in vitro drug delivery. <u>Carbohydrate Polymer</u>, 72, 479-489.

APPENDICES

Appendix A Determination of Molecular Weight of Gelatin Hydrogels

The intrinsic viscosity, $[\eta]$, are determined by the measurements of solution viscosity. The measurements are described by comparing the elution times (t = elution time of polymer solution, t_0 = elution time of solvent) in the viscometer. The times are proportional to the viscosity of the polymer solution, η , and solvent, η_o , respectively (Abrusci *et al.*, 2004). The specific viscosity and relative viscosity are calculated by the following equations (A1) and (A2) (Abrusci *et al.*, 2004):

$$\eta_{rel} = \frac{\eta}{\eta_o} \tag{A2}$$

and

$$\eta_{sp} = \frac{\eta - \eta_o}{\eta_o} = \frac{t - t_o}{t_o} = \eta_{rel} - 1 \tag{A2}$$

The intrinsic viscosity, $[\eta]$, is calculated by extrapolation to infinite dilution of the equation of Huggins (A3) and Kramer (A4) (Derosa 2008).

$$\frac{\eta_{sp}}{c} = [\eta] + k'[\eta]^2 c \tag{A3}$$

and

$$\frac{\ln\eta_{rel}}{c} = [\eta] + k''[\eta]^2 c \tag{A4}$$

where η_{sp} is the specific viscosity, η_{rel} is the relative viscosity, c is concentration of polymer in grams per deciliter (g/dL), η_{sp}/c is defined as reduced viscosity, η_{red} , $\ln \eta_{rel}/c$ is defined as inherent viscosity, η_{inh} , and k' and k'' are the constants of Huggins and Kramer, respectively.

Molecular weight, M_w , of the porcine and fish gelatin were determined by the capillary viscometer. The relation between [η] and M_w can be described in terms of the Mark-Houwink-Kuhn-Sakurada (MHKS) equation (A5) (Enrione *et al.*, 2011).

$$[\eta] = K M_w^a \tag{A5}$$

where K and a are the constant values of gelatins.

Figure A1 Double extrapolation of η_{red} and η_{inh} approach to zero concentration as the intrinsic viscosity $[\eta]$ of PorGel at 37 °C

In figure A2, the intrinsic viscosity $[\eta]$ is interception of the reduced, η_{red} and inherent, η_{inh} , viscosities. The reduced η_{red} and inherent η_{inh} viscosities, obtained from capillary viscometer, are presented as function of the fish gelatin concentration when the concentration of the solution varied from 0.35 to 0.7 g/dL at 37 °C. According from equation (A5), the value of the constants K and *a* were 1.66×10^{-5} and 0.885, respectively (Abrusci *et al.*, 2004).

 $0.32 = 1.66 \times 10^{-5} M_w^{0.885}$ $M_w = 69,480 \text{ Da}$

Sample	Concentration	1. (5)	1(5)	nad	11	Inned	Hand	nink		
Sumple	(g/dL)	•0 (5)		1/21	- sp		Treu	- inn		
1	0.7000	44.22	56.95	1.2879	0.2879	0.2530	0.4113	0.3614		
	0.7000	44.22	56.64	1.2809	0.2809	0.2475	0.4012	0.3536		
	0.7000	44.22	56.02	1.2668	0.2668	0.2365	0.3812	0.3379		
	Avg									
	0.0153	0.0120								
2	0.5833	44.22	54.38	1.2298	0.2298	0.2068	0.3939	0.3545		
	0.5833	44.22	54.00	1.2212	0.2212	0.1998	0.3791	0.3425		
	0.5833	44.22	53.98	1.2207	0.2207	0.1994	0.3784	0.3419		
	0.3838	0.3463								
			SD				0.0087	0.0071		
3	0.5000	44.22	51.84	1.1723	0.1723	0.1590	0.3446	0.3180		
	0.5000	44.22	52.50	1.1872	0.1872	0.1716	0.3745	0.3433		
	0.5000	44.22	52.60	1.1895	0.1895	0.1735	0.3790	0.3471		
		0.3660	0.3361							
			SD				0.0187	0.0158		
4	0.4375	44.22	51.60	1.1669	0.1669	0.1543	0.3815	0.3528		
	0.4375	44.22	51.28	1.1597	0.1597	0.1481	0.3649	0.3386		
	0.4375	44.22	51.24	1.1588	0.1588	0.1473	0.3629	0.3368		
			Avg				0.3698	0.3427		
			SD				0.0102	0.0088		
5	0.3889	44.22	50.31	1.1377	0.1377	0.1290	0.3541	0.3318		
	0.3889	44.22	50.71	1.1468	0.1468	0.1369	0.3774	0.3521		
	0.3889	44.22	50.58	1.1438	0.1438	0.1344	0.3698	0.3455		
			Avg				0.3671	0.3432		
	·		SD				0.0119	0.0104		
6	0.3500	44.22	50.03	1.1314	0.1314	0.1234	0.3754	0.3527		
	0.3500	44.22	49.80	1.1262	0.1262	0.1188	0.3605	0.3395		
	0.3500	44.22	49.25	1.1137	0.1137	0.1077	0.3250	0.3078		
	0.3536	0.3333								
	SD									

Table A1 Raw data for determination of the reduced viscosity (η_{red}) and the inherent viscosity (η_{inh}) of PorGel

Figure A2 Double extrapolation of η_{red} and η_{inh} approach to zero concentration as the intrinsic viscosity $[\eta]$ of FishGel.

In figure A2, the intrinsic viscosity $[\eta]$ is interception of the reduced (η_{red}) and inherent (η_{inh}) viscosities. The reduced (η_{red}) and inherent (η_{inh}) viscosities, obtained from capillary viscometer are presented as function of the FishGel concentration when the concentration of the solution varied from 0.78 to 1.4 g/dL at 50 °C. According from equation (A5), the value of the constants K and *a* were 8.57×10^{-5} and 0.74, respectively (Enrione *et al.*, 2011).

$$0.205 = 8.57 \times 10^{-5} M_w^{0.74}$$

 $M_w = 36,800 \text{ Da}$

Sample	Concentration	$t_{0}(s)$	<i>t</i> (s)	neel	η _{sn}	Inn _{rel}	nred	ninh		
	(g/dL)	0()		114	l 1sp					
1	1.400	38.36	51.79	1.3501	0.3501	0.3002	0.2593	0.2144		
	1.400	38.36	50.50	1.3165	0.3165	0.2750	0.2404	0.1964		
	1.400	38.36	51.46	1.3415	0.3415	0.2938	0.2546	0.2098		
	Avg									
	0.0098	0.0094								
2	1.1667	38.36	48.84	1.2732	0.2732	0.2415	0.2342	0.2070		
	1.1667	38.36	48.85	1.2735	0.2735	0.2417	0.2344	0.2072		
	1.1667	38.36	48.78	1.2716	0.2716	0.2403	0.2328	0.2060		
	0.2338	0.2067								
			SD				0.0008	0.0007		
3	1.0000	38.36	47.12	1.2284	0.2284	0.2057	0.2284	0.2057		
	1.0000	38.36	47.22	1.2310	0.2310	0.2078	0.2310	0.2078		
	1.0000	38.36	47.19	1.2302	0.2302	0.2072	0.2302	0.2072		
		· · · · · · · · · · · · · · · · · · ·	Avg			A	0.2298	0.2069		
			SD				0.0013	0.0011		
4	0.8750	38.36	45.95	1.1979	0.1979	0.1805	0.2261	0.206		
	0.8750	38.36	45.94	1.1976	0.1976	0.1803	0.2258	0.2061		
	0.8750	38.36	45.91	1.1968	0.1968	0.1797	0.2249	0.2053		
		· · · · ·	Avg				0.2256	0.2059		
			SD				0.0006	0.0005		
5	0.7778	38.36	45.37	1.1827	0.1827	0.1678	0.2350	0.2158		
	0.7778	38.36	44.99	1.1728	0.1728	0.1594	0.2222	0.2050		
	0.7778	38.36	45.00	1.1731	0.1731	0.1596	0.2226	0.2053		
	0.2266	0.2087								
	0.0073	0.0062								

Table A2 Raw data for determination of reduced viscosity (η_{red}) and inherent viscosity (η_{inh}) of FishGel

Appendix B Determination of Degree of Swelling and Weight Loss of Gelatin Hydrogels

The degree of swelling and the weight loss of the gelatin hydrogels were measured in an acetate buffer solution at 37°C for 48 h (Taepaiboon *et al.*, 2006) using the following equations (B1-B2):

Degree of swelling (%) =
$$\frac{M_s - M_d}{M_d} \times 100$$
 (B1)

and

Weight loss (%)
$$= \frac{M_i - M_d}{M_i} \times 100$$
(B2)

where M_s is the weight of the sample after submersed in the buffer solution, M_d is the weight of sample after submersed in the buffer solution as dry state, M_i is the initial weight of the sample without submersed in the buffer solution as dry state.

Figure B1 The degree of swelling (%) and the weight loss (%) of PorGel hydrogels at various crosslinking ratio between 0.25 and 10 %w/w (Number of samples = 3 and thickness of films = 0.5 mm).

