CHEMICAL OXIDATION POLYMERIZATION AND CHARACTERIZATION OF POLY ORTHO-ANISIDINE

Kiattipong Khamngoen

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

Thesis Title:	Chemical oxidation polymerization and characterization of
	poly ortho-anisidine
By:	Kiattipong Khamngoen
Program:	Polymer Science
Thesis Advisor:	Prof. Anuvat Sirivat

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Animational

(Prof. Anuvat Sirivat)

1= Jyaytor

(Prof. Pitt Supaphol)

(Asst. Prof.Wanchai Lerdwijitjarud)

ABSTRACT

 5572006063: Polymer Science Program
Kiattipong Khamngoen: Chemical oxidation polymerization and characterization of poly ortho-anisidine nanoparticles
Thesis Advisor: Prof.Anuvat Sirivat52 pp.
Keywords: Poly *o*-anisidine/ Conductive polymer/ Chemical oxidation polymerization/ Nanoparticle

Poly o-anisidine (POA) is a conductive polymer that can conduct electrons by a π conjugated system. POA is a derivative of polyaniline, however, it still exhibits low electrical conductivity. This work is focused on the improvement of electrical conductivity of POA by synthesizing POA in nanoparticle forms using an anion as dopant. POA nanoparticles were obtained by chemical oxidation polymerization using an ammonium persulfate as an oxidant and a sodium dodecyl sulfate (SDS) as a surfactant template for controlling size and shape of POA. The properties of the POA nanoparticles were characterized by fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, thermal gravimetric analyzer, and scanning electron microscopy. The POA nanoparticles shapes were nano-fibers with diameter varying diameter from 63 to 129 nm depending on the polymerization temperature, polymerization time, and SDS concentration. The electrical conductive obtained varied from 0.022 to 198 S/cm, a variation of 4 orders of magnitude, depending on the POA nanoparticle size. The smallest POA nanoparticle size provided the highest electrical conductivity because of the larger surface area. Thus, this work show the higher electrical conductivity of the synthesized nano-fiber shape of POA which have not previously been reported elsewhere.

iii

บทคัดย่อ

เกียรติพงษ์ คำเงิน : การสังเคราะห์อนุภาคนาโน และการวิเคราะห์คุณสมบัติเชิง ลักษณะของ พอลิ ออร์โธ เอนิซิดีน ด้วยวิธีการสังเคราะห์แบบ ออกซิเดชันพอลิเมอร์ไรเซชันทาง เคมี (Chemical oxidation polymerization and characterization of poly ortho-anisidine nanoparticles) อ. ที่ปรึกษา : ศ.คร. อนุวัฒน์ ศิริวัฒน์ 52 หน้า

พอลิ ออร์ โธ เอนิซิดีน เป็นพอลิเมอร์นำไฟฟ้า ซึ่งเป็นอนุพันธุ์ของ พอลิอะนิลีน ที่มีก่า การนำไฟฟ้าที่ต่ำ โดยในงานวิจัยนี้ ต้องการที่จะพัฒนาความสามารถในการนำไฟฟ้าของ พอลิ ออร์ โธ เอนิซิดีน ด้วยการสังเคราะห์ให้มีขนาดอนุภาคนาโน และ โดป เพื่อเพิ่มค่าการนำไฟฟ้าบน -โครงสร้างด้วยไอออนประจุบลบ โดยใช้ โซเดียมโดเดคซิลซัลเฟต เป็นสารลดแรงตึงผิว และ แอมโมเนียมเปอร์ซัลเฟต เป็นตัวออกซีไดซ์ในการสังเคราะห์พอลิเมอร์ โดยพอลิเมอร์ที่ได้นั้น จะ ถูกนำไปวิเคราะห์ทางโครงสร้าง และการนำไฟฟ้าโดย เครื่องวัดการดูดกลืนแสง, ฟูเรียทรานส์ ฟอร์มสเปกโตรสโกปี, เครื่องวิเคราะห์การเปลี่ยนแปลงน้ำหนักของสารโดยอาศัยคุณสมบัติทาง ความร้อน, และกล้องจุลทรรศน์แบบส่งกราด ซึ่งการการวิเคราะห์ พบว่า พอลิ ออร์ โธ เอนิซิดีน มี ลักษณะเป็นเส้นใยขนาดนาโน มีขนาดอนุภาคอยู่ในช่วง 63-129 นาโนเมตร และ มีก่าการนำไฟฟ้า อยู่ในช่วง 0.022 ถึง 198 ซีเมนต์ต่อเซนดิเมตร โดยขนาดอนุภาคและค่าการนำไฟฟ้านั้น ขึ้นอยู่กับ อุณหภูมิ, เวลา, และปริมาณความเข้มข้นของสารลดแรงดึงผิวที่ใช้ในการสังเคราะห์ จากงานวิจัยนี้ พบว่า ค่าการนำไฟฟ้าที่สูงขึ้นของ พอลิ ออร์โธ เอนิซิดีน นั้น เป็นผลมาจากขนาดอนุภาคที่เล็กลง และมีลักษณะเป็นใยเชื่อมโยงกัน