Sample	<i>M</i> : (mg)	M.(mg)	M. (mg)	Swelling (%)	Weight loss		
~~~~			ing (mg)	5	(%)		
CR0.25#1	44.7	801.2	33.4	2298.80	25.28		
2	52.3	929.6	36.3	2460.88	30.59		
3	54.9	873.0	37.4	2234.22	31.88		
	Av	g		2331.30	29.25		
	SI	)		116.77	3.50		
CR0.50#1	57.3	562.7	44.0	1178.86	23.21		
2	40.2	523.0	33.3	1470.57	17.16		
3	44.3	44.3 495.0 33.6		1373.21	24.15		
	Av	g	1	1340.88	21.51		
	SI	)		148.52	3.79		
CR0.75#1	59.9	514.0	50.8	911.81	15.19		
2	46.6 432.9 35.8		35.8	1109.22	23.18		
3	42.2	333.5	33.7	889.61	20.14		
	Av	g		970.21	19.50		
	SI	120.89	4.03				
CR1#1	47.5	341.9	37.4	814.17	21.26		
2	44.9	320.1	34.4	830.52	23.39		
3	55.6	426.5	49.0	770.41	11.87		
	Av	g	•	805.03	18.84		
	SI	)		31.08	6.13		
CR3#1	59.1	250.1	51.2	388.48	13.37		
2	36.5	204	30.8	562.34	15.62		
3	38.9	240.1	32.2	645.65	17.22		
	Av	g	<b>*</b> · ·	532.16	15.40		
	SI	)		131.22	1.94		
CR5#1	49.8	220.6	44.0	401.36	11.65		
2	44.6	218.7	38.3	471.02	14.13		
3	47.1	240.4	39.9	502.51	15.29		
	Av	g		458.30	13.69		
	SI	)		51.76	1.86		
CR7#1	48.7	219.4	42.3	418.68	13.14		
2	55.4	258.4	47.9	439.46	13.54		
3	51.2	236.1	44.1	435.37	13.87		
	Av	g		431.17	13.52		
	SI	)		11.01	0.36		
CR10#1	51.2	189.7	44.9	322.49	12.30		
2	42.4	188.0	37.6	400.00	11.32		
3	3 38.3 183.4 32.8				14.36		
	Av	393.88	12.66				
	SE	68.53	1.55				

**Table B1** Raw data for determination for the degree of swelling (%) and the weightloss (%) of PorGel hydrogels at various crosslinking ratios (CR)



**Figure B2** The degree of swelling (%) and the weight loss (%) of FishGel hydrogels at various crosslinking ratio between 1 and 10 %w/w (Number of samples = 3 and thickness of films = 0.5 mm).

Sample	$M_{\rm (m\sigma)}$	M (mg)	$M_{i}$ (mg)	Swelling (%)	Weight loss
Sumple				5	(%)
CR1#1	57.8	305.7	46.5	557.42	19.55
2	36.4	250.1	30.9	709.39	15.11
3	81 443.4 58.1		58.1	663.17	28.27
	Av	′g		643.32	20.98
	SI	D		77.90	6.70
CR3#1	40.6	200.1	34.0	488.53	16.26
2	40.0	210.7	33.6	527.08	16.00
3	50.9	242.9	44.3	448.31	12.97
	Av	′g	•	487.97	15.07
	SI	39.39	1.83		
CR5#1	41.3	172.8	36.0	380.00	12.83
2	40.5	187.2	35.2	431.82	13.09
3	37.1	170.4	32.3	427.55	12.94
	Av	′g		413.12	12.95
	SI	)		28.77	0.13
CR7#1	42.8	187	38.0	392.11	11.21
2	45.4	192.1	39.7	383.88	12.56
3	48.8	194.5	42.5	357.65	12.91
	Av	′g		377.88	12.23
	SI	D		18.00	0.89
CR10#1	51.6	191.8	44.1	334.92	14.53
2	45.7	189.6	39.2	383.67	14.22
3	42.0	167.3	38.1	339.11	9.29
	Av	352.57	12.68		
	SI	27.02	2.94		

**Table B2** Raw data for determination of the degree of swelling (%) and weight loss(%) of FishGel hydrogels at various crosslinking ratios

### Appendix C UV-Visible Spectrum of Salicylic Acid and 5-Sulfosalicylic Acid

A UV-Visible spectrophotometer (TECAN, Infinite M200) was used to determine the maximum spectra of model drugs. The model drugs in an acetate buffer solution were prepared for scanning the maximum absorption wavelength. The characteristic peak was observed. The absorbance value at the maximum wavelength of model drug was read with model drug 5 mg in buffer solution 1000 ml and the correspond the model drug concentrations were calculated from the calibration curve with model drug concentration. Figures C shows the characteristic peak of salicylic acid at the wavelength 298 nm.



Figure C UV-Visible spectrum of salicylic acid and 5-sulfosalicylic acid.



**Figure D1** Calibration curve of salicylic acid in an acetate buffer solution at 298 nm.

Concentration	Absorbance at 298 nm	Average	SD	
	0.0908			
	0.0890			
2	0.0906	0.0455	0.000663	
	0.0897			
	0.0904			
	0.1397			
	0.1401			
4	0.1396	0.0945	0.000948	
	0.1378			
	0.1380			
	0.1861			
	0.1872			
6	0.1877	0.1433	0.001526	
	0.1907			
	0.1877			
	0.2341			
	0.2350		0.000540	
8	0.2358	0.1904		
	0.2350			
	0.2351			
	0.2798			
	0.2796			
10	0.2811	0.2357	0.000984	
	0.2818			
	0.2792			
	0.3272			
	0.3271			
12	0.3286	0.2831	0.001065	
	0.3264			
	0.3293			

**Table D1** Raw data for determination of calibration curve of Salicylic acid at 298

 nm



**Figure D2** Calibration curve of 5-sulfosalicylic acid in an acetate buffer solution at 298 nm.

Concentration	Absorbance at 298 nm	Average	SD	
	0.0231			
	0.0232			
2	0.0233	0.0232	0.000114	
	0.0232			
	0.0234			
	0.0496			
	0.0495			
4	0.0494	0.0496	0.000158	
	0.0497			
	0.0498			
	0.0716			
	0.0715			
6	0.0712	0.0713	0.000239	
	0.0713			
	0.0710			
	0.0951			
	0.0950		0.000152	
8	0.0949	0.0951		
	0.0953			
	0.0950			
	0.1179			
	0.1179			
10	0.1181	0.1181	0.000329	
1	0.1181			
	0.1187			
	0.1428			
	0.1429			
12	0.1451	0.1442	0.001235	
	0.1452			
	0.1450			

**Table D2** Raw data for determination of calibration curve of 5-sulfosalicylic acid at298 nm

# Appendix E Determination of the Molecular Weight between Crosslink, Mesh Size and Crosslinking Density of Gelatin Hydrogels

To determine the molecular weight between crosslinks,  $\overline{M}_c$ , the mesh size,  $\xi$ , and the crosslinking density,  $\rho_x$ , the sample of gelatin film was cut immediately after crosslinking (1 cm²). This sample was weighted in air and heptane. The sample was then placed in distilled water at 37°C for 5 days that allow it swelling to equilibrium, then weighted in air and heptane again. Finally, the sample was dried at 25°C in vacuum oven for 5 days. Once again, it was weighted in air and heptane. The volumes of the polymer sample in the dry, relaxed, and swollen states are calculated by using equations (E1) - (E3), respectively.

$$V_d = \frac{W_{a,d} - W_{h,d}}{\rho_h} \tag{E1}$$

$$V_r = \frac{W_{a,r} - W_{h,r}}{\rho_h} \tag{E2}$$

$$V_s = \frac{W_{a,s} - W_{h,s}}{\rho_h} \tag{E3}$$

where,  $W_{a,d}$  is the weight of the dry polymer in air,  $W_{h,d}$  is the weight of the dry polymer in heptane,  $W_{a,r}$  is the weight of the relaxed polymer in air,  $W_{h,r}$  is the weight of the relaxed polymer in heptane,  $W_{a,s}$  is the weights of the swollen polymer in air and  $W_{h,s}$  heptane,  $\rho_h$  is the density of heptanes,  $V_d$  is the volume of the polymer sample in the dry states,  $V_r$  is the volume of the polymer sample in the relaxed states and  $V_s$  is the volume of the polymer sample in the swollen states. The calculattion of the polymer volume fraction in the relaxed,  $v_{2,r}$ , and swollen states,  $v_{2,s}$ , and by using equations (E4) and (E5), respectively (Peppas *et al.*, 1998).

$$v_{2,r} = \frac{V_d}{V_r} \tag{E4}$$

and

$$v_{2,s} = \frac{v_d}{v_s} \tag{E5}$$

The molecular weight between crosslinks,  $\overline{M}_c$ , was calculated from the swelling data by using equation (E6) (Peppas *et al.*, 1998).

$$\frac{1}{\overline{M}_{c}} = \frac{2}{\overline{M}_{n}} - \frac{\frac{\overline{v}}{\overline{V}_{1}} \left[ \ln(1 - v_{2,s}) + v_{2,s} + \chi v_{2,s}^{2} \right]}{v_{2} \left[ \left( \frac{v_{2,s}}{v_{2,r}} \right)^{1/3} - \frac{1}{2} \left( \frac{v_{2,s}}{v_{2,r}} \right) \right]}$$
(E6)

where  $\overline{M}_n$  is the number averaged molecular weight of the polymer before cross linking,  $\overline{v}$  is the specific volume of gelatin ( $\overline{v} = 0.69 \text{ cm}^3/\text{g}$  of gelatin) (Sutter *et al.*, 2007),  $\overline{V}_1$  is the molar volume of water ( $\overline{V}_1 = 18.1 \text{ mol/cm}^3$ ),  $\chi$  is the Flory interaction parameter of gelatin ( $\chi = 0.49$ ) (Bohidar 1998) and the dissociation constant pKa is 4.7.

Generally, the presence of gelatin led to a more open network structure and resulted in a higher the molecular weight between cross-link,  $\overline{M}_c$ . The hydrogel mesh size,  $\xi$  was calculated by using equation (E7) (Peppas *et al.*, 1996).

$$\xi = v_{2,s}^{-1/3} \left[ C_n \left( \frac{2\bar{M}_c}{\bar{M}_r} \right) \right]^{1/2} \cdot l$$
 (E7)

4 /

where  $C_n$  is the Flory characteristic ratio for gelatin ( $C_n = 8.8$ ) (Deiber *et al.*, 2009),  $\overline{M}_r$  is the molecular weight of repeating unit of gelatin ( $\overline{M}_r = 100$  g/mol) (Sutter *et al.*, 2007), and *l* is the carbon–carbon bond length (l = 1.54 Å).

The crosslinking density of the hydrogel,  $\rho_x$ , was calculated by using equation (E8) (Peppas *et al.*, 1996).

$$\rho_x = \frac{1}{\overline{v}\overline{M}_c} \tag{E8}$$

Table E1 and E2 shows the molecular weight between crosslink,  $\overline{M}_c$ , the mesh size,  $\xi$ , the crosslinking density,  $\rho_x$ , and drug size/mesh size,  $a/\xi$ , of porcine and fish gelatin hydrogels at various crosslinking ratios. The molecular weight between crosslink,  $\overline{M}_c$  and mesh sizes,  $\xi$ , of porcine and fish gelatin hydrogels decreased with increasing crosslinking ratio. The mesh sizes,  $\xi$ , of porcine gelatin hydrogels vary from 148 to9 Å with crosslinking ratio 0.25 to 10% (based on porcine gelatin powder). For the mesh sizes,  $\xi$ , of fish gelatin hydrogels vary from 27 to 9 with crosslinking ratio 1 to 10% (based on fish gelatin powder) at 37°C.

Table E3 and E4 show the determination of the molecular weight between crosslink,  $\overline{M}_c$ , mesh size,  $\xi$ , and crosslinking density,  $\rho_x$ , of porcine and fish gelatin hydrogels at various crosslinking ratios.

**Table E1** Summary of the molecular weight between crosslink,  $\overline{M}_c$ , mesh size,  $\zeta$ , crosslinking density,  $\rho_x$ , and drug size/ mesh size,  $a/\zeta$ , of porcince gelatin hydrogel at various crosslinking ratios

		Number	Mesh size, ξ(Å)		Drugs size /	Mesh size, $a/\xi$
Sample	Crosslinking ratio, X	Number-average molecular weight between crosslinks, $M_c$		Crosslinking density, $\rho_x$ (mol/cm ³ × 10 ³ )	Salicylic Acid	5-Sulfosalicylic Acid
		(g/mor)		(mowen ~ 10)	(3.28 Å)	(9.25 Å)
PorGel_0.25	0.25%	$16673 \pm 2070$	$148 \pm 15$	$0.09\pm0.01$	$0.02 \pm 0.00$	$0.06 \pm 0.01$
PorGel_0.50	0.50%	$8851\pm2371$	$101 \pm 16$	$0.17\pm0.04$	$0.03 \pm 0.01$	$0.09\pm0.02$
PorGel_0.75	0.75%	2950 ± 739	49 ± 8	$0.51 \pm 0.11$	$0.07 \pm 0.01$	$0.19 \pm 0.03$
PorGel_1.00	1%	$1610 \pm 143$	35 ± 2	$0.90\pm0.08$	$0.09\pm0.01$	$0.27\pm0.02$
PorGel_3.00	3%	529 ± 66	$17 \pm 1$	$2.77\pm0.34$	$0.20\pm0.01$	$0.56\pm0.04$
PorGel_5.00	5%	$407 \pm 92$	$14 \pm 2$	$3.70\pm0.94$	$0.23\pm0.03$	$0.66\pm0.08$
PorGel_7.00	7%	$254 \pm 41$	$11 \pm 1$	$5.82 \pm 1.02$	$0.31\pm0.04$	$0.88 \pm 0.11$
PorGel_10.00	10%	$198 \pm 24$	$9 \pm 1$	$7.40 \pm 0.94$	$0.37 \pm 0.02$	$1.05 \pm 0.07$

**Table E2** Summary of molecular weight between crosslink,  $\overline{M}_c$ , mesh size,  $\zeta$ , crosslinking density,  $\rho_x$ , and drug size/ mesh size.  $a/\zeta$ , of fish gelatin hydrogel at various crosslinking ratios

Sample					Drugs size / Mesh size, a/ζ		
	Crosslinking ratio, X	Number-average molecular weight between crosslinks, $\overline{M}_c$	Mesh size, ζ (Å)	Crosslinking density, $\rho_x$ (mol/cm ³ × 10 ³ )	Salicylic Acid	5-Sulfosalicylic Acid	
		(g/mor)		(1101/011 ~ 10)	(3.28 Å)	(9.25 Å)	
FishGel_1.00	1%	$1103 \pm 113$	27 ± 1	$1.32 \pm 0.13$	$0.12 \pm 0.01$	$0.35 \pm 0.02$	
FishGel_3.00	3%	467 ± 136	15 ± 2	$3.19 \pm 0.91$	$0.22 \pm 0.03$	$0.62 \pm 0.09$	
FishGel_5.00	5%	$259 \pm 32$	11±1	$5.66 \pm 0.70$	$0.29 \pm 0.02$	$0.81 \pm 0.06$	
FishGel_7.00	7%	220 ± 17	9 ± 0	$6.62\pm0.52$	$0.35\pm0.02$	$0.99 \pm 0.05$	
FishGel_10.00	10%	$181 \pm 16$	9 ± 1	8.06 ± 0.67	$0.36 \pm 0.03$	1.02 ±0.09	

<b>Table E3</b> Raw data for determination of the determination of the molecular weight between crosslink, $\bar{N}$	$\overline{A}_c$ , mesh size, $\xi$ , and crosslinking
density, $\rho_x$ , of porcine gelatin hydrogels at various crosslinking ratios	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	36.3 37.4 33.4	32.8 34.6 30.0	18547	162	0.000078			
2         644.1         641.0         873.0         840.0           3         640.2         636.2         801.2         764.9           Avg           SD           CR0.50#1         284.9         278.7         562.7         545.6           2         263.2         260.2         375.0         362.4           3         326.6         324.1         649.0         634.3	37.4 33.4	34.6 30.0	17020		0.000078	0.02	0.06	
3         640.2         636.2         801.2         764.9           Avg           SD           CR0.50#1         284.9         278.7         562.7         545.6           2         263.2         260.2         375.0         362.4           3         326.6         324.1         649.0         634.3	33.4	30.0	1/020	149	0.000085	0.02	0.06	
Avg           SD           CR0.50#1         284.9         278.7         562.7         545.6           2         263.2         260.2         375.0         362.4           3         326.6         324.1         649.0         634.3		50.0	14451	133	0.000100	0.02	0.07	
SD           CR0.50#1         284.9         278.7         562.7         545.6           2         263.2         260.2         375.0         362.4           3         326.6         324.1         649.0         634.3		Avg						
CR0.50#1         284.9         278.7         562.7         545.6           2         263.2         260.2         375.0         362.4           3         326.6         324.1         649.0         634.3			2070	15	0.000011	0.00	0.01	
2         263.2         260.2         375.0         362.4           3         326.6         324.1         649.0         634.3	44.0	42.5	8133	102	0.000178	0.03	0.09	
3 326.6 324.1 649.0 634.3	31.5	30.0	6923	85	0.000209	0.04	0.11	
A	43.8	42.4	11498	118	0.000126	0.03	0.08	
Avg			8851	101	0.000171	0.03	0.09	
SD			2371	16	0.000042	0.01	0.02	
CR0.75#1 503.5 499.1 716.0 700.0	70.8	67.5	2412	42	0.000601	0.08	0.22	
2 319.1 316.1 434.5 428.5	35.8	34.9	2646	49	0.000548	0.07	0.19	
3 251.5 248.3 378.2 366.9	34.0	32.2	3792	57	0.000382	0.06	0.16	
Avg			2950	49	0.000510	0.07	0.19	
SD			739	8	0.000114	0.01	0.03	
CR1#1 287.2 281.5 500.7 489.6	56.5	54.5	1754	37	0.000826	0.09	0.25	
2 295.0 289.4 522.1 510.0	56.5	54.1	1610	34	0.000900	0.10	0.27	
3 246.4 240.7 443.9 431.8	49.5	47.0	1468	32	0.000987	0.10	0.28	
Avg			1610	35	0.000905	0.09	0.27	
SD					L			

Sample	<i>W_{a,r}</i> (mg)	<i>W_{h,r}</i> (mg)	<i>W_{a.s}</i> (mg)	<i>W_{h,s}</i> (mg)	$W_{a,d}$ (mg)	$W_{h,d}$ (mg)	$\overline{M}_c$ (g/mol)	ξ (Å)	$\rho_x$ (mol/cm3)	a/ ξ (Salicylic acid)	a/ ξ (5-sulfosalicylic acid)
CR3#1	118.4	116.6	209.1	204.7	34.0	32.5	597	18	0.002426	0.19	0.53
2	141.7	140.0	213.7	207.5	33.6	31.0	524	15	0.002763	0.21	0.60
3	138.7	134.6	264.0	259.2	41.6	40.3	466	17	0.003111	0.20	0.55
			Avg				529	17	0.002766	0.20	0.56
SD						66	1	0.000342	0.01	0.04	
CR5#1	109.4	104	256.6	249.5	64	61.5	303	12	0.004787	0.27	0.75
2	150.7	149.1	218.7	214.2	38.3	36.5	476	15	0.003043	0.22	0.62
3	100.3	98.3	195	191.9	58.9	57.9	441	15	0.003285	0.21	0.60
Avg						407	14	0.003705	0.23	0.66	
			SD				92	2	0.000945	0.03	0.08
CR7#1	156.5	153.5	219.4	215.0	42.3	40.5	269	11	0.005384	0.30	0.83
2	178.1	175.6	258.4	253.8	47.9	45.7	207	9	0.006991	0.36	1.00
3	169.0	166.6	236.1	232.3	44.1	42.6	284	12	0.005097	0.28	0.80
			Avg				254	11	0.005824	0.31	0.88
			SD				41	1	0.001021	0.04	0.11
CR10#1	118.6	116.3	186.7	182.8	44.9	43.1	209	9	0.006939	0.35	0.99
2	75.2	74.1	133.9	130.4	32.8	30.8	214	9	0.006777	0.37	1.05
3	148.1	146.1	237.4	234	68	66.3	171	8	0.008486	0.40	1.12
			Avg				198	9	0.007401	0.37	1.05
	SD						24	1	0.000944	0.02	0.07

**Table E3 (continue)** Raw data for determination of the determination of the molecular weight between crosslink,  $\overline{M}_c$ , mesh size,  $\xi$ , and crosslinking density,  $\rho_x$ , of porcine gelatin hydrogels at various crosslinking ratios

**Table E4** Raw data for determination of the determination of the molecular weight between crosslink,  $\overline{M}_c$ , mesh size,  $\xi$ , and crosslinking density,  $\rho_x$ , of fish gelatin hydrogels at various crosslinking ratios

Sample	$W_{a,r}$ (mg)	<i>W_{h,r}</i> (mg)	<i>W_{a.s}</i> (mg)	<i>W_{h,s}</i> (mg)	<i>W_{a,d}</i> (mg)	<i>W_{h.d}</i> (mg)	$\overline{M}_c$ (g/mol)	ζ (Å)	$\rho_x$ (mol/cm3)	a/ξ (Salicylic acid)	a/ξ (5-sulfosalicylic acid
CR1#1	201.1	198.6	331.9	325.5	46.4	44.7	1084	26	0.001337	0.13	0.36
2	220.9	218.6	383.1	378.0	55.4	54.2	1224	28	0.001184	0.12	0.33
3	306.2	303.0	427.5	422.2	55.0	53.8	1001	26	0.001448	0.13	0.36
	Avg							27	0.001323	0.12	0.35
			SD				113	1	0.000132	0.01	0.02
CR3#1	139.0	137.8	214.0	210.4	40.8	39.4	538	16	0.002693	0.21	0.58
2	142.6	140.6	245.4	240.4	41.6	39.8	547	16	0.002647	0.20	0.56
3	110.2	108.2	176.3	172.5	34.0	32.5	342	13	0.004238	0.26	0.73
			Avg				476	15	0.003193	0.22	0.62
			SD				116	2	0.000906	0.03	0.09
CR5#1	86.2	75.0	154.8	148.2	36.0	34.5	228	12	0.006365	0.26	0.75
2	97.0	95.1	168.7	164.3	35.2	33.2	291	11	0.004973	0.29	0.83
3	86.2	84.0	153.9	150.3	32.3	30.8	257	11	0.005639	0.30	0.86
			Avg				259	11	0.005659	0.29	0.81
			SD				32	1	0.000696	0.02	0.06
CR7#1	100.8	99.8	197.0	194.6	38.0	36.8	237	10	0.006118	0.34	0.95
2	100.6	98.8	199.2	195.8	40.3	38.7	220	10	0.006575	0.34	0.97
3	118.3	116.9	210.5	207.4	42.5	40.9	202	9	0.007157	0.37	1.04
			Avg				220	9	0.006617	0.35	0.99
			SD				17	0	0.000521	0.02	0.05

**Table E4 (continue)** Raw data for determination of the determination of the molecular weight between crosslink,  $\overline{M}_c$ , mesh size,  $\xi$ , and crosslinking density,  $\rho_x$ , of fish gelatin hydrogels at various crosslinking ratios

Sample	<i>W_{a,r}</i> (mg)	$W_{h,r}$ (mg)	<i>W_{a,s}</i> (mg)	$W_{h,s}$ (mg)	<i>W_{a,d}</i> (mg)	<i>W_{h.d}</i> (mg)	₩ _c (g/mol)	ξ (Å)	$\rho_x$ (mol/cm3)	a/ξ (Salicylic acid)	a/ ξ (5-sulfosalicylic acid
CR10#1	87.1	84.5	161.7	156.8	41.0	38.6	199	9	0.007292	0.37	1.03
2	85.6	83.3	158.6	155.9	39.2	37.9	170	8	0.008535	0.39	1.10
3	159.6	154.6	261.2	258.0	78.1	77.2	173	10	0.008362	0.33	0.92
Avg					181	9	0.008063	0.36	1.02		
SD					16	1	0.000673	0.03	0.09		

### Appendix F TGA Thermograms of Uncrosslinked and Crosslinked Gelatin Hydrogel

The thermal gravimetric analyzer (DT-TGA 1790) was used to determine the thermal behavior of polymers. Measurements were taken with the temperature scans from 25 to 800°C and a heating rate of 10°C/min. The samples were weighed in the range of 1-5 mg and loaded into a platinum pan, and then were heated under N₂ flow (Rujitanaroj *et al.*, 2008).

The summary of percent weight loss from the TGA thermogram is shown in Table F1. Figures F1-F2 show the TGA thermograms of uncrosslinked and crosslinked of porcine and fish gelatin hydrogels. The transitions of both uncrosslinked gelatins appear as two transitions. The first occurring in the temperature range between 25 and 90°C can be referred to as the loss of moisture. The moisture content of the gelatin samples ranges between 13.25 and 15.00%. For the second transition, it is the onset thermal decomposition (T_{d,onset}) of porcine and fish gelatins (Rujitanaroj *et al.*, 2008), occurring at the temperature of 267 to272°C and 266 to 270°C, respectively.

Figures F3-F4 show the TGA thermograms of pure salicylic acid (SA) and SA-loaded porcine and fish gelatin hydrogels. For pure SA, the thermogram shows the T_d in the range of 130-180°C, due to the loss of SA (Niamlang *et al.* 2009). For the SA-loaded gelatins, the transitions of the both gelatins appear in three transitions. The first occurs in the temperature range between 25 and 90°C, which can be referred to the loss of moisture. For the second transition, it is the gelatin onset thermal decomposition ( $T_{d,onset}$ ) of the porcine gelatin hydrogel (PorGel) and the fish gelatin hydrogel (FishGel), where  $T_{d,onset}$  shifts from 272 and 270 to 236 and 230°C, respectively. For the shift of  $T_{d,onset}$ , this can be used to confirm the presence of SA in the gelatin hydrogels.

Figures F5-F6 show the TGA thermograms of pure 5-sulfosalicylic acid (SSA) and the SSA-loaded porcine and fish gelatin hydrogels. For pure SSA, the thermogram has three transitions. The first transition refers to the loss of moisture in the range of 60-100°C, The second one refers to the melting point at 160°C, and the last one identifies the  $T_d$  of SSA at 220°C (Juntanon *et al.*, 2008). For the SSA-

loaded gelatins the transitions of the both gelatins appear in three transitions. The first occurs in the temperature range of 25 to 90°C which can be referred to as the loss of moisture. For the second transition, is the  $T_{d,onset}$  of the SSA-loaded PorGel and FishGel, in which  $T_{d,onset}$  shifts from 272 and 270 to 249 and 245°C, respectively. For the shift of  $T_{d,onset}$ , this can be used to confirm the presence of SA in the gelatin hydrogels.

Type of	% CR	Transition tem	perature (°C)	Weight	loss (%)	Residue (%)	
gelatin	ratio	1	2	1	2		
	0	25-90	267	15.30	68.95	15.75	
Porcine	0.25	25-90	269	14.80	67.87	17.33	
roreme	0.50	25-90	271	14.40	65.20	20.40	
	1	25-90	272	14.44	64.86	20.70	
	3	25-90	272	14.56	59.77	25.67	
	0	25-90	266	15.00	63.11	21.89	
Fish	1	25-90	270	13.20	61.14	25.66	
	3	25-90	270	13.25	60.52	26.23	

 Table F1
 Summary of porcine and fish gelatin hydrogels degradation step

 Table F2
 Summary of drugs-loaded PorGel and FishGel hydrogels degradation step

	Sample	Transition ter	nperature (°C)	Weight	Residue		
Туре	Drug-loaed	1	2	1	2	(%)	
	Unloaded	25-90	272	14.44	64.86	20.27	
PorGel_ 1.00	1% SA-loaded	25-90	236	12.60	68.30	19.10	
	1%SSA-loaded	25-90	249	9.90	63.82	26.28	
	Unloaded	25-90	270	13.20	61.14	25.66	
FishGel 1.00	1% SA-loaded	25-90	230	10.00	66.00	24.00	
	1%SSA-loaded	25-90	245	9.50	62.00	28.50	



**Figure F1** The TGA thermograms of uncrosslinked PorGel and PorGel hydrogels at various crosslinking ratios.



**Figure F2** The TGA thermograms of uncrosslinked FishGel and FishGel hydrogels at various crosslinking ratios.



**Figure F3** The TGA thermograms of pure SA, PorGel_1.00, SA-loaded PorGel_1.00 hydrogels.



**Figure F4** The TGA thermograms of pure SA, FishGel_1.00, and SA-loaded FishGel_1.00 hydrogels.


**Figure F5** The TGA thermograms of pure SSA, PorGel_1.00, SSA-loaded PorGel_1.00 hydrogels.



**Figure F6** The TGA thermograms of pure SSA, FishGel_1.00, SSA-loaded FishGel_1.00 hydrogels.

### Appendix G FT-IR Spectrum of Drug-Loaded Gelatins Hydrogel

### **Salicylic Acid**

The spectra of salicylic acid (SA) as a model drug was obtained from discs containing the salicylic acid (SA) and potassium bromide (KBr), using a Bruker infrared spectrophotometer (Bruker Instruments) with the absorption mode 32 scans at the resolution of 4 cm⁻¹ at 4000 to 400 cm⁻¹.

To study the cross-linked polymer/drug interaction the gelatin films and drug-loaded gelatin films were characterized by ATR-FTIR spectroscopy. The samples were placed on the crystal and spectra were taken to determine any interactions between the drug and polymer. The FT-IR spectrum was observed by using an FT-IR spectrometer (Thermo Nicolet) with the absorption mode 32 scans at the resolution of 4 cm⁻¹ at 4000 to 650 cm⁻¹.

#### 5-sulfosalicylic Acid

The spectrum of 5-sulfosalicylic acid (SSA) as a model drug was obtained from discs containing the 5-sulfosalicylic acid (SSA) and potassium bromide (KBr), using a Bruker infrared spectrophotometer (Bruker Instruments) with the absorption mode 32 scans at the resolution of 4 cm⁻¹ at 4000 to 400 cm⁻¹.

The gelatin film and drug-loaded gelatin films were characterized by ATR-FTIR spectroscopy to study the cross-linked polymer/drug interaction. The sample was placed on the crystal and spectra were taken to determine any interactions between the drug and the polymers. The FT-IR spectrum was observed by using an FT-IR spectrometer (Thermo Nicolet) with the absorption mode 32 scans at the resolution of 4 cm⁻¹ at 4000 to 650 cm⁻¹.



Figure G1 Absorption infrared spectra of salicylic acid (SA) and salicylic acid loaded porcine gelatin hydrogel: (a) Pure salicylic acid; (b) Porcine gelatin hydrogel;(c) 1% SA-loaded porcine gelatin hydrogel; and (d) 15% SA-loaded porcine gelatin hydrogel.