ACKNOWLEDGEMENTS

I'm would like to acknowledge the financial supports from the Conductive and Electroactive Polymer Research Unit of Chulalongkorn University, the Center of Excellence on Petrochemical and Materials Technology, Thailand, the Petroleum and Petrochemical College, the Thailand Research Fund (TRF-RTA), and the Royal Thai Government.

I would like to thank all faculties who have offered valuable knowledge, especially, Prof. Dr. Anuvat Sirivat who is my advisor with offering several enlightening suggestions, discussions and problem solving direction entirely the course of his work. I would like to thanks Prof. Dr. Pitt Supaphol and Asst. Dr. Wanchai Lerdwijitjarud for kindly being on my thesis committee.

Special thanks for all CEAP group members for their various helpful discussions and suggestions on this work:

Finally, I really would like to thank with sincerest appreciation for my parents and family for the love, understanding, and encouragement, for friends of me for suggestions, helping and cheering.

TABLE OF CONTENTS

			PAG
	Title F	age	i
	Abstract (in English)		
	Abstract (in Thai)		
	Acknowledgements		
	Table of Contents		vi
	List of Tables -		viii
	List of	Figures	ix
	Abbre	viations	xi
	List of	Symbols	xii
СНА	PTER		
	I	INTRODUCTION	1
	II	LITERATURE REVIEW	2
		2.1 Conductive Polymer	2
		2.2 Oxidation Polymerization	3
		2.3 Poly <i>o</i> -anisidine Synthesis and Application	4
		2.4 Synthesis of Poly <i>o</i> -anisidine Nanoparticles	10
	III	EXPERIMENTAL	15
		3.1 Materials	15
		3.2 Experimental	15
		3.3 Characterization	15
		3.3.1 Fourier Transforms Infrared Spectrometer	15
		3.3.2 Ultraviolet-visible Spectrophotometer	16
		3.3.3 Proton Nuclear Magnetic Resonance Spectroscopy	16
		3.3.4 Scanning Electron Microscope	16
	-	3.3.5 Thermogravimetric Analyzer	16

-

PAGE

CHAPTER		P	AGE	
	3.3.6 Te	nsiometer	16	
	3.3.7 Tw	vo-point Probe Meter	16	
IV	CHEMICAL	OXIDATION POLYMERIZATION AND		
	CHARACTI	ERIZATION OF POLY ORTHO-ANISIDINE		
	4.1 Abstract		18	
	4.2 Introduct	ion	19	
	4.3 Materials	and Methods	20	
	4.4 Results a	nd Discussion	22	
	4.5 Conclusio	ons	26	
	4.6 Acknowl	edgements	26	
	4.7 Reference	2S	- 34	
v	CONCLUSI	ONS	38	
	REFERENC	ES	39	
	APPENDICI	2S	44	
	Appendix A	Synthesis of Poly o-anisidine	44	
	Appendix B	Surface Tension Measurement	45	
	Appendix C	FTIR Spectra of Poly o-anisidine	46	
	Appendix D	UV-VIS Spectra of Poly <i>o</i> -anisidine	49	
	Appendix E	¹ H NMR Sspectrum of Poly <i>o</i> -anisidine	50	
	Appendix F	TGA of Poly o-anisidine	52	
	Appendix G	SEM Photographs and Electrical Conductivity	53	
	Appendix H	Reproductivity of Poly o-anisidine in Condition		
		of 48 hrs, 3 °C, and 8 mole ratio of		
		SDS:o-anisidinemonomer	56	

CURRICULUM VITAE

- 1

.