**Figure G2** Absorption infrared spectra of salicylic acid (SA) and salicylic loaded fish gelatin hydrogel: (a) Pure salicylic acid; (b) Fish gelatin hydrogel; (c) 1% SA-loaded fish gelatin hydrogel; and (d) 15% SA-loaded fish gelatin hydrogel.

Figures G1-G2 show the absorption infrared spectrums of cross-linked gelatin hydrogels in comparison with SA-loaded gelatin hydrogels. For pure SA, peaks at 867 and 1483 cm⁻¹ can be observed. These characteristic peaks can be referred to the C-H out of plane bending and C-C ring stretching, respectively (Mohan, J. 2004). For the porcine and fish gelatins, observed peaks are at 1400, 1540, and 3290 cm⁻¹. These characteristic peaks can be assigned to the O-H bending (Stancu *et al.*, 2010), the N–H bending of amide II (Muyouga *et al.*, 2004), and the N-H stretching from primary amine (Stancu *et al.*, 2010), respectively. For the drugloaded gelatin hydrogels, the spectrum shows the characteristic peaks at 861 cm⁻¹ and 1479 cm⁻¹ for FishGel, at 856 cm⁻¹ and 1476 cm⁻¹ for PorGel. The peak at 1400 cm⁻¹

slightly shifts to 1402 and 1405 cm⁻¹ for PorGel and FishGel, respectively. These results suggest that the hydrogen bond is created between the COOH group of salicylic acid and the O-H group of gelatins.

**Table G1** The FT-IR absorption spectrum of salicylic acid-loaded gelatin hydrogels

 and the gelatin hydrogels

Wavenumber	assignment	reference
3290	N-H stretching from	Stancu <i>et al.</i> , 2010
	preimary amine	
1540	N-H bending coupled with	Muyonga <i>et al.</i> , 2004
	CN stretching (amide II)	
1476-1479	C-C stretching ring	Mohan, J. 2004
1400	O-H bending from	Stancu <i>et al.</i> , 2010
	primary amine	
856-861 [900-860]	C-H out of plane bending	Mohan, J. 2004
~1483	C-C stretching ring	Mohan, J. 2004
~ 867 [900-860]	C-H out of plane bending	Mohan, J. 2004



**Figure G3** Absorption infrared spectra of 5-sulfosalicylic acid (SSA) and salicylic acid (SA) loaded porcine gelatin hydrogel: (a) Pure SSA powder; (b) Pure porcine gelatin hydrogel; (c) 1% SSA-loadedporcine gelatin hydrogel; and (d) 15% SSA-loaded porcine gelatin hydrogel.



**Figure G4** Absorption infrared spectra of 5-sulfosalicylic acid (SSA) and salicylic acid (SA) loaded fish gelatin hydrogel: (a) Pure SSA powder; (b) Pure fish gelatin hydrogel; (c) 1% SSAloaded fish gelatin hydrogel; and (d) 15% SSA-loaded fish gelatin hydrogel.

Figures G3-G4 show the absorption infrared spectra of the cross-linked gelatin hydrogels, in comparison with the SSA-loaded gelatin hydrogels. For pure SSA, peaks at 1038 and 1167 cm⁻¹can be observed. These characteristic peaks can be referred to the SO³⁻ symmetric stretching and the asymmetric SO³⁻ stretching, respectively (Mohan, J. 2004). For the porcine and fish gelatins, peaks are observed at 1400, 1540, and 3290 cm⁻¹. These characteristic peaks can be assigned to the O-H bending (Stancu *et al.*, 2010), the N–H bending of amide II (Muyouga *et al.*, 2004), and the N-stretching from primary amine Stancu *et al.*, 2010), respectively. For the drug-loaded gelatin hydrogels, the spectra show the characteristic peaks at 1074 and

1160 cm⁻¹ for both gelatins. The peak at 1400 cm⁻¹ slightly shifts to 1402 for both gelatins. These results suggest that the hydrogen bond is creasted between the COOH group of sulfosalicylic acid and the O-H group of gelatins.

Wavenumber assignment reference 3290 N-H stretching from Stancu et al., 2010 primary amine 1543 N-H bending coupled with Muyonga et al .,2004 CN stretching (amide II) 1400 O-H bending from Stancu et al .,2010 primary amine SO⁻³ strecthing 1160 [1260-1150] Mohan, J. 2004 asymmettic SO⁻³ strecthing 1077 [1080-1010] Mohan, J. 2004 symmertric SO⁻³ strecthing ~1167 [1260-1150] Mohan, J. 2004 asymmettic ~1038 [1080-1010] SO⁻³ strecthing Mohan, J. 2004 symmertric

**Table G2** The FT-IR absorption spectrum of 5-sulfosalicylic acid-loaded gelatin

 hydrogels and the gelatin hydrogels

## Appendix H Scanning Electron Micrographs of Various Crosslinked Gelatin Hydrogels

Porcine Gelatin (PorGel) Hydrigels



**Figure H1** The morphology of PorGel samples after swelling: (a) PorGel_0.25; (b) PorGel_0.5; (c) PorGel_0.75; (d) PorGel_1; (e) PorGel_3; and (f) PorGel_7 at magnification of 3000X.

### Fish Gelatin (FishGel) Hydrogels



(c)

**Figure H2** The morphology of FishGel samples after swelling: (a) FishGel_1; (b) FishGel_3; and (c) FishGel_7 at magnification of 3000X.

### Appendix I Determination of Actual Drug Content

Initially, The actual amount of drug in the drug-loaded gelatin hydrogel, circular disc about 2.5 cm in diameter, was quantified by dissolving the sample in 4 ml of dimethylsulfoxide (DMSO) and then 0.5 ml of the solution was added into 8 ml of the an acetate buffer solution. The amounts of drugs in the solution were measured by using the UV-Visible spectrophotometer at a wavelength of 298 nm.

The actual amount of drugs present in the sample is reported as the percentage of the initial content of drugs loaded in gelatin solution. The actual amount of salicylic acid and 5-sulfosalicylic acid presented in the sample are about  $91.75 \pm 5.51$  % and  $92.83 \pm 3.96$  %, respectively.

**Table I1** Raw data for determination of actual amount of salicylic acid in the sample

Sample	absorbance	Concentration (mg/l)	Diluted 8.5ml	Dissolved in 4 ml DMSO	Actual amount of drug (%)
1	0.2162	8.8648	0.0735	0.5881	94.09
2	0.2060	8.2400	0.0700	0.5603	89.65
3	0.2252	9.0080	0.0766	0.6125	98.01
4	0.1959	7.8360	0.0667	0.5328	85.26
		Avg			91.75
		SD			5.51

**Table 12** Raw data for determination of actual amount of 5-sulfosalicylic acid in the sample

Sample	absorbance	Concentration (mg/l)	Diluted 8.5ml	Dissolved in 4 ml DMSO	Actual amount of drug (%)
1	0.1056	8.8739	0.0754	0.6034	96.55
2	0.1036	8.7059	0.0740	0.5920	94.72
3	0.0956	8.0336	0.0683	0.5463	87.41
4	0.1009	8.4790	0.0721	0.5766	92.25
		Avg			92.73
		SD			3.96

# Appendix J Determination of Amounts and Diffusion Coefficient of Salicylic Acid Released from Salicylic Acid-Loaded Porcine Gelatin Hydrogel at Various Crosslinking Ratios

The diffusion of drug was observed by custom built modified Franz-Diffusion cells. A diffusion cell consists of two compartments. First one is a water jacket compartment that is used to exposed to an ambient condition. Other is a receptor chamber containing an acetate buffer solution pH 5.5 and maintained at 37°C by a circulating water bath. To study the effect of crosslinking ratios (0.25, 0.50, 0.75, 1.00, 3.00, and 7.00) on the porcine gelatin hydrogel (PorGel), a sample of drug-loaded PorGel hydrogel was placed over the nylon net on the top of the receptor chamber. The drug diffuses through the polymer matrix and the net towards the buffer solution. The 0.1 ml of solution was withdrawn and simultaneously replaced with equal volume of fresh buffer solution at various time intervals. The drug concentrations in these samples were determined by the UV-Visible spectrophotometer at the wavelength of 298 nm.

The amounts of salicylic acid (SA) released from SA-loaded PorGel hydrogel versus time at various crosslinking ratios (PorGel_0.25, PorGel_0.50, PorGel_0.75, PorGel_1.00, PorGel_3.00, and PorGel_7.00) during 48 h are shown in Figure J1. The amounts of released drug gradually increase with time and then reach constant values.



**Figure J1** Amounts of salicylic acid release from SA-loaded PorGel hydrogel versus time at various crosslink ratios, pH 5.5, and at 37°C, number of samples = 3.

Time (hr)	Abs	sorbance (a	.u.)		Drug A	ccumulatio	on (mg)	
rime (m)	1	2	3	1	2	3	Avg	SD
0.083333	0.0722	0.0716	0.0795	2.5113	2.4904	2.7652	2.5890	0.1530
0.166667	0.1122	0.1075	0.1068	3.9026	3.9130	3.7148	3.8435	0.1116
0.25	0.1265	0.1191	0.1232	4.4000	4.1426	4.2852	4.2759	0.1289
0.5	0.1709	0.1652	0.1868	5.9443	5.7461	6.4974	6.0626	0.3894
0.75	0.1850	0.1927	0.2018	6.4348	6.7026	7.0191	6.7188	0.2925
1	0.1951	0.2019	0.2091	6.7861	7.0226	7.2730	7.0272	0.2435
1.5	0.1965	0.2149	0.2082	6.8348	7.4748	7.2417	7.1838	0.3239
2	0.1990	0.2140	0.2120	6.9217	7.4435	7.3753	7.2468	0.2836
2.5	0.2018	0.2075	0.2096	7.0191	7.2174	7.2904	7.1757	0.1404
3	0.1921	0.2112	0.2167	6.6817	7.3461	7.5374	7.1884	0.4491
3.5	0.1984	0.2058	0.2113	6.9009	7.1583	7.3496	7.1362	0.2252
4	0.1984	0.2128	0.2123	6.9009	7.4017	7.3843	7.2290	0.2843
8	0.2029	0.2051	0.2079	7.0574	7.1339	7.2313	7.1409	0.0872
12	0.2014	0.2118	0.2163	7.0052	7.3670	7.5235	7.2986	0.2658
16	0.2029	0.2051	0.2179	7.0574	7.1339	7.5791	7.2568	0.2817
20	0.1976	0.2117	0.2140	6.8730	7.3635	7.4435	7.2267	0.3088
24	0.1963	0.2132	0.2100	6.8278	7.4157	7.3043	7.1826	0.3123
28	0.1974	0.2073	0.2097	6.8661	7.2104	7.2939	7.1235	0.2268
32	0.1982	0.2112	0.2047	6.8939	7.3461	7.1200	7.1200	0.2261
36	0.1973	0.2047	0.2095	6.8626	7.1200	7.2870	7.0899	0.2138
40	0.1977	0.2097	0.2187	6.8765	7.2939	7.6070	7.2591	0.3665
44	0.2007	0.2107	0.2134	6.9809	7.3287	7.4226	7.2441	0.2327
48	0.2017	0.2107	0.2176	7.0157	7.3287	7.5687	7.3043	0.2773

**Table J1** Raw data of the determination of amounts of salicylic acid released fromPorGel 0.25% crosslinked (PorGel_0.25) at time t, pH 5.5 at 37°C

Time (hr)	Abs	sorbance (a	.u.)		Drug A	ccumulatio	on (mg)	
Time (III)	1	2	3	1	2	3	Avg	SD
0.083333	0.0724	0.0819	0.0755	2.5183	2.8487	2.6261	2.6643	0.1685
0.166667	0.0841	0.1025	0.0886	2.9252	3.5652	3.0817	3.1907	0.3336
0.25	0.1071	0.1281	0.1205	3.7252	4.4557	4.1913	4.1241	0.3698
0.5	0.1566	0.1669	0.1678	5.4470	5.8052	5.8365	5.6962	0.2164
0.75	0.1764	0.1824	0.1866	6.1357	6.3443	6.4904	6.3235	0.1783
1	0.1844	0.1998	0.2007	6.7270	6.9496	6.9809	6.8858	0.1384
1.5	0.1957	0.2037	0.2058	6.8070	7.0852	7.1583	7.0168	0.1854
2	0.1960	0.2032	0.2005	6.8174	7.0678	6.9739	6.9530	0.1265
2.5	0.2008	0.1949	0.2017	6.9843	6.7791	7.0157	6.9264	0.1285
3	0.1988	0.1983	0.2132	6.9148	6.8974	7.4157	7.0759	0.2943
3.5	0.1998	0.1994	0.2111	6.9496	6.9357	7.3426	7.0759	0.2310
4	0.2037	0.2002	0.2002	7.0852	6.9635	6.9635	7.0041	0.0703
8	0.2032	0.1993	0.2070	7.0678	6.9322	7.2000	7.0667	0.1339
12	0.2049	0.1997	0.2016	7.1270	6.9461	7.0122	7.0284	0.0915
16	0.2020	0.1970	0.2058	7.0261	6.8522	7.1583	7.0122	0.1535
20	0.1947	0.1971	0.2005	6.7722	6.8557	6.9739	6.8672	0.1014
24	0.1978	0.1985	0.2017	6.8800	6.9043	7.0157	6.9333	0.0723
28	0.1966	0.2010	0.2041	6.8383	6.9913	7.0991	6.9762	0.1311
32	0.2007	0.2038	0.2037	6.9809	7.0887	7.0852	7.0516	0.0613
36	0.2008	0.2011	0.2111	6.9843	6.9948	7.3426	7.1072	0.2039
40	0.2012	0.2004	0.2016	6.9983	6.9704	7.0122	6.9936	0.0213
44	0.2008	0.1941	0.2111	6.9843	6.7513	7.3426	7.0261	0.2979
48	0.2012	0.2004	0.2046	6.9983	6.9704	7.1165	7.0284	0.0776

**Table J2** Raw data of the determination of amounts of salicylic acid released fromPorGel 0.50% crosslinked (PorGel_0.50) at time t, pH 5.5 at 37°C

Time (hr)	Abs	sorbance (a	.u.)		Drug A	ccumulatio	on (mg)	
rine (m)	1	2	3	I	2	3	Avg	SD
0.083333	0.0551	0.0692	0.0697	1.9165	2.4070	2.4243	2.2493	0.2883
0.166667	0.0762	0.0857	0.0953	2.6504	2.9809	3.3148	2.9820	0.3322
0.25	0.1085	0.1004	0.1036	3.7739	3.4922	3.6035	3.6232	0.1419
0.5	0.1308	0.1526	0.1525	4.5496	5.3078	5.3043	5.0539	0.4368
0.75	0.1661	0.1569	0.1608	5.7774	5.4574	5.5930	5.6093	0.1606
I	0.1738	0.1698	0.1748	6.0452	5.9061	6.0800	6.0104	0.0920
1.5	0.1672	0.1746	0.1796	5.8157	6.0730	6.2470	6.0452	0.2170
2	0.1699	0.1723	0.1800	5.9096	5.9930	6.2609	6.0545	0.1835
2.5	0.1742	0.1716	0.1786	6.0591	5.9687	6.2122	6.0800	0.1231
3	0.1650	0.1754	0.1855	5.7391	6.1009	6.4522	6.0974	0.3565
3.5	0.1590	0.1723	0.1786	5.5304	5.9930	6.2122	5.9119	0.3480
4	0.1720	0.1861	0.1903	5.9826	6.4730	6.6191	6.3583	0.3334
8	0.1698	0.1748	0.1768	5.9061	6.0800	6.1496	6.0452	0.1254
12	0.1738	0.1698	0.1747	6.0452	5.9061	6.0765	6.0093	0.0907
16	0.1672	0.1746	0.1816	5.8157	6.0730	6.3165	6.0684	0.2505
20	0.1661	0.1733	0.1797	5.7774	6.0278	6.2504	6.0186	0.2367
24	0.1742	0.1716	0.1796	6.0591	5.9687	6.2470	6.0916	0.1419
28	0.1650	0.1754	0.1905	5.7391	6.1009	6.6261	6.1554	0.4460
32	0.1590	0.1723	0.1786	5.5304	5.9930	6.2122	5.9119	0.3480
36	0.1733	0.1765	0.1800	6.0278	6.1391	6.2609	6.1426	0.1166
40	0.1733	0.1701	0.1786	6.0278	5.9165	6.2122	6.0522	0.1493
44	0.1686	0.1816	0.1855	5.8643	6.3165	6.4522	6.2110	0.3078
48	0.1676	0.1797	0.1786	5.8296	6.2504	6.2122	6.0974	0.2327

**Table J3** Raw data of the determination of amounts of salicylic acid released fromPorGel 0.75% crosslinked (PorGel_0.75)at time t, pH 5.5 at 37°C

Time (hr)	Abs	orbance (a	.u.)		Drug A	ccumulatio	on (mg)	
Time (IIT)	1	2	3	1	2	3	Avg	SD
0.083333	0.0565	0.0630	0.0473	1.9652	2.1913	1.6452	1.9339	0.2744
0.166667	0.0763	0.0927	0.0698	2.6539	3.2243	2.4278	2.7687	0.4105
0.25	0.0977	0.1058	0.0860	3.3983	3.6800	2.9913	3.3565	0.3462
0.5	0.1357	0.1272	0.1212	4.7200	4.4243	4.2157	4.4533	0.2534
0.75	0.1538	0.1371	0.1313	5.3496	4.7687	4.5670	4.8951	0.4063
I	0.1606	0.1415	0.1371	5.5861	4.9217	4.7687	5.0922	0.4345
1.5	0.1583	0.1506	0.1330	5.5061	5.2383	4.6261	5.1235	0.4511
2	0.1621	0.1516	0.1387	5.6383	5.2730	4.8243	5.2452	0.4077
2.5	0.1610	0.1483	0.1359	5.6000	5.1583	4.7270	5.1617	0.4365
3	0.1538	0.1521	0.1368	5.3496	5.2904	4.7583	5.1328	0.3257
3.5	0.1584	0.1510	0.1356	5.5096	5.2522	4.7165	5.1594	0.4046
4	0.1597	0.1538	0.1363	5.5548	5.3496	4.7409	5.2151	0.4233
8	0.1479	0.1484	0.1391	5.1443	5.1617	4.8383	5.0481	0.1819
12	0.1607	0.1440	0.1369	5.5896	5.0087	4.7617	5.1200	0.4250
16	0.1598	0.1479	0.1368	5.5583	5.1443	4.7583	5.1536	0.4001
20	0.1587	0.1507	0.1356	5.5200	5.2417	4.7165	5.1594	0.4080
24	0.1568	0.1521	0.1399	5.4539	5.2904	4.8661	5.2035	0.3034
28	0.1576	0.1460	0.1377	5.4817	5.0783	4.7896	5.1165	0.3477
32	0.1616	0.1488	0.1405	5.6209	5.1757	4.8870	5.2278	0.3697
36	0.1559	0.1484	0.1398	5.4226	5.1617	4.8626	5.1490	0.2802
40	0.1559	0.1497	0.1400	5.4226	5.2070	4.8696	5.1664	0.2787
44	0.1612	0.1479	0.1361	5.6070	5.1443	4.7339	5.1617	0.4368
48	0.1602	0.1467	0.1313	5.5722	5.1026	4.5670	5.0806	0.5030

**Table J4** Raw data of the determination of amounts of salicylic acid released fromPorGel 1.00% crosslinked (PorGel_1.00) at time t, pH 5.5 at 37°C

Time (hr)	Abs	orbance (a	.u.)		Drug A	ccumulatio	on (mg)	
Time (III)	1	2	3	1	2	3	Avg	SD
0.083333	0.0416	0.0478	0.0485	1.4470	1.6626	1.6870	1.5988	0.1321
0.166667	0.0573	0.0603	0.0720	1.9930	2.0974	2.5043	2.1983	0.2702
0.25	0.0741	0.0825	0.0871	2.5774	2.8696	3.0296	2.8255	0.2293
0.5	0.0989	0.1077	0.1142	3.4400	3.7461	3.9722	3.7194	0.2671
0.75	0.1130	0.1168	0.1201	3.9304	4.0626	4.1774	4.0568	0.1236
1	0.1128	0.1176	0.1210	3.9235	4.0904	4.2087	4.0742	0.1433
1.5	0.1119	0.1195	0.1182	3.8922	4.1565	4.1113	4.0533	0.1414
2	0.1175	0.1192	0.1186	4.0870	4.1461	4.1252	4.1194	0.0300
2.5	0.1071	0.1164	0.1209	3.7252	4.0487	4.2052	3.9930	0.2448
3	0.1104	0.1163	0.1173	3.8400	4.0452	4.0800	3.9884	0.1297
3.5	0.1154	0.1161	0.1156	4.0139	4.0383	4.0209	4.0243	0.0125
4	0.1129	0.1168	0.1164	3.9270	4.0626	4.0487	4.0128	0.0746
8	0.1096	0.1196	0.1173	3.8122	4.1600	4.0800	4.0174	0.1822
12	0.1070	0.1174	0.1163	3.7217	4.0835	4.0452	3.9501	0.1987
16	0.1089	0.1173	0.1214	3.7878	4.0800	4.2226	4.0301	0.2216
20	0.1208	0.1161	0.1188	4.2017	4.0383	4.1322	4.1241	0.0820
24	0.1104	0.1204	0.1205	3.8400	4.1878	4.1913	4.0730	0.2018
28	0.1181	0.1182	0.1170	4.1078	4.1113	4.0696	4.0962	0.0232
32	0.1104	0.1210	0.1173	3.8400	4.2087	4.0800	4.0429	0.1871
36	0.1142	0.1203	0.1194	3.9722	4.1843	4.1530	4.1032	0.1145
40	0.1110	0.1205	0.1180	3.8609	4.1913	4.1043	4.0522	0.1713
44	0.1067	0.1166	0.1189	3.7113	4.0557	4.1357	3.9675	0.2255
48	0.1075	0.1118	0.1213	3.7391	3.8887	4.2191	3.9490	0.2456

**Table J5** Raw data of the determination of amounts of salicylic acid released fromPorGel 3.00% crosslinked (PorGel_3.00) at time t, pH 5.5 at 37°C

Time (hr)	Abso	orbance (a.	u.)		Drug A	ccumulatio	on (mg)	
Time (IIF)	1	2	3	1	2	3	Avg	SD
0.083333	0.0478	0.0435	0.0338	1.6626	1.5130	1.1757	1.4504	0.2494
0.166667	0.0632	0.0572	0.0572	2.1983	1.9896	1.9896	2.0591	0.1205
0.25	0.0831	0.0665	0.0665	2.8904	2.3130	2.3130	2.5055	0.3334
0.333333	0.0888	0.0727	0.0727	3.0887	2.5287	2.5287	2.7154	0.3233
0.416667	0.1009	0.0956	0.0956	3.5096	3.3252	3.3252	3.3867	0.1064
0.5	0.1031	0.1081	0.0983	3.5861	3.7600	3.4191	3.5884	0.1704
0.666667	0.1081	0.1128	0.1048	3.7600	3.9235	3.6452	3.7762	0.1398
0.833333	0.1090	0.1130	0.1039	3.7913	3.9304	3.6139	3.7786	0.1586
1	0.1084	0.1124	0.1023	3.7704	3.9096	3.5583	3.7461	0.1769
1.5	0.1075	0.1135	0.1055	3.7391	3.9478	3.6696	3.7855	0.1448
2	0.1120	0.1127	0.1037	3.8957	3.9200	3.6070	3.8075	0.1741
2.5	0.1060	0.1080	0.1039	3.6870	3.7565	3.6139	3.6858	0.0713
3	0.1080	0.1099	0.1030	3.7565	3.8226	3.5826	3.7206	0.1240
3.5	0.1077	0.1147	0.1086	3.7461	3.9896	3.7774	3.8377	0.1325
4	0.1085	0.1115	0.1028	3.7739	3.8783	3.5757	3.7426	0.1537
8	0.1076	0.1072	0.0999	3.7426	3.7287	3.4748	3.6487	0.1508
12	0.1090	0.1080	0.1035	3.7913	3.7565	3.6000	3.7159	0.1019
16	0.1083	0.1103	0.1012	3.7670	3.8365	3.5200	3.7078	0.1663
20	0.1065	0.1075	0.1008	3.7043	3.7391	3.5061	3.6499	0.1257
24	0.1087	0.1107	0.1014	3.7809	3.8504	3.5270	3.7194	0.1703
28	0.1079	0.1089	0.1039	3.7530	3.7878	3.6139	3.7183	0.0920
32	0.1090	0.1100	0.1030	3.7913	3.8261	3.5826	3.7333	0.1317
36	0.1086	0.1086	0.0986	3.7774	3.7774	3.4296	3.6614	0.2008
40	0.1088	0.1098	0.1028	3.7843	3.8191	3.5757	3.7264	0.1317
44	0.1087	0.1127	0.1027	3.7809	3.9200	3.5722	3.7577	0.1751
48	0.1083	0.1123	0.1096	3.7670	3.9061	3.8122	3.8284	0.0710

**Table J6** Raw data of the determination of amounts of salicylic acid released fromPorGel 7.00% crosslinked (PorGel_7.00)at time t, pH 5.5 at 37°C

#### **Release Kinetics of Model Drug from Drug-Loaded PorGel Hydrogel**

In order to study SA transport mechanism from the PorGel hydrogels, two diffusion models are considered to fit the experimental data.

Model 1 is described by the Ritger-Peppas equation (Venkatesh *et al.*, 1992):

$$\frac{M_t}{M_\infty} = k_1 t^n \tag{J1}$$

where  $M_t/M_{\infty}$  is the fractional drug release,  $k_1$  is a kinetic constant (with the unit of Tⁿ) t is the release time, and *n* is the scaling exponent that can be related to the drug transport mechanism. For a thin hydrogel film, when n = 0.5, the drug release mechanism is the Fickian diffusion. When n = 1, Case II transport occurs, corresponding to the zero-order release. When 0.5 < n < 1, the anomalous transport is observed.

<u>Model 2</u> is based on the Higuchi's equation (Serra *et al.*, 2006) and described the Fickian diffusion of the drug:

$$\frac{M_t}{M_\infty} = k_H t^{1/2} \tag{J2}$$

where  $M_t/M_{\infty}$  is the fractional drug release,  $k_H$  is a kinetic constant (with the unit of  $T^{-n}$ ) and t is the release time.

The diffusion coefficients of SA from the PorGel hydrogels are determined from the slopes of plots of drug accumulation versus square root of time according to Higuchi's equation (A-sasutjarit *et al.*, 2005):

$$Q = 2C_0 (Dt/\pi)^{1/2}$$
(J3)

where Q is the amount of material flowing through a unit cross-section of barrier (g/cm²) in unit time, t (s);  $C_0$  is the initial drug concentration in the hydrogel (g/cm³); and D is the diffusion coefficient of a drug(cm²/s).

The diffusion coefficients of each system were calculated from the slopes of the plot of the amounts of SA released from SA-loaded PorGel hydrogels at time t versus time^{1/2} at various crosslinking ratios (PorGel_0.25, PorGel _0.50, PorGel _0.75, PorGel _1.00, PorGel _3.00, and PorGel _7.00) during 48 h as shown in Figure J2 using the Higuchi's equation.

÷



Figure J2 Amounts of salicylic acid release from SA-loaded PorGel hydrogel versus time^{1/2} at various crosslink ratios, pH 5.5, and at 37°C, number of samples = 3.

Figure J3 shows the diffusion coefficients of SA from PorGel hydrogels versus crosslinking ratios and mesh size at  $37^{\circ}$ C. The results show the diffusion coefficients of salicylic acid are ranked in the following order: PorGel_0.25 > PorGel_0.50 > PorGel_0.75 > PorGel_1.00 > PorGel_3.00 > PorGel_7.00.



**Figure J3** Diffusion coefficient of salicylic acid from PorGel hydrogels versus crosslinking ratios and mesh size, pH 5.5, and at 37°C, number of samples = 3.

Crosslinking ratio (%w/w)

Ĩ.

Sampla		Slope			Diffusio	n Coefficien	t (cm ² /s)	
Sample	I	2	3	1	2	3	Avg	SD
PorGel_0.25	7.979	8.064	8.208	6.32E-06	6.45E-06	6.69E-06	6.49E-06	1.86E-07
PorGel_0.50	7.154	7.656	7.866	5.08E-06	5.82E-06	6.14E-06	5.68E-06	5.44E-07
PorGel_0.75	6.468	6.561	6.737	4.15E-06	4.27E-06	4.50E-06	4.31E-06	1.79E-07
PorGel_1.00	6.147	5.806	5.655	3.75E-06	3.35E-06	3.17E-06	3.42E-06	2.96E-07
PorGel_3.00	4.775	5.107	5.400	2.26E-06	2.59E-06	2.89E-06	2.58E-06	3.16E-07
PorGel_7.00	4.904	4.757	4.494	2.39E-06	2.25E-06	2.00E-06	2.21E-06	1.93E-07

**Table J7** Raw data of the determination of the diffusion coefficient of salicylic acidreleased from various crosslinked PorGel hydrogel, pH 5.5 at 37°C

# Appendix K Determination of Amounts and Diffusion Coefficient of Salicylic Acid Released from Salicylic Acid-Loaded Fish Gelatin Hydrogel at Various Crosslinking Ratios

The diffusion of drug was observed by custom built modified Franz-Diffusion cells. A diffusion cell consisted of two compartments. First one is a water jacket compartment that is used to exposed to an ambient condition. Other is a receptor chamber containing an acetate buffer solution pH 5.5 and maintained at 37°C by a circulating water bath. To study the effect of crosslinking ratios (1.00, 3.00, and 7.00) on the fish gelatin hydrogel (FishGel), a sample of drug-loaded FishGel hydrogel was placed over the nylon net on the top of the receptor chamber. The drug diffuses through the polymer matrix and the net towards the buffer solution. The 0.1 ml of solution was withdrawn and simultaneously replaced with equal volume of fresh buffer solution at various time intervals. The drug concentrations in these samples were determined by the UV-Visible spectrophotometer at the wavelength of 298 nm.

The amounts of salicylic acid (SA) released from SA-loaded FishGel hydrogel versus time at various crosslinking ratios (FishGel_1.00, FishGel_3.00, and FishGel_7.00) during 48 h are shown in Figure K1. The amounts of released drug gradually increase with time and then reach constant values.



**Figure K1** Amounts of salicylic acid release from SA-loaded FishGel hydrogel versus time at various crosslink ratios, pH 5.5, and at 37°C, number of samples = 3.

Time (ha)	Abso	orbance (a.	u.)		Drug A	ccumulatio	on (mg)	
Time (III)	1	2	3	1	2	3	Avg	SD
0.083333	0.0579	0.0639	0.0630	2.0139	2.2226	2.1929	2.1431	0.1129
0.166667	0.0855	0.0960	0.0932	2.9736	3.3391	3.2412	3.1846	0.1892
0.25	0.1084	0.1187	0.1132	3.7696	4.1287	3.9360	3.9447	0.1797
0.333333	0.1186	0.1386	0.1339	4.1256	4.8209	4.6561	4.5342	0.3633
0.416667	0.1196	0.1498	0.1352	4.1616	5.2104	4.7037	4.6919	0.5245
0.5	0.1362	0.1554	0.1520	4.7376	5.4052	5.2878	5.1435	0.3564
0.666667	0.1354	0.1678	0.1580	4.7096	5.8365	5.4965	5.3475	0.5781
0.833333	0.1439	0.1763	0.1633	5.0045	6.1322	5.6806	5.6058	0.5675
1	0.1531	0.1842	0.1718	5.3264	6.4070	5.9757	5.9030	0.5439
1.5	0.1488	0.1835	0.1721	5.1762	6.3826	5.9861	5.8483	0.6149
2	0.1545	0.1825	0.1681	5.3734	6.3478	5.8470	5.8561	0.4873
2.5	0.1476	0.1822	0.1732	5.1339	6.3374	6.0243	5.8319	0.6244
3	0.1571	0.1819	0.1742	5.4643	6.3270	6.0591	5.9501	0.4415
3.5	0.1569	0.1833	0.1743	5.4574	6.3757	6.0626	5.9652	0.4668
4	0.1554	0.1817	0.1722	5.4052	6.3200	5.9896	5.9049	0.4632
8	0.1584	0.1842	0.1719	5.5096	6.4070	5.9791	5.9652	0.4489
12	0.1451	0.1854	0.1733	5.0470	6.4487	6.0278	5.8412	0.7193
16	0.1436	0.1824	0.1717	4.9948	6.3443	5.9722	5.7704	0.6970
20	0.1647	0.1851	0.1742	5.7287	6.4383	6.0591	6.0754	0.3551
24	0.1506	0.1836	0.1691	5.2383	6.3861	5.8817	5.8354	0.5753
28	0.1551	0.1847	0.1728	5.3948	6.4243	6.0104	5.9432	0.5181
32	0.1588	0.1840	0.1711	5.5235	6.4000	5.9513	5.9583	0.4383