-

-

4

LIST OF TABLES

TABLE

-

PAGE

CHAPTER II

2.1	· Some Conjugated Conducting Polymers	3
	-	
-	CHAPTER IV	
4.1	Comparison of Particle Size, Particle Shape and Electrical	33
	Conductivity of POA Obtained under Various Synthesis	
	Conditions	

.

.

-

÷

LIST OF FIGURES

FIGURE

PAGE

CHAPTER II

2.1	Chemical Structure of (a) Polyaniline and (b) Poly o-anisidine	4
2.2	Scheme of Homo Polymerization of Poly o-anisidine	5
2.3	Scanning Electron Micrograph of POA Coating Synthesized	6
	on LCS Substrate	
2.4	SEM (a) and TEM (b) Images of Poly <i>o</i> -anisidine Synthesized	
	by a Hydrothermal Reaction	8
2.5	Transmission Electron Microphotograph (TEM)	
	of Poly-o-anisidine Sn(IV)phosphate Composite	11
2.6	TEM Images of P(An-co-o-As)/PSS/MWNTs. The Red Line	
	Indicates the Thickness of the Polymer Shells Assembled on MWNTs	12
2.7	SEM Micrographs of CoFe2O4 (a), POA (b) and	
	POA/CoFe2O4 Nanocomposite (c)	12
2.8	SEM Images of the Polymers Synthesized in the Presence of	
	CSA: (A) PANI and (B) POA	13
2.9	SEM Micrographs of POMA Doped with (A) pTSA, (B) HCl,	
	(C) MSA, and (D) Undoped POMA	14
2.10	SEM images of poly(N-ethylaniline): (A) PNETA/TA and	
	(B) PNETA/TA/AA	14

CHAPTER IV

.....

4.1 FTIR Spectra of POA: (a) Dedoped POA; (b) SDS;		
	and (c) Doped POA.	27
4.2	Chemical Structure of Quinoniod (a) Benzenoid and (b) Ring of POA.	27
4.3	UV-VIS Spectra of POA.	28
4.4	Thermogram of POA.	28

1

.

FIGURE

•

4

4.5	Proposed Polymerization Mechanism of POA:	
	(a) OA as Monomer is Oxidized by APS to a Cation Radical;	
	(b) OA Cation Radicals Form Dimers that Subsequently get	
	Deprotonated; and (c) POA Polymer is Doped and Dodecyl Sulfate	
	Ion Acts as Counter ion	29
4.6	Morphology of POA Nanoparticles Prepared Using Various Synthesis	
	Temperature: (a) 3 °C and (b) 25 °C	30
4.7	Morphology of POA Nanoparticles Prepared Using Various	
	Synthesis Time: (a) 18h; (b) 48h; and (c) 72h	30
4.8	Morphology of POA Nanoparticles Prepared Using Various	
	SDS Mole Ratios: (a) 0.12; (b) 4.00; (c) 8.00; and (d) 12.00	31
4.9	Electrical Conductivity and Fiber Diameter of Poly o-anisidine	
	at Various Mole Ratios of SDS: o-anisidine Monomer	32

-

PAGE

.

17

.

-

ABBREVIATIONS

	e	Electrons
	DC	Direct current
	POA	Poly <i>o</i> -anisidine
	PANI	Poly aniline ·
	SDS	Sodium dodecyl sulfate
	СТ	Charge transfer
	LSC	Low carbon steel
	UV-vis	Ultraviolet-visible spectrophotometer
	FT-IR.	Fourier transforms infrared spectrometer
	H-NMR	Proton nuclear magnetic resonance spectroscopy
	PC	Polycarbonate
	ECP	Electrochemical polymerization
	CNT	Carbon nanotubes
	SEM	Scanning electron microscope
	TEM	Transmission electron microscope
	TGA	Thermo gravimetric analyzer
	RH	Relative humidity
	MWNTs	Multiwall carbon nanotubes
	APS	Ammonium persulfate

-

-

LIST OF SYMBOLS

specific conductivity (S/cm.) σ specific resistivity (Ω .cm.) ρ R_s sheet resistivity (Ω) I applied current (A) K geometric correction factor V voltage drop (V) film thickness (cm.) t known specific resistivity (Ω .cm.) Pref