36	0.1583	0.1830	0.1732	5.5061	6.3652	6.0243	5.9652	0.4326
40	0.1442	0.1810	0.1752	5.0157	6.2957	6.0939	5.8017	0.6882
44	0.1405	0.1838	0.1743	4.8870	6.3930	6.0626	5.7809	0.7916
48	0.1425	0.1847	0.1722	4.9565	6.4243	5.9896	5.7901	0.7540

**Table K1** Raw data of the determination of amounts of salicylic acid released fromFishGel 1% crosslinked (FishGel_1) at time t, pH 5.5 at 37°C

Time (ha)	Abso	orbance (a.	u.)		Drug Accumulation (mg)				
Time (nr)	1	2	3	1	2	3	Avg	SD	
0.083333	0.0541	0.0634	0.0562	1.8817	1.9270	1.9565	1.9217	0.0377	
0.166667	0.0771	0.0857	0.0814	2.6817	2.9809	2.8313	2.8313	0.1496	
0.25	0.0974	0.1011	0.0992	3.3878	3.5165	3.4522	3.4522	0.0643	
0.333333	0.1111	0.1154	0.1053	3.8643	4.0139	3.6609	3.8464	0.1772	
0.416667	0.1201	0.1251	0.1156	4.1774	4.3513	4.0209	4.1832	0.1653	
0.5	0.1307	0.1412	0.1260	4.5461	4.9113	4.3809	4.6128	0.2714	
0.666667	0.1412	0.1503	0.1305	4.9113	5.2278	4.5391	4.8928	0.3447	
0.833333	0.1455	0.1555	0.1355	5.0609	5.4087	4.7130	5.0609	0.3478	
1	0.1457	0.1658	0.1425	5.0678	5.7670	4.9565	5.2638	0.4393	
1.5	0.1409	0.1660	0.1434	4.9009	5.7739	4.9896	5.2214	0.4805	
2	0.1363	0.1649	0.1356	4.7409	5.7357	4.7165	5.0643	0.5815	
2.5	0.1410	0.1644	0.1427	4.9043	5.7183	4.9635	5.1954	0.4538	
3	0.1448	0.1650	0.1347	5.0365	5.7391	4.6852	5.1536	0.5366	
3.5	0.1497	0.1653	0.1393	5.2070	5.7496	4.8452	5.2672	0.4552	
4	0.1453	0.1646	0.1266	5.0539	5.7252	4.4035	5.0609	0.6609	
8	0.1424	0.1653	0.1367	4.9530	5.7496	4.7548	5.1525	0.5265	
12	0.1403	0.1644	0.1374	4.8800	5.7183	4.7791	5.1258	0.5156	
16	0.1392	0.1647	0.1361	4.8417	5.7287	4.7339	5.1014	0.5459	
20	0.1408	0.1658	0.1360	4.8974	5.7670	4.7304	5.1316	0.5565	
24	0.1420	0.1653	0.1348	4.9391	5.7496	4.6887	5.1258	0.5545	
28	0.1479	0.1632	0.1379	5.1443	5.6765	4.7965	5.2058	0.4432	
32	0.1493	0.1657	0.1448	5.1930	5.7635	5.0365	5.3310	0.3826	
36	0.1446	0.1473	0.1503	5.0296	5.1235	5.2278	5.1270	0.0992	
40	0.1372	0.1625	0.1447	4.7733	5.6522	5.0330	5.1528	0.4515	
44	0.1540	0.1646	0.1444	5.3573	5.7252	5.0226	5.3684	0.3514	
48	0.1448	0.1585	0.1410	5.0365	5.5130	4.9043	5.1513	0.3202	

**Table K2** Raw data of the determination of amounts of salicylic acid released fromFishGel 3% crosslinked (FishGel_3) at time t, pH 5.5 at 37°C

Time (hr)	Abso	orbance (a.	u.)	Drug Accumulation (mg)					
	1	2	3	1	2	3	Avg	SD	
0.083333	0.0444	0.0455	0.0405	1.5443	1.5826	1.4087	1.5119	0.0914	
0.166667	0.0632	0.0730	0.0708	2.1983	2.5391	2.4626	2.4000	0.1789	
0.25	0.0718	0.0763	0.0789	2.4974	2.6539	2.7443	2.6319	0.1249	
0.333333	0.0822	0.0869	0.0879	2.8591	3.0226	3.0574	2.9797	0.1059	
0.416667	0.0959	0.0994	0.0929	3.3357	3.4574	3.2313	3.3414	0.1132	
0.5	0.1035	0.1114	0.0985	3.6000	3.8748	3.4261	3.6336	0.2262	
0.666667	0.1120	0.1164	0.1063	3.8957	4.0487	3.6974	3.8806	0.1761	
0.833333	0.1121	0.1157	0.1066	3.8991	4.0243	3.7078	3.8771	0.1594	
1	0.1109	0.1165	0.1063	3.8574	4.0522	3.6974	3.8690	0.1777	
1.5	0.1131	0.1141	0.1071	3.9339	3.9687	3.7252	3.8759	0.1317	
2	0.1127	0.1157	0.1067	3.9200	4.0243	3.7113	3.8852	0.1594	
2.5	0.1135	0.1151	0.1065	3.9478	4.0035	3.7043	3.8852	0.1591	
3	0.1111	0.1165	0.1071	3.8643	4.0522	3.7252	3.8806	0.1641	
3.5	0.1107	0.1154	0.1077	3.8504	4.0139	3.7461	3.8701	0.1350	
4	0.1121	0.1166	0.1051	3.8991	4.0557	3.6557	3.8701	0.2016	
8	0.1145	0.1156	0.1065	3.9826	4.0209	3.7043	3.9026	0.1728	
12	0.1134	0.1161	0.1064	3.9443	4.0383	3.7009	3.8945	0.1741	
16	0.1126	0.1147	0.1066	3.9165	3.9896	3.7078	3.8713	0.1462	
20	0.1106	0.1186	0.1056	3.8470	4.1252	3.6730	3.8817	0.2281	
24	0.1121	0.1149	0.1071	3.8991	3.9965	3.7252	3.8736	0.1374	
28	0.1147	0.1151	0.1067	3.9896	4.0035	3.7113	3.9014	0.1648	
32	0.1136	0.1173	0.1059	3.9513	4.0800	3.6835	3.9049	0.2023	
36	0.1149	0.1159	0.1061	3.9965	4.0313	3.6904	3.9061	0.1876	
40	0.1151	0.1166	0.1063	4.0035	4.0557	3.6974	3.9188	0.1935	
44	0.1123	0.1160	0.1059	3.9061	4.0348	3.6835	3.8748	0.1777	
48	0.1119	0.1179	0.1066	3.8922	4.1009	3.7078	3.9003	0.1966	

**Table K3** Raw data of the determination of amounts of salicylic acid released fromFishGel 7% crosslinked (FishGel_7) at time t, pH 5.5 at 37°C

#### Release Kinetics of Model Drug from Drug-Loaded FishGel Hydrogel

In order to study SA transport mechanism from the FishGel hydrogels, two diffusion models are considered to fit the experimental data.

Model 1 is described by the Ritger-Peppas equation (Venkatesh *et al.*, 1992):

$$\frac{M_t}{M_{\infty}} = k_1 t^n \tag{K1}$$

where  $M_t/M_{\infty}$  is the fractional drug release,  $k_1$  is a kinetic constant (with the unit of Tⁿ) t is the release time, and *n* is the scaling exponent that can be related to the drug transport mechanism. For a thin hydrogel film, when n = 0.5, the drug release mechanism is the Fickian diffusion. When n = 1, Case II transport occurs, corresponding to the zero-order release. When 0.5 < n < 1, the anomalous transport is observed.

Model 2 is based on the Higuchi's equation (Serra *et al.*, 2006) and described the Fickian diffusion of the drug:

$$\frac{M_t}{M_\infty} = k_H t^{1/2} \tag{K2}$$

where  $M_t/M_{\infty}$  is the fractional drug release,  $k_H$  is a kinetic constant (with the unit of T⁻ⁿ) and t is the release time.

The diffusion coefficients of SA from the FishGel hydrogels are determined from the slopes of plots of drug accumulation versus square root of time according to Higuchi's equation (A-sasutjarit *et al.*, 2005):

$$Q = 2C_0 (Dt/\pi)^{1/2}$$
(K3)

where Q is the amount of material flowing through a unit cross-section of barrier (g/cm²) in unit time, t (s) ;  $C_0$  is the initial drug concentration in the hydrogel (g/cm³); and D is the diffusion coefficient of a drug (cm²/s).

The diffusion coefficients of each system were calculated from the slopes of the plot of the amounts of SA released SA- loaded FishGel hydrogels at time t versus time^{1/2} at various crosslinking ratios (FishGel_1.00, FishGel_3.00, and FishGel_7.00) during 48 h as shown in Figure K2 using the Higuchi^{*}s equation.



Figure K2 Amounts of salicylic acid release from salicylic acid-loaded FishGel hydrogel versus time^{1/2} at various crosslink ratios, pH 5.5, and at 37 °C, number of samples = 3.

Figure K3 shows the diffusion coefficients of SA from fish gelatin hydrogels versus crosslinking ratios and mesh size at 37°C. The results show the diffusion coefficients of SA are ranked in the following order: FishGel_1.00 > FishGel_3.00 > FishGel_7.00.



**Figure K3** Diffusion coefficient of salicylic acid from FishGel hydrogels versus crosslinking ratios and mesh size, pH 5.5, and at 37°C, number of samples = 3.

Sample	Slope			Diffusion Coefficient (cm ² /s)						
Sample	1	2	3	1	2	3	Avg	SD		
FishGel_1.00	6.079	6.449	6.832	3.67E-06	4.13E-06	4.63E-06	4.14E-06	4.83E-07		
FishGel_3.00	5.922	6.377	5.598	3.48E-06	4.04E-06	3.11E-06	3.54E-06	4.66E-07		
FishGel_7.00	4.825	5.082	4.757	2.31E-06	2.56E-06	2.25E-06	2.37E-06	1.68E-07		

**Table K4** Raw data of the determination of the diffusion coefficient of salicylic acidreleased from various crosslinked FishGel hydrogel, pH 5.5 at 37°C

# Appendix L Determination of Amounts and Diffusion Coefficient of 5-Sulfoalicylic Acid Released from 5-Sulfoalicylic Acid-Loaded Porcine Gelatin Hydrogel at Various Crosslinking Ratios

The diffusion of drug was observed by custom built modified Franz-Diffusion cells. A diffusion cell consisted of two compartments. First one is a water jacket compartment that is used to exposed to an ambient condition. Other is a receptor chamber containing an acetate buffer solution pH 5.5 and maintained at 37°C by a circulating water bath. To study the effect of crosslinking ratios (0.25, 0.50, 0.75, 1.00, 3.00, and 7.00) on the porcine gelatin hydrogel (PorGel), a sample of drug-loaded PorGel hydrogel was placed over the nylon net on the top of the receptor chamber. The drug diffuses through the polymer matrix and the net towards in the buffer solution. The 0.1 ml of solution was withdrawn and simultaneously replaced with equal volume of fresh buffer solution at various time intervals. The drug concentrations in these samples were determined by the UV-Visible spectrophotometer at the wavelength of 298 nm.

The amounts of 5-sulfosalicylic acid (SSA) released from SSA- loaded PorGel hydrogel versus time at various crosslinking ratios (PorGel_0.25, PorGel _0.50, PorGel_0.75, PorGel_1.00, PorGel_3.00, and PorGel_7.00) during 48 h are shown in Figure L1. The amounts of released drug gradually increase with time and then reach constant values.



**Figure L1** Amounts of 5-sulfosalicylic acid release from SSA-loaded PorGel hydrogel versus time at various crosslink ratios, pH 5.5, and at 37°C, number of samples = 3.

Time (hr)	Absorbance (a.u.)			Drug Accumulation (mg)					
	1	2	3	1	2	3	Avg	SD	
0.083333	0.0197	0.0239	0.0229	1.3244	1.6067	1.5395	1.4902	0.1475	
0.166667	0.0329	0.0339	0.0522	2.2118	2.2790	3.5092	2.6667	0.7305	
0.25	0.0448	0.0494	0.0607	3.0118	3.3210	4.0807	3.4711	0.5500	
0.333333	0.0541	0.0643	0.0720	3.6370	4.3227	4.8403	4.2667	0.6036	
0.416667	0.0626	0.0722	0.0778	4.2084	4.8538	5.2303	4.7641	0.5168	
0.5	0.0685	0.0771	0.0820	4.6050	5.1832	5.5126	5.1003	0.4594	
0.666667	0.0722	0.0848	0.0896	4.8538	5.7008	6.0235	5.5261	0.6041	
0.833333	0.0760	0.0928	0.0908	5.1092	6.2387	6.1042	5.8174	0.6169	
I	0.0779	0.0958	0.0988	5.2370	6.4403	6.6420	6.1064	0.7597	
1.5	0.0774	0.0955	0.0995	5.2034	6.4202	6.6891	6.1042	0.7917	
2	0.0774	0.0957	0.0994	5.2034	6.4336	6.6824	6.1064	0.7919	
2.5	0.0777	0.0959	0.0995	5.2235	6.4471	6.6891	6.1199	0.7856	
3	0.0770	0.0955	0.0979	5.1765	6.4202	6.5815	6.0594	0.7689	
3.5	0.0755	0.0961	0.0958	5.0756	6.4605	6.4403	5.9922	0.7938	
4	0.0782	0.0959	0.0957	5.2571	6.4471	6.4336	6.0459	0.6832	
8	0.0780	0.0956	0.1019	5.2437	6.4269	6.8504	6.1737	0.8328	
12	0.0776	0.0958	0.0955	5.2168	6.4403	6.4202	6.0258	0.7007	
16	0.0774	0.0954	0.0941	5.2034	6.4134	6.3261	5.9810	0.6748	
20	0.0782	0.0956	0.0995	5.2571	6.4269	6.6891	6.1244	0.7624	
24	0.0773	0.0954	0.0993	5.1966	6.4134	6.6756	6.0952	0.7892	
28	0.0803	0.0960	0.0995	5.3983	6.4538	6.6891	6.1804	0.6874	
32	0.0778	0.0961	0.0979	5.2303	6.4605	6.5815	6.0908	0.7477	
36	0.0768	0.0959	0.0958	5.1630	6.4471	6.4403	6.0168	0.7394	
40	0.0783	0.0952	0.0957	5.2639	6.4000	6.4336	6.0325	0.6659	
44	0.0780	0.0956	0.1009	5.2437	6.4269	6.7832	6.1513	0.8059	
48	0.0771	0.0949	0.0995	5.1832	6.3798	6.6891	6.0840	0.7953	

**Table L1** Raw data of the determination of amounts of 5-sulfosalicylic acid releasedfrom PorGel 0.25% crosslinked (PorGel_0.25) at time t, pH 5.5 at 37°C
Time (ha)	Absorbance (a.u.)			Drug Accumulation (mg)					
Time (nr)	1	2	3	1	2	3	Avg	SD	
0.083333	0.0219	0.0197	0.0224	1.4723	1.3244	1.5059	1.4342	0.0966	
0.166667	0.0432	0.0272	0.0302	2.9042	1.8286	2.0303	2.2543	0.5718	
0.25	0.0517	0.0530	0.0366	3.4756	3.5630	2.4605	3.1664	0.6129	
0.333333	0.0630	0.0598	0.0523	4.2353	4.0202	3.5160	3.9238	0.3692	
0.416667	0.0688	0.0633	0.0566	4.6252	4.2555	3.8050	4.2286	0.4107	
0.5	0.0730	0.0682	0.0633	4.9076	4.5849	4.2555	4.5826	0.3261	
0.666667	0.0806	0.0697	0.0729	5.4185	4.6857	4.9008	5.0017	0.3767	
0.833333	0.0818	0.0727	0.0832	5.4992	4.8874	5.5933	5.3266	0.3833	
I	0.0898	0.0754	0.0859	6.0370	5.0689	5.7748	5.6269	0.5007	
1.5	0.0905	0.0756	0.0860	6.0840	5.0853	5.7815	5.6503	0.5122	
2	0.0904	0.0757	0.0856	6.0773	5.0905	5.7546	5.6408	0.5031	
2.5	0.0905	0.0751	0.0869	6.0840	5.0502	5.8420	5.6587	0.5407	
3	0.0889	0.0752	0.0866	5.9765	5.0572	5.8218	5.6185	0.4922	
3.5	0.0868	0.0749	0.0861	5.8353	5.0359	5.7882	5.5531	0.4486	
4	0.0867	0.0756	0.0901	5.8286	5.0806	6.0571	5.6554	0.5108	
8	0.0929	0.0755	0.0873	6.2454	5.0736	5.8689	5.7293	0.5982	
12	0.0865	0.0756	0.0886	5.8151	5.0794	5.9563	5.6170	0.4708	
16	0.0851	0.0751	0.0863	5.7210	5.0490	5.8017	5.5239	0.4132	
20	0.0905	0.0760	0.0900	6.0840	5.1081	6.0504	5.7475	0.5540	
24	0.0903	0.0755	0.0856	6.0706	5.0742	5.7546	5.6331	0.5092	
28	0.0905	0.0756	0.0869	6.0840	5.0847	5.8420	5.6702	0.5213	
32	0.0889	0.0752	0.0866	5.9765	5.0537	5.8218	5.6173	0.4942	
36	0.0868	0.0755	0.0861	5.8353	5.0777	5.7882	5.5671	0.4245	
40	0.0867	0.0764	0.0871	5.8286	5.1361	5.8555	5.6067	0.4078	
44	0.0919	0.0757	0.0863	6.1782	5.0891	5.8017	5.6896	0.5531	
48	0.0905	0.0758	0.0876	6.0840	5.0958	5.8891	5.6896	0.5234	

**Table L2** Raw data of the determination of amounts of 5-sulfosalicylic acid releasedfrom PorGel 0.50% crosslinked (PorGel_0.50) at time t, pH 5.5 at 37°C

Time (hu)	Abso	orbance (a.	u.)		Drug A	ccumulatio	on (mg)	
Time (nr)	1	2	3	1	2	3	Avg	SD
0.083333	0.0211	0.0197	0.0218	1.4185	1.3244	1.4655	1.4028	0.0719
0.166667	0.0351	0.0227	0.0286	2.3597	1.5261	1.9227	1.9361	0.4170
0.25	0.0436	0.0294	0.0400	2.9311	1.9765	2.6891	2.5322	0.4963
0.333333	0.0536	0.0386	0.0537	3.6034	2.5950	3.6101	3.2695	0.5842
0.416667	0.0598	0.0467	0.0580	4.0202	3.1395	3.8992	3.6863	0.4774
0.5	0.0678	0.0513	0.0671	4.5580	3.4487	4.5109	4.1725	0.6273
0.666667	0.0745	0.0568	0.0843	5.0084	3.8185	5.6672	4.8314	0.9370
0.833333	0.0784	0.0654	0.0846	5.2706	4.3966	5.6874	5.1182	0.6587
1	0.0799	0.0711	0.0873	5.3714	4.7798	5.8689	5.3401	0.5452
1.5	0.0803	0.0694	0.0874	5.3983	4.6655	5.8756	5.3132	0.6095
2	0.0800	0.0703	0.0870	5.3782	4.7261	5.8487	5.3176	0.5638
2.5	0.0801	0.0703	0.0883	5.3849	4.7261	5.9361	5.3490	0.6058
3	0.0805	0.0700	0.0880	5.4118	4.7059	5.9160	5.3445	0.6078
3.5	0.0804	0.0708	0.0875	5.4050	4.7597	5.8824	5.3490	0.5634
4	0.0795	0.0695	0.0875	5.3445	4.6723	5.8824	5.2997	0.6063
8	0.0809	0.0691	0.0874	5.4387	4.6454	5.8756	5.3199	0.6237
12	0.0810	0.0700	0.0880	5.4454	4.7059	5.9160	5.3557	0.6100
16	0.0793	0.0692	0.0877	5.3311	4.6521	5.8958	5.2930	0.6227
20	0.0797	0.0705	0.0874	5.3580	4.7395	5.8756	5.3244	0.5688
24	0.0805	0.0698	0.0870	5.4118	4.6924	5.8487	5.3176	0.5839
28	0.0838	0.0694	0.0883	5.6336	4.6655	5.9361	5.4118	0.6637
32	0.0794	0.0696	0.0880	5.3378	4.6790	5.9160	5.3109	0.6189
36	0.0806	0.0699	0.0875	5.4185	4.6992	5.8824	5.3333	0.5962
40	0.0799	0.0702	0.0875	5.3714	4.7193	5.8824	5.3244	0.5829
44	0.0800	0.0685	0.0877	5.3782	4.6050	5.8958	5.2930	0.6496
48	0.0802	0.0708	0.0880	5.3916	4.7597	5.9160	5.3557	0.5790

**Table L3** Raw data of the determination of amounts of 5-sulfosalicylic acid releasedfrom PorGel 0.75% crosslinked (PorGel_0.75) at time t, pH 5.5 at 37°C

Time (ha)	Abso	orbance (a.	u.)		Drug A	ccumulatio	on (mg)	
lime (nr)	1	2	3	1	2	3	Avg	SD
0.083333	0.0160	0.0247	0.0123	1.0756	1.6605	0.8270	1.1877	0.4279
0.166667	0.0272	0.0379	0.0224	1.8286	2.5479	1.5037	1.9600	0.5344
0.25	0.0344	0.0498	0.0272	2.3126	3.3479	1.8319	2.4975	0.7747
0.333333	0.0488	0.0591	0.0326	3.2807	3.9731	2.1949	3.1496	0.8963
0.416667	0.0554	0.0676	0.0390	3.7244	4.5445	2.6187	3.6292	0.9664
0.5	0.0578	0.0735	0.0469	3.8857	4.9412	3.1559	3.9943	0.8976
0.666667	0.0600	0.0772	0.0472	4.0336	5.1899	3.1703	4.1313	1.0134
0.833333	0.0618	0.0810	0.0524	4.1546	5.4454	3.5219	4.3740	0.9803
1	0.0612	0.0829	0.0545	4.1143	5.5731	3.6613	4.4496	0.9990
1.5	0.0617	0.0824	0.0545	4.1479	5.5395	3.6665	4.4513	0.9727
2	0.0614	0.0824	0.0542	4.1277	5.5395	3.6458	4.4377	0.9841
2.5	0.0621	0.0827	0.0548	4.1748	5.5597	3.6820	4.4721	0.9735
3	0.0619	0.0820	0.0541	4.1613	5.5126	3.6370	4.4370	0.9677
3.5	0.0623	0.0805	0.0546	4.1882	5.4118	3.6717	4.4239	0.8937
4	0.0624	0.0832	0.0546	4.1950	5.5933	3.6717	4.4866	0.9935
8	0.0618	0.0830	0.0545	4.1546	5.5798	3.6665	4.4670	0.9942
12	0.0622	0.0826	0.0545	4.1815	5.5529	3.6665	4.4670	0.9751
16	0.0619	0.0824	0.0541	4.1613	5.5395	3.6363	4.4457	0.9829
20	0.0621	0.0832	0.0548	4.1748	5.5933	3.6820	4.4834	0.9923
24	0.0620	0.0823	0.0542	4.1681	5.5328	3.6437	4.4482	0.9752
28	0.0619	0.0853	0.0541	4.1613	5.7345	3.6390	4.5116	1.0907
32	0.0621	0.0828	0.0549	4.1748	5.5664	3.6910	4.4774	0.9736
36	0.0616	0.0818	0.0546	4.1412	5.4992	3.6717	4.4373	0.9491
40	0.0610	0.0833	0.0546	4.1008	5.6000	3.6717	4.4575	1.0124
44	0.0620	0.0830	0.0542	4.1681	5.5798	3.6458	4.4646	1.0005
48	0.0619	0.0821	0.0544	4.1613	5.5193	3.6592	4.4466	0.9623

**Table L4** Raw data of the determination of amounts of 5-sulfosalicylic acid releasedfrom PorGel 1.00% crosslinked (PorGel_1.00)at time t, pH 5.5 at 37°C

Time (ha)	Abso	orbance (a.	u.)	Drug Accumulation (mg)					
lime (nr)	1	2	3	1	2	3	Avg	SD	
0.083333	0.0135	0.0156	0.0152	0.9076	1.0487	1.0218	0.9927	0.0750	
0.166667	0.0197	0.0200	0.0245	1.3244	1.3445	1.6471	1.4387	0.1808	
0.25	0.0379	0.0328	0.0386	2.5479	2.2050	2.5950	2.4493	0.2128	
0.333333	0.0483	0.0399	0.0475	3.2471	2.6824	3.1933	3.0409	0.3117	
0.416667	0.0479	0.0490	0.0488	3.2202	3.2941	3.2807	3.2650	0.0394	
0.5	0.0493	0.0498	0.0505	3.3143	3.3479	3.3950	3.3524	0.0405	
0.666667	0.0568	0.0530	0.0575	3.8185	3.5630	3.8655	3.7490	0.1628	
0.833333	0.0623	0.0543	0.0585	4.1882	3.6504	3.9328	3.9238	0.2690	
1	0.0617	0.0537	0.0576	4.1479	3.6101	3.8723	3.8768	0.2689	
1.5	0.0622	0.0544	0.0575	4.1815	3.6571	3.8655	3.9014	0.2640	
2	0.0619	0.0541	0.0581	4.1613	3.6370	3.9059	3.9014	0.2622	
2.5	0.0621	0.0543	0.0585	4.1748	3.6504	3.9328	3.9193	0.2624	
3	0.0615	0.0545	0.0584	4.1345	3.6639	3.9261	3.9081	0.2358	
3.5	0.0623	0.0543	0.0576	4.1882	3.6504	3.8723	3.9036	0.2703	
4	0.0627	0.0545	0.0576	4.2151	3.6639	3.8723	3.9171	0.2783	
8	0.0624	0.0542	0.0584	4.1950	3.6437	3.9261	3.9216	0.2757	
12	0.0626	0.0541	0.0574	4.2084	3.6370	3.8588	3.9014	0.2881	
16	0.0625	0.0544	0.0567	4.2017	3.6571	3.8118	3.8902	0.2806	
20	0.0624	0.0541	0.0575	4.1950	3.6370	3.8655	3.8992	0.2805	
24	0.0625	0.0542	0.0570	4.2017	3.6437	3.8319	3.8924	0.2839	
28	0.0624	0.0542	0.0569	4.1950	3.6437	3.8252	3.8880	0.2809	
32	0.0626	0.0542	0.0496	4.2084	3.6437	3.3345	3.7289	0.4432	
36	0.0626	0.0546	0.0572	4.2084	3.6706	3.8454	3.9081	0.2743	
40	0.0624	0.0549	0.0572	4.1950	3.6908	3.8454	3.9104	0.2583	
44	0.0628	0.0542	0.0572	4.2218	3.6437	3.8454	3.9036	0.2934	
48	0.0629	0.0545	0.0585	4.2286	3.6639	3.9328	3.9417	0.2825	

**Table L5** Raw data of the determination of amounts of 5-sulfosalicylic acid releasedfrom PorGel 3.00% crosslinked (PorGel_3.00) at time t, pH 5.5 at 37°C

Time (hr)	Absorbance (a.u.)			Drug Accumulation (mg)					
Time (nr)	1	2	3	1	2	3	Avg	SD	
0.083333	0.0146	0.0161	0.0136	0.9815	0.9479	0.9143	0.9479	0.0336	
0.166667	0.0268	0.0205	0.0238	1.8017	1.3782	1.6000	1.5933	0.2118	
0.25	0.0290	0.0333	0.0299	1.9496	2.2387	2.0101	2.0661	0.1525	
0.333333	0.0381	0.0404	0.0348	2.5613	2.7160	2.3395	2.5389	0.1892	
0.416667	0.0431	0.0455	0.0365	2.8975	3.0588	2.4538	2.8034	0.3133	
0.5	0.0476	0.0513	0.0438	3.2000	3.4487	2.9445	3.1978	0.2521	
0.666667	0.0475	0.0515	0.0445	3.1933	3.4622	2.9916	3.2157	0.2361	
0.833333	0.0477	0.0518	0.0443	3.2067	3.4824	2.9782	3.2224	0.2525	
1	0.0478	0.0512	0.0448	3.2134	3.4420	3.0118	3.2224	0.2153	
1.5	0.0490	0.0509	0.0446	3.2941	3.4218	2.9983	3.2381	0.2173	
2	0.0479	0.0516	0.0447	3.2202	3.4689	3.0050	3.2314	0.2321	
2.5	0.0475	0.0518	0.0442	3.1933	3.4824	2.9714	3.2157	0.2562	
3	0.0479	0.0517	0.0444	3.2202	3.4756	2.9849	3.2269	0.2454	
3.5	0.0476	0.0518	0.0445	3.2000	3.4824	2.9916	3.2246	0.2463	
4	0.0477	0.0510	0.0447	3.2067	3.4286	3.0050	3.2134	0.2118	
8	0.0471	0.0517	0.0451	3.1664	3.4756	3.0319	3.2246	0.2275	
12	0.0494	0.0516	0.0444	3.3210	3.4689	2.9849	3.2583	0.2480	
16	0.0478	0.0519	0.0448	3.2134	3.4891	3.0118	3.2381	0.2396	
20	0.0492	0.0516	0.0445	3.3076	3.4689	2.9916	3.2560	0.2428	
24	0.0478	0.0507	0.0443	3.2134	3.4084	2.9782	3.2000	0.2154	
28	0.0479	0.0517	0.0445	3.2202	3.4756	2.9916	3.2291	0.2421	
32	0.0473	0.0513	0.0433	3.1798	3.4487	2.9109	3.1798	0.2689	
36	0.0478	0.0511	0.0436	3.2134	3.4353	2.9311	3.1933	0.2527	
40	0.0466	0.0514	0.0446	3.1328	3.4555	2.9983	3.1955	0.2349	
44	0.0477	0.0507	0.0448	3.2067	3.4084	3.0118	3.2090	0.1983	
48	0.0482	0.0509	0.0449	3.2403	3.4218	3.0185	3.2269	0.2020	

**Table L6** Raw data of the determination of amounts of 5-sulfosalicylic acid releasedfrom PorGel 7.00% crosslinked (PorGel_7.00) at time t, pH 5.5 at 37°C

#### **Release Kinetics of Model Drug from Drug-Loaded PorGel Hydrogel**

In order to study SSA transport mechanism from the PorGel hydrogels, two diffusion models are considered to fit the experimental data.

Model 1 is described by the Ritger-Peppas equation (Venkatesh *et al.*, 1992):

$$\frac{M_t}{M_{\infty}} = k_1 t^n \tag{L1}$$

where  $M_t/M_{\infty}$  is the fractional drug release,  $k_1$  is a kinetic constant (with the unit of T⁻) t is the release time and *n* is the scaling exponent that can be related to the drug transport mechanism. For a thin hydrogel film, when n = 0.5, the drug release mechanism is the Fickian diffusion. When n = 1, Case II transport occurs, corresponding to the zero-order release. When 0.5 < n < 1, the anomalous transport is observed.

<u>Model 2</u> is based on the Higuchi's equation (Serra *et al.*, 2006) and described the Fickian diffusion of the drug:

$$\frac{M_t}{M_\infty} = k_H t^{1/2} \tag{L2}$$

where  $M_t/M_{\infty}$  is the fractional drug release,  $k_H$  is a kinetic constant (with the unit of  $T^{-n}$ ) and t is the release time.

The diffusion coefficients of SSA from the PorGel hydrogels are determined from the slopes of plots of drug accumulation versus square root of time according to Higuchi's equation (A-sasutjarit *et al.*, 2005):

$$Q = 2C_0 (Dt/\pi)^{1/2}$$
(L3)

where Q is the amount of material flowing through a unit cross-section of barrier (g/cm²)in unit time, t (s);  $C_0$  is the initial drug concentration in the hydrogel (g/cm³); and D is the diffusion coefficient of a drug (cm²/s)

The diffusion coefficients of each system were calculated from the slopes of the plot of the amounts of SSA released from SSA-loaded PorGel hydrogels at time t versus time^{1/2} at various crosslinking ratios (PorGel_0.25, PorGel _0.50, PorGel _0.75, PorGel _1.00, PorGel _3.00, and PorGel _7.00) during 48 h as shown in Figure L2 using the Higuchi's equation.



Figure L2 Amounts of sulfosalicylic acid release from SSA-loaded PorGel hydrogel versus time^{1/2} at various crosslink ratios, pH 5.5, and at 37°C, number of samples = 3.

Figure L3 shows the diffusion coefficients of SSA from PorGel hydrogels versus crosslinking ratios and mesh size at 37°C. The results show the diffusion coefficients of SSA are ranked in the following order:  $PorGel_{0.25} > PorGel_{0.50} > PorGel_{0.75} > PorGel_{1.00} > PorGel_{3.00} > PorGel_{7.00}$ .



**Figure L3** Diffusion coefficient of 5-sulfosalicylic acid from PorGel hydrogels versus crosslinking ratios and mesh size, pH 5.5, and at 37°C, number of samples = 3.

Crosslinking ratio (%w/w)

**Table L7** Raw data of the determination of the diffusion coefficient of 5sulfosalicylic acid released from various crosslinked PorGel hydrogel, pH 5.5 at 37°C

Samala	Slope			Diffusion Coefficient (cm ² /s)						
Sample	1	2	3	I	2	3	Avg	SD		
PorGel_0.25	5.997	6.856	7.322	3.49E-06	4.57E-06	5.21E-06	4.42E-06	8.66E-07		
PorGel_0.50	6.524	6.002	5.852	4.14E-06	4.66E-06	3.33E-06	4.04E-06	6.70E-07		
PorGel_0.75	5.884	4.674	6.125	3.36E-06	2.12E-06	3.65E-06	3.04E-06	8.10E-07		
PorGel_1.00	5.194	6.281	3.864	2.62E-06	3.83E-06	1.45E-06	2.64E-06	1.19E-06		
PorGel_3.00	4.712	4.380	4.730	2.16E-06	1.86E-06	2.17E-06	2.07E-06	1.74E-07		
PorGel_7.00	4.226	4.453	3.882	1.74E-06	1.93E-06	1.46E-06	1.71E-06	2.32E-07		
	I	<u> </u>	1		L		l	1		

# Appendix M Determination of Amounts and Diffusion Coefficient of Sulfoalicylic Acid Released from Sulfoalicylic Acid-Loaded FishGel Hydrogel at Various Crosslinking Ratios

The diffusion of drug was observed by custom built modified Franz-Diffusion cells. A diffusion cell consisted of two compartments. First one is a water jacket compartment that is used to exposed to an ambient condition. Other is a receptor chamber containing an acetate buffer solution pH 5.5 and maintained at 37°C by a circulating water bath. To study the effect of crosslinking ratios (1.00, 3.00, and 7.00) on the fish gelatin hydrogel (FishGel), a sample of drug-loaded FishGel hydrogel was placed over the nylon net on the top of the receptor chamber. The drug diffuses through the polymer matrix and the net towards the buffer solution. The 0.1 ml of solution was withdrawn and simultaneously replaced with equal volume of fresh buffer solution at various time intervals. The drug concentrations in these samples were determined by the UV-Visible spectrophotometer at the wavelength of 298 nm.

The amounts of 5-sulfosalicylic acid (SSA) released from SSA-loaded FishGel hydrogel versus time at various crosslinking ratios (FishGel_1.00, FishGel_3.00, and FishGel_7.00) during 48 h are shown in Figure M1. The amounts of released drug gradually increase with time and then reach constant values.



**Figure M1** Amounts of 5-sulfosalicylic acid release from SSA-loaded FishGel hydrogel versus time at various crosslink ratios, pH 5.5, and at 37°C, number of samples = 3.

Time (hr)	Absorbanc	Absorbance (a.u.)			Drug Accumulation (mg)					
	1	2	3	1	2	3	Avg	SD		
0.083333	0.0186	0.0147	0.0134	1.2520	0.9882	0.9008	1.0470	0.1828		
0.166667	0.0307	0.0334	0.0200	2.0629	2.2454	1.3445	1.8843	0.4762		
0.25	0.0455	0.0529	0.0269	3.0610	3.5563	1.8084	2.8086	0.9009		
0.333333	0.0538	0.0654	0.0343	3.6146	4.3966	2.3059	3.4390	1.0564		
0.416667	0.0643	0.0671	0.0455	4.3241	4.5109	3.0588	3.9646	0.7900		
0.5	0.0652	0.0679	0.0464	4.3865	4.5647	3.1193	4.0235	0.7881		
0.666667	0.0690	0.0684	0.0510	4.6360	4.5983	3.4286	4.2210	0.6865		
0.833333	0.0705	0.0671	0.0530	4.7373	4.5109	3.5630	4.2704	0.6230		
1	0.0700	0.0662	0.0535	4.7035	4.4504	3.5966	4.2502	0.5800		
1.5	0.0706	0.0696	0.0531	4.7451	4.6790	3.5697	4.3313	0.6603		
2	0.0706	0.0678	0.0524	4.7451	4.5580	3.5227	4.2753	0.6584		
2.5	0.0702	0.0638	0.0521	4.7218	4.2891	3.5025	4.1711	0.6181		
3	0.0704	0.0692	0.0529	4.7296	4.6521	3.5563	4.3127	0.6562		
3.5	0.0704	0.0693	0.0538	4.7296	4.6588	3.6168	4.3351	0.6230		
4	0.0705	0.0671	0.0530	4.7373	4.5109	3.5630	4.2704	0.6230		
8	0.0707	0.0654	0.0543	4.7529	4.3966	3.6504	4.2667	0.5626		
12	0.0704	0.0704	0.0534	4.7295	4.7328	3.5899	4.3507	0.6589		
16	0.0712	0.0683	0.0536	4.7841	4.5916	3.6034	4.3264	0.6335		
20	0.0704	0.0638	0.0533	4.7296	4.2891	3.5832	4.2006	0.5783		
24	0.0698	0.0628	0.0532	4.6907	4.2218	3.5765	4.1630	0.5595		
28	0.0702	0.0688	0.0547	4.7218	4.6252	3.6773	4.3414	0.5772		
32	0.0705	0.0703	0.0537	4.7373	4.7261	3.6101	4.3578	0.6476		
36	0.0707	0.0703	0.0524	4.7529	4.7261	3.5227	4.3339	0.7027		
40	0.0702	0.0674	0.0523	4.7218	4.5311	3.5160	4.2563	0.6482		
44	0.0697	0.0656	0.0538	4.6831	4.4101	3.6168	4.2367	0.5539		
48	0.0707	0.0713	0.0528	4.7529	4.7933	3.5496	4.3653	0.7067		

**Table M1** Raw data of the determination of amounts of 5-sulfosalicylic acidreleased from FishGel 1% crosslinked (FishGel_1) at time t, pH 5.5 at 37°C

Time (hr)	ime (hr)	e (a.u.)		Drug Accumulation (mg)				
rime (nr)	1	2	3	1	2	3	Avg	SD
0.083333	0.0149	0.0117	0.0154	1.0017	0.7866	1.0353	0.9412	0.1350
0.166667	0.0256	0.0240	0.0200	1.7210	1.6134	1.3445	1.5597	0.1939
0.25	0.0387	0.0271	0.0379	2.6017	1.8218	2.5479	2.3238	0.4355
0.333333	0.0450	0.0331	0.0443	3.0252	2.2252	2.9782	2.7429	0.4489
0.416667	0.0481	0.0344	0.0485	3.2336	2.3126	3.2605	2.9356	0.5397
0.5	0.0528	0.0367	0.0504	3.5496	2.4672	3.3882	3.1350	0.5839
0.666667	0.0581	0.0524	0.0614	3.9059	3.5227	4.1277	3.8521	0.3061
0.833333	0.0586	0.0521	0.0642	3.9395	3.5025	4.3160	3.9193	0.4071
1	0.0574	0.0477	0.0645	3.8588	3.2067	4.3361	3.8006	0.5670
1.5	0.0582	0.0543	0.0641	3.9126	3.6504	4.3092	3.9574	0.3317
2	0.0575	0.0510	0.0640	3.8655	3.4286	4.3025	3.8655	0.4370
2.5	0.0578	0.0463	0.0641	3.8857	3.1126	4.3092	3.7692	0.6068
3	0.0587	0.0510	0.0639	3.9462	3.4286	4.2958	3.8902	0.4363
3.5	0.0587	0.0536	0.0648	3.9462	3.6034	4.3563	3.9686	0.3770
4	0.0579	0.0530	0.0643	3.8924	3.5630	4.3227	3.9261	0.3809
8	0.0577	0.0475	0.0643	3.8790	3.1933	4.3227	3.7983	0.5690
12	0.0588	0.0553	0.0644	3.9529	3.7176	4.3294	4.0000	0.3086
16	0.0571	0.0521	0.0646	3.8387	3.5025	4.3429	3.8947	0.4230
20	0.0576	0.0477	0.0643	3.8723	3.2067	4.3227	3.8006	0.5614
24	0.0585	0.0523	0.0642	3.9328	3.5160	4.3160	3.9216	0.4001
28	0.0578	0.0478	0.0637	3.8857	3.2134	4.2824	3.7938	0.5403
32	0.0583	0.0467	0.0647	3.9193	3.1395	4.3496	3.8028	0.6134
36	0.0575	0.0509	0.0640	3.8655	3.4218	4.3025	3.8633	0.4403
40	0.0580	0.0530	0.0638	3.8992	3.5630	4.2891	3.9171	0.3634
44	0.0579	0.0488	0.0648	3.8924	3.2807	4.3563	3.8431	0.5395
48	0.0579	0.0471	0.0638	3.8924	3.1664	4.2891	3.7826	0.5693

**Table M2** Raw data of the determination of amounts of 5-sulfosalicylic acidreleased from FishGel CR_3% at time t, pH 5.5 at 37°C

Time (hr)	Absorbanc	e (a.u.)		Drug Accumulation (mg)						
rime (m)	1	2	3	1	2	3	Avg	SD		
0.083333	0.0089	0.0134	0.0149	0.5975	0.9008	0.9995	0.8326	0.2095		
0.166667	0.0146	0.0258	0.0266	0.9788	1.7345	1.7874	1.5002	0.4523		
0.25	0.0205	0.0419	0.0349	1.3753	2.8168	2.3450	2.1790	0.7349		
0.333333	0.0238	0.0483	0.0394	1.5997	3.2471	2.6467	2.4978	0.8337		
0.416667	0.0305	0.0553	0.0466	2.0486	3.7176	3.1316	2.9659	0.8468		
0.5	0.0313	0.0559	0.0488	2.1009	3.7580	3.2790	3.0460	0.8527		
0.666667	0.0347	0.0589	0.0512	2.3328	3.9597	3.4400	3.2442	0.8309		
0.833333	0.0345	0.0591	0.0514	2.3179	3.9731	3.4540	3.2483	0.8466		
1	0.0349	0.0590	0.0515	2.3478	3.9664	3.4610	3.2584	0.8281		
1.5	0.0336	0.0589	0.0527	2.2580	3.9597	3.5452	3.2543	0.8873		
2	0.0340	0.0594	0.0516	2.2879	3.9933	3.4680	3.2498	0.8734		
2.5	0.0337	0.0592	0.0512	2.2655	3.9798	3.4400	3.2285	0.8765		
3	0.0345	0.0588	0.0516	2.3179	3.9529	3.4680	3.2463	0.8398		
3.5	0.0337	0.0592	0.0513	2.2655	3.9798	3.4470	3.2308	0.8774		
4	0.0346	0.0590	0.0514	2.3254	3.9664	3.4540	3.2486	0.8396		
8	0.0347	0.0591	0.0508	2.3328	3.9731	3.4120	3.2393	0.8337		
12	0.0340	0.0589	0.0532	2.2879	3.9597	3.5732	3.2736	0.8752		
16	0.0339	0.0592	0.0515	2.2805	3.9798	3.4610	3.2404	0.8709		
20	0.0337	0.0597	0.0529	2.2655	4.0134	3.5592	3.2794	0.9069		
24	0.0343	0.0586	0.0515	2.3029	3.9395	3.4610	3.2345	0.8415		
28	0.0330	0.0593	0.0516	2.2206	3.9866	3.4680	3.2251	0.9077		
32	0.0341	0.0599	0.0510	2.2954	4.0269	3.4260	3.2494	0.8791		
36	0.0339	0.0590	0.0515	2.2805	3.9664	3.4610	3.2360	0.8652		
40	0.0350	0.0598	0.0502	2.3553	4.0202	3.3769	3.2508	0.8396		
44	0.0348	0.0591	0.0514	2.3403	3.9731	3.4540	3.2558	0.8342		
48	0.0343	0.0591	0.0519	2.3029	3.9731	3.4891	3.2550	0.8593		

**Table M3** Raw data of the determination of amounts of 5-sulfosalicylic acidreleased from FishGel 7% crosslinked (FishGel_7) at time t, pH 5.5 at 37°C

### Release Kinetics of Model Drug from Drug-Loaded FishGel Hydrogel

In order to study SSA transport mechanism from the FishGel hydrogels, two diffusion models are considered to fit the experimental data.

Model 1 is described by the Ritger-Peppas equation (Venkatesh *et al.*, 1992):

$$\frac{M_t}{M_{\infty}} = k_1 t^n \tag{K1}$$

where  $M_t/M_{\infty}$  is the fractional drug release,  $k_1$  is a kinetic constant (with the unit of Tⁿ) t is the release time, and *n* is the scaling exponent that can be related to the drug transport mechanism. For a thin hydrogel film, when n = 0.5, the drug release mechanism is the Fickian diffusion. When n = 1, Case II transport occurs, corresponding to the zero-order release. When 0.5 < n < 1, the anomalous transport is observed.

<u>Model 2</u> is based on the Higuchi's equation (Serra *et al.*, 2006) and described the Fickian diffusion of the drug:

$$\frac{M_t}{M_\infty} = k_H t^{1/2} \tag{K2}$$

where  $M_t/M_{\infty}$  is the fractional drug release,  $k_H$  is a kinetic constant (with unit of T⁻ⁿ) and t is the release time.

The diffusion coefficients of SSA from the FishGel hydrogels are determined from the slopes of plots of drug accumulation versus square root of time according to Higuchi's equation (A-sasutjarit *et al.*, 2005):

$$Q = 2C_0 (Dt/\pi)^{1/2}$$
(K3)

where Q is the amount of material flowing through a unit cross-section of barrier (g/cm²) in unit time, t (s);  $C_0$  is the initial drug concentration in the hydrogel (g/cm³); and D is the diffusion coefficient of a drug (cm²/s).

The diffusion coefficients of each system were calculated from the slopes of the plot of the amounts of SSA released from SSA-loaded FishGel hydrogels at time t versus time^{1/2} at various crosslinking ratios (FishGel_1.00, FishGel_3.00, and FishGel_7.00) during 48 h as shown in Figure M2 using the Higuchi's equation.



Figure M2 Amounts of 5-sulfosalicylic acid release from SSA-loaded FishGel hydrogel versus time^{1/2} at various crosslink ratios, pH 5.5, and at 37°C, number of samples = 3.

Figure M3 shows the diffusion coefficients of SSA from FishGel hydrogels versus crosslinking ratios and mesh size at 37°C. The results show the diffusion coefficients of SSA are ranked in the following order: FishGel_1.00 > FishGel_3.00 > FishGel_7.00.



**Figure M3** Diffusion coefficient of sulfosalicylic acid from FishGel hydrogels versus crosslinking ratios and mesh size, pH 5.5, and at 37°C, number of samples = 3.

**Table M4** Raw data of the determination of the diffusion coefficient of 5sulfosalicylic acid released from various crosslinked FishGel hydrogel, pH 5.5 at 37°C

Sample	Slope			Diffusion Coefficient (cm ² /s)						
Sample	1	2	3	1	2	3	Avg	SD		
FishGel_1.00	5.791	6.377	4.147	3.26E-06	3.95E-06	1.67E-06	2.96E-06	1.17E-06		
FishGel_3.00	4.893	3.813	4.816	2.33E-06	1.41E-06	2.25E-06	2.00E-06	5.08E-07		
FishGel_7.00	2.772	4.974	4.314	7.47E-07	2.40E-06	1.81E-06	1.65E-06	8.40E-07		

Tunos	Tensile stress at	Elongation at break,	Young's modulus,
Types	break, $\sigma_b$ (MPa)	$\varepsilon_b(\%)$	E (MPa)
FishGel_1	$48.35 \pm 3.23$	$4.04\pm0.33$	$1,974.03 \pm 143.87$
FishGel_3	$61.13 \pm 3.41$	3.65 ± 0.29	2,341.79 ± 76.03
PorGel_0.25	$63.30 \pm 2.77$	$6.26 \pm 0.37$	2,086.86 ± 79.56
PorGel_3	$72.02\pm4.04$	$4.88 \pm 0.52$	2952.09 ± 70.15

Table N1 Summarize the gelatin mechanical properties

Tensile stress at break,  $\sigma_b$ , and elongation at break,  $\varepsilon_b$  were determined by using Universal Testing Machine (Lloyd). Initial grip separation and cross-head speed were set at 4 cm and 50 mm/min, respectively. The sample films were cut into 1×10 cm. The thickness of the sample films was observed via Digital thickness Gauge (Peacock).

Table N1 shows the parameters of gelatin mechanical property. The increasing of crosslinking ratio, resulting in an increase tensile strength and a decrease in the percentage elongation of gelatin films because the restriction of molecular mobility (Baj *et al.*, 2009). For the same crosslinking ratio (3%), porcine gelatin films show young's modulus higher than that of fish gelatin films (PorGel_3  $\approx$  2,952 MPa and FishGel  $\approx$  2,341 MPa) since the molecular weight of porcine gelatin was higher. This result confirms that the porcine gelatin has higher molecular weight than that of fish gelatin.

#### **CURRICULUM VITAE**

Name: Mr. Marutpong Rattana

**Date of Birth:** January 14, 1987

Nationality: Thai

### **University Education:**

2004–2008 Bachelor Degree of Textile Science and Technology, Faculty of Science, Thammasat University, Bangkok, Thailand

#### **Honors and Scholarships:**

Second class honor in B.Sc. (Science and Technology), Thammasat University.

## **Proceedings:**

Rattana, M.; and Sirivat, A. (2012, April 24) Controlled Drugs Release from Gelatin Hydrogels. Proceedings of <u>the 3rd Research Symposium on</u> <u>Petrochemical and Materials Technology and the 18th PPC Symposium on</u> <u>Petroleum, Petrochemicals, and Polymers</u>, Ballroom, Queen Sirikit National Convention Center, Bangkok, Thailand.

### **Presentations:**

Rattana, M.; and Sirivat, A. (2012, April 24) Controlled Drugs Release from Gelatin Hydrogels. Paper presented at the 3rd Research Symposium on Petrochemical and Materials Technology and the 18th PPC Symposium on Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand.