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APPENDICES

Appendix A Calculation for Benzoxazine Synthesis Ratio

In this research, two kinds of benzoxazine monomer were prepared from 
three main precursors which were phenol, formaldehyde, and amine (e.g., 
diethylenetriamine (DETA) and pcntaethylenehexaminc (PEHA)). This synthesis 
process was suggested from the previous study of Hirikamol (2013). In detailed, 
there was a 2:4:1 mole ratio for phenol, formaldehyde, and amine, respectively, 
which was synthesized in the solution of chloroform. In all tests, the consumption of 
benzoxazine monomer was 80 g for each batch. Moreover, both synthesis reactions 
of benzoxazines were shown in Equations A1 and A2 (Hirikamol, 2013).

Molecular weight of phenol = 94.11
Molecular weight of formaldehyde = 30.03
Molecular weight of DETA = 103.17
Molecular weight of PEHA = 232.37
Density of formaldehyde = 1.09 g/mL
Density of DETA = 0.955 g/mL
Density of PEHA = 0.95 g/mL

Amine: Diethylenetriamine (DETA)

(Al)

Molecular weight of benzoxazine

Benzoxazine 339 g
80 g

Phenol = 0.24x2
Formaldehyde = 0.24x4

= (20xQ + (3xN) + (2x0) + (25xH)
= (20x12) + (3x14) + (2x16) + (25x1) 
= 339 
= 1 mol 
= 0.24 mol 
= 0.48 mol 
= 0.96 mol
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DETA =0.24x1 =0.24 mol
Use in gram:

Phenol =0.48x94.11 = 45.17 g #
Use in mL:

Formaldehyde = 0.96x30.03 = 28.83 g
But formaldehyde 37 wt% = (28.83X 100) -  (37x 1.09) = 71.49 mL # 
DETA =0.24x103.17-0.955 =25.93 mL #

Amine: Pentaethylenehexamine (PEHA)

Molecular weight of benzoxazine

Benzoxazine

= (26xC) + (6*N) + (2x0) + (40xH)
= (26x12) + (6x14) + (2x16) + (40x1) 
= 468 
= 1 mol 
= 0.171 mol 
= 0.342 mol

468 g
80 g

Phenol =0.171x2
Formaldehyde =0.171x4 = 0.682 mol
PEHA =0.171x1 =0.171 mol

Use in gram: ปี
Phenol =0.342x94.11 = 32.19 g #

Use in mL:
Formaldehyde = 0.682x30.03 = 20.48 g
But formaldehyde 37 wt% = (20.48X 100) -  (37x 1.09) = 50.78 mL #
PEHA =0.171x232.37=0.95 = 41.83 mL#

(A2)

๐
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Appendix B FTIR Spectra of Benzoxazine Monomers and Polybenzoxazines

W avenum ber (c u r 1)

Figure B1 FT-IR spectrum of the benzoxazine monomer by DETA as reactant.

W avenum ber (cu r1)

Figure B2 FT-IR spectrum of the benzoxazine monomer by PEHA as reactant.
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W avenum ber ( c m 1)

re B3 FT-IR spectrum of polybenzoxazine by DETA as reactant.

W avenum ber ( c m 1)

Figure B4 FT-IR spectrum of polybenzoxazine by PEHA as reactant.
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Appendix c  DSC Thermograms of all Materials

Beiizoxazine (DETA) 

Benzoxazine (PEHA)

c.
3

50 100 150 200

T em perature (°C)

Figure Cl DSC thermograms of benzoxazine monomers by DETA and PEHA as 
reactants.

---- ---PBZ (DETA)

— —  PBZ (PEHA)

40 60 80 100 120 140 160 180

Tem perature (°C)

Figure C2 DSC thermograms of polybenzoxazines by DETA and PEHA as reactant.
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Figure C3 DSC thermograms of (a) DETA-40wt% derived aerogel at 180 ๐c  for 15 
min, (b) DETA-40wt% derived aerogel at 180 ๐c  for 30 min, and (c) DETA-40wt% 
derived aerogel at 180 °c for 45 min.

Figure C4 DSC thermograms of polybenzoxazine aerogels before curing step with
DETA as reactant.

๐
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Tem perature (°C)

Figure C5 DSC thermograms of polybenzoxazine aerogels after curing step with 
DETA as reactant.

Figure C6 DSC thermograms of polybenzoxazine aerogels before curing step with
PEHA as reactant.
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Figure C7 DSC thermograms of polybenzoxazine aerogels after curing step with 
PEHA as reactant.
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Appendix D TGA Thermograms of all Materials

Figure D1 TGA thermograms of benzoxazine monomers with DETA and PEHA as 
amine reactants.

Figure D2 TGA thermograms of polybenzoxaine and polybenzoxazine aerogels
with DETA as reactant.
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Figure D3 TGA thermograms of polybenzoxazine and polybenzoxazine aerogels 
with PEHA as reactant.

Figure D4 TGA thermograms of PBZs derived from DETA and PEHA after heating 
up to 900 °c (with a heating rate of 20 °c/min).
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Figure D5 TGA thermograms of PEG-PPG-PEG block copolymer after heating up 
to 900 °c (with heating rate of 20 ๐c/min).

Figure D6 TGA thermograms of PBZ aerogels derived from DETA and PEHA with 
and without non-ionic surfactant (PEG-PPG-PEG block copolymer) after heating up 
to 900 °c (with heating rate of 20 ๐c/min).
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Appendix E Calculation for Residual Weight of Polybenzoxazine

In this research, theoretical char yield of polybenzoxazine was 
calculated by dividing molecular weight of carbon compound by the total 
molecular weight of polybenzoxazine and multiplying by 100 as shown in 
Equations El and E2 (Brooks and Media, 2015).

Amine: Diethylenetriamine (DETA)

Molecular weight of PBZ (DETA) = (18XC) + (3XN) + (2x0) + (21 xH)
= (18x12)+ (3x14)+ (2x16)+ (21xl) 
= 311

Molecular weight of carbon atom% Char yield (DETA) = ---- ----- 1 g 1 , ---------------X 100Molecular weight of polybenzoxazine (DETA)
= —  X 100 =69.45 %#

■ a

(El)

311
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Amine: Pentaethylenehexamine (PEHA)

Molecular weight of PBZ (PEHA) = (24xQ + (6*N) + (2x0) + (34xH)
= (24x12) + (6x14) + (2x16) + (34x1) 
= 438

Molecular weight of carbon atom% Char yield (PEHA) = ---- ----- 1 . -  ,------------:---- 7 -------- X 100 (E2)Molecular weight of polybenzoxazine (PEHA)
= 100 = 65.75 % #

๐
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Appendix F %Burn Off of Carbon Aerogels from Polybenzoxazine

Table FI Comparison of %burn off of PBZ-derived carbon aerogels from two 
instruments (TG-DTA and Furnace)

Materials %Bum Off (TG-DTA) %Bum Off (Furnace)
BA from DETA-30 wt% 63.56 % 65.53 %
BA from DETA-35 wt% 65.39 % 65.62 %
BA from DETA-40 wt% 65.77 % 64.20 %
BA from PEHA-30 wt% 71.06 % 73.54 %
BA from PEHA-35 wt% 77.96 % 73.61 %
BA from PEHA-40 wt% 76.38 % 75.10%

๐



Appendix G XPS Spectra of all Materials

DETA-derived polybenzoxazine

291 29 0  2S9 288 287 28 6  285 284 283

Binding E nergy (eV)
282 281

Figure G1 c  1 ร XPS spectra of DETA-derived polybenzoxazine.

538 53 7  536 535 534 533 532 531 530 529 528

Binding E nergy (eV)

Figure G2 Ols XPS spectra of DETA-derived polybenzoxazine.
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Binding Energy (eV)

Figure G3 N1 ร XPS spectra of DETA-derived polybenzoxazine.

30 wt% DETA-derived PBZ organic aerogel

Binding Energy (eV )

Figure G4 Cls XPS spectra of a 30 wt% DETA-derived PBZ organic aerogel.



Binding E nergy (eV)

Figure G5 01s XPS spectra of a 30 wt% DETA-derived PBZ organic aerogel

Binding Energy (eV)

Figure G6 Nls XPS spectra of a 30 wt% DETA-derived PBZ organic aerogel



35 wt% DETA-derived PBZ organic aerogel

Biudiug E nergy (eV)

Figure G7 Cls XPS spectra of a 35 พt% DETA-derived PBZ organic aerogel

Binding Energy (eV7)

Figure G8 Ols XPS spectra of a 35 wt% DETA-derived PBZ organic aerogel
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Binding E nergy (eV)

Figure G9 Nls XPS spectra of a 35 wt% DETA-derived PBZ organic aerogel. 

40 wt% DETA-derived PBZ organic aerogel

28$ 28 7  286 285 284

Binding Energy (eV)
281

Figure G10 Cls XPS spectra of a 40 wt% DETA-derived PBZ organic aerogel.
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Bindüg E nergy (eV)

Figure Gll o is  XPS spectra of a 40 wt% DETA-derived PBZ organic aerogel.

Binding Euergy (eV)

Figure G12 Nls XPS spectra of a 40 wt% DETA-derived PBZ organic aerogel.
PEHA-derived polybenzoxazine



28 7  2 8 6  285 284

Bidding Euergy (eV)
283 2S2 281

Figure G13 Cls XPS spectra of PEHA-derived polybenzoxazine.

Binding Energy (eV)

Figure G14 Ols XPS spectra of PEHA-derived polybenzoxazine.
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Binding Energy (eV)

Figure G15 Nls XPS spectra of PEHA-derived polybenzoxazine. 

30 wt% PEHA-derived PBZ organic aerogel

Graphite 

Aliphatics 

c with N  

Hydroxyl or Ether 

Carbonyl 

Carboxyl or Ester 

Envelope peak 

Actual peak

291 29 0  289 2 8 8  287 . 28 6  285 284 283 28 2  281

Binding Energy (eV)

Figure G16 Cls XPS spectra of a 30 wt% PEHA-derived PBZ organic aerogel.



Binding Energy (eV)

Figure G17 01s XPS spectra of a 30 wt% PEHA-derived PBZ organic aerogel

Binding Energy (eV)

Figure G18 Nls XPS spectra of a 30 wt% PEHA-derived PBZ organic aerogel
35 wt% PEHA-derived PBZ organic aerogel
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Binding Energy (eV)

Figure G19 Cl s XPS spectra of a 35 wt% PEHA-derived PBZ organic aerogel

Binding Energy (eV)

Figure G20 o is  XPS spectra of a 35 wt% PEHA-derived PBZ organic aerogel
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Binding Energy (eV)

Figure G21 Nls XPS spectra of a 35 wt% PEHA-derived PBZ organic aerogel.

40 wt% PEHA-derived PBZ organic aerogel
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Binding Energy (eV)

Figure G22 Cls XPS spectra of a 40 wt% PEHA-derived PBZ organic aerogel.
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Figure G23 01s XPS spectra of a 40 wt% PEHA-derived PBZ organic aerogel

Figure G24 Nls XPS spectra of a 40 wt% PEHA-derived PBZ organic aerogel
Activated carbon from DETA-derived PBZ
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Binding E nergy (eV)

Figure G25 Cls XPS spectra of activated carbon from DETA-derived PBZ

Figure G26 Ols XPS spectra of activated carbon from DETA-derived PBZ
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Binding E uergy (eV)

Figure G27 Nls XPS spectra of activated carbon from DETA-derived PBZ.

30 wt% DETA-derived PBZ carbon aerogel

Binding Euergy (eV)

Figure G28 Cls XPS spectra of a 30 wt% DETA-derived PBZ carbon aerogel.
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Figure G29 01s XPS spectra of a 30 wt% DETA-derived PBZ carbon aerogel.

Binding Energy (eV)

Figure G30 Nls XPS spectra of a 30 wt% DETA-derived PBZ carbon aerogel.
35 wt% DETA-derived PBZ carbon aerogel
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Figure G3I Cls XPS spectra of a 35 wt% DETA-derived PBZ carbon aerogel

Binding Energy (e\^)

Figure G32 Ols XPS spectra of a 35 wt% DETA-derived PBZ carbon aerogel
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Binding E nergy (eV)

Figure G33 Nls XPS spectra of a 35 wt% DETA-derived PBZ carbon aerogel.

40 wt% DETA-derived PBZ carbon aerogel
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Binding Energy(eV)

Figure G34 Cls XPS spectra of a 40 wt% DETA-derived PBZ carbon aerogel.

๐
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Figure G35 ois XPS spectra of a 40 wt% DETA-derived PBZ carbon aerogel

Binding E nergy (eV)

Figure G36 Nls XPS spectra of a 40 wt% DETA-derived PBZ carbon aerogel



Activated carbon from PEHA-derived PBZ
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Binding Energy (eV)

Figure G37 Cls XPS spectra of activated carbon from PEHA-derived PBZ

Binding E nergy (eV)

Figure G38 Ols XPS spectra of activated carbon from PEHA-derived PBZ
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Binding Energy (eV)

Figure G39 Nls XPS spectra of activated carbon from PEHA-derived PBZ.

30 wt% PEHA-derived PBZ carbon aerogel

Binding Energy' (eYO

Figure G40 Cls XPS spectra of a 30 wt% PEHA-derived PBZ carbon aerogel.
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Figure G41 01s XPS spectra of a 30 wt% PEHA-derived PBZ carbon aerogel

Binding Energy (eV)

Figure G42 Nls XPS spectra of a 30 wt% PEHA-derived PBZ carbon aerogel



35 wt% PEHA-derived PBZ carbon aerogel
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Binding Energy (eV)

Figure G43 Cls XPS spectra of a 35 wt% PEHA-derived PBZ carbon aerogel

Binding Energy (eV)

Figure G44 Ols XPS spectra of a 35 wt% PEHA-derived PBZ carbon aerogel
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Binding Energy ( e \ๆ

Figure G45 Nls XPS spectra of a 35 wt% PEHA-derived PBZ carbon aerogel.

40 wt% PEHA-derived PBZ carbon aerogel

Binding Energy (eV7)

Figure G46 Cls XPS spectra of a 40 wt% PEHA-derived PBZ carbon aerogel.
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Figure G47 0 1 ร XPS spectra of a 40 wt% PEHA-derived PBZ carbon aerogel

Binding Energy (eV )

Figure G48 Nls XPS spectra of a 40 wt% PEHA-derived PBZ carbon aerogel
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Activated carbon from DETA-derived PBZ at activation temperature of 900 °c

Biuding E nergy (eV7)

Figure G49 Cls XPS spectra of activated carbon from DETA-derived PBZ at 
activation temperature of 900 ๐c.

Binding Energy (eV)

Figure G50 Ols XPS spectra of activated carbon from DETA-derived PBZ at
activation temperature of 900 °c.
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Bindiug Energy (eV)

Figure G51 Nls XPS spectra of activated carbon from DETA-derived PBZ at 
activation temperature of 900 °c.

30 wt% DETA-derived PBZ carbon aerogel at activation temperature of 900 ๐c

Binding E nergy (eV)

Figure G52 Cls XPS spectra of a 30 wt% DETA-derived PBZ carbon aerogel at
activation temperature of 900 ๐c.
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Binding Energy (eV)

Figure G53 01s XPS spectra of a 30 wt% DETA-derived PBZ carbon aerogel at 
activation temperature of 900 °c.

Binding E nergy (eV)

Figure G54 Nls XPS spectra of a 30 wt% DETA-derived PBZ carbon aerogel at
activation temperature of 900 ๐c.
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30 wt% DETA-derived PBZ carbon aerogel loading with non-ionic surfactant at
activation temperature of 900 °c
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Binding Energy (eVO
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Figure G55 Cls XPS spectra of a 30 wt% DETA-derived PBZ carbon aerogel 
loading with non-ionic surfactant at ac-tivation temperature of 900 °c.

Binding Energy (eV)

Figure G56 Ols XPS spectra of a 30 wt% DETA-derived PBZ carbon aerogel
loading with non-ionic surfactant at ac-tivation temperature of 900 °c.

๐
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Binding Energy (eV~)

Figure G57 Nls XPS spectra of a 30 wt% DETA-dcrived PBZ carbon aerogel 
loading with non-ionic surfactant at activation temperature of 900 °c.

Activated carbon from PEHA-derived PBZ at activation temperature of 900 °c

291 290 289 288 287 286 285 284 283 282 281

Bindiug Energy (eV)

Figure G58 Cls XPS spectra of activated carbon from PEHA-derived PBZ at
activation temperature of 900 ๐c.

o
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Biudiug E nergy (eV)

Figure G59 01s XPS spectra of activated carbon from PEHA-derived PBZ at 
activation temperature of 900 °c.

408 407 406 405 404 403 402 401 400 399 398 397 396 395

Binding Energy (eV)

Figure G60 Nls XPS spectra of activated carbon from PEHA-derived PBZ at
activation temperature of 900 °c.
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30 wt% PEHA-derived PBZ carbon aerogel at activation temperature of 900 °c

Binding Energy (eV)

Figure G61 Cls XPS spectra of a 30 wt% PEHA-derived PBZ carbon aerogel at 
activation temperature of 900 ๐c.

Binding Energy (eV)

Figure G62 Ols XPS spectra of a 30 wt% PEHA-derived PBZ carbon aerogel at
activation temperature of 900 ๐c.
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Binding E nergy (eV )

Figure G63 Nls XPS spectra of a 30 wt% PEHA-derived PBZ carbon aerogel at 
activation temperature of 900 °c.

30 wt% PEHA-derived PBZ carbon aerogel loading with non-ionic surfactant at 
activation temperature of 900 ๐c

Figure G64 Cls XPS spectra of a 30 wt% PEHA-derived PBZ carbon aerogel
loading with non-ionic surfactant at ac-tivation temperature of 900 ๐c.
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Binding E nergy (eV)

Figure G65 01s XPS spectra of a 30 wt% PEHA-derived PBZ carbon aerogel 
loading with non-ionic surfactant at ac-tivation temperature of 900 °c.

Binding E nergy (eV)

Figure G66 Nls XPS spectra of a 30 wt% PEHA-derived PBZ carbon aerogel
loading with non-ionic surfactant at activation temperature of 900 °c.
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Appendix H Isotherm, BJH Pore Size Distribution, and HK Pore Size 
Distribution of all Adsorbents

30 wt% DETA-derived PBZ organic aerogel

Figure HI Isotherm of a 30 wt% DETA-derived PBZ organic aerogel.

Figure H2 Barrett-Joyner-Halenda pore size distribution of a 30 wt% DETA-
derived PBZ organic aerogel.
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Figure H3 Horvath and Kawazoe pore size distribution of a 30 wt% DETA-derived 
PBZ organic aerogel.

35 wt% DETA-derived PBZ organic aerogel

Figure H4 Isotherm of a 35 wt% DETA-derived PBZ organic aerogel.
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H5 Barrett-Joyner-Halenda pore size distribution of a 35 wt% DETA- 
PBZ organic aerogel.

Figure C6 Horvath and Kawazoe pore size distribution of a 35 wt% DETA-derived
PBZ organic aerogel.
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40 wt% DETA-derived PBZ organic aerogel

p/po

Figure H7 Isotherm of a 40 wt% DETA-derived PBZ organic aerogel.

Figure FI8 Barrett-Joyner-Halenda pore size distribution of a 40 wt% DETA-
derived PBZ organic aerogel.
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Figure H9 Horvath and Kawazoe pore size distribution of a 40 wt% DETA-derived 
PBZ organic aerogel.

30 wt% PEHA-derived PBZ organic aerogel

Figure H10 Isotherm of a 30 wt% PEHA-derived PBZ organic aerogel.
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Figure H ll Barrett-Joyner-Halenda pore size distribution of a 30 wt% PEHA- 
derived PBZ organic aerogel.

Pore size (nm)

■tx

Figure HI2 Horvath and Kawazoe pore size distribution of a 30 wt% PEHA-
derived PBZ organic aerogel.

o
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35 wt% PEHA-derived PBZ organic aerogel '

Figure H13 Isotherm of a 35 \vt% PEHA-derived PBZ organic aerogel.

Figure H14 Horvath and Kawazoe pore size distribution of a 35 wt% PEHA-
derived PBZ organic aerogel.
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40 wt% PEHA-derived PBZ organic aerogel

Figure H15 Isotherm of a 40 wt% PEHA-derived PBZ organic aerogel.

Pore size (nm)

Figure HI6 Elorvath and Kawazoe pore size distribution of a 40 wt% PEHA-
derived PBZ organic aerogel.

๐
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Activated carbon from DETA-derived PBZ

p/po

Figure H17 Isotherm of activated carbon from DETA-derived PBZ.

Figure HI8 Barrett-Joyner-Halenda pore size distribution of activated carbon from
DETA-derived PBZ.
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Pore size (nm)

Figure H19 Horvath and Kawazoe pore size distribution of activated carbon from 
DETA-derived PBZ.

30 wt% DETA-derived PBZ carbon aerogel

Figure H20 Isotherm of a 30 wt% DETA-derived PBZ carbon aerogel.
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Figure H21 Barrett-Joyner-Halenda pore size distribution of a 30 พt% DETA- 
derived PBZ carbon aerogel.

Pore size (nm)

Figure H22 Horvath and Kawazoe pore size distribution of a 30 wt% DETA-
derived PBZ carbon aerogel.
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35 wt% DETA-derived PBZ carbon aerogel

Figure H23 Isotherm of a 35 wt% DETA-derived PBZ carbon aerogel.

Pore size (nm)

Figure H24 Barrett-Joyner-Halenda pore size distribution of a 35 wt% DETA-
derived PBZ carbon aerogel.



181

Pore size (nm)

Figure H25 Horvath and Kawazoe pore size distribution of a 35 wt% DETA- 
derived PBZ carbon aerogel.

40 wt% DETA-derived PBZ carbon aerogel

Figure H26 Isotherm of a 40 wt% DETA-derived PBZ carbon aerogel.

๐
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Pore size (nm)

Figure H27 Barrett-Joyner-Halenda pore size distribution of a 40 wt% DETA- 
derived PBZ carbon aerogel.

Pore size (nm)

Figure H28 Horvath and ICawazoe pore size distribution of a 40 wt% DETA-
derived PBZ carbon aerogel.
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Activated carbon from PEHA-derived PBZ

Figure H29 Isotherm of activated carbon from PEHA-derived PBZ.

Figure H30 Barrett-Joyner-Halenda pore size distribution of activated carbon from
PEHA-derived PBZ.
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Figure H31 Horvath and Kawazoe pore size distribution of activated carbon from 
PEHA-dcrived PBZ.

30 wt% PEHA-derived PBZ carbon aerogel

Figure H32 Isothenn of a 30 wt% PEHA-derived PBZ carbon aerogel.
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Figure H33 Barrett-Joyner-Halenda pore size distribution of a 30 wt% PEHA- 
derived PBZ carbon aerogel.

Pore size (nm)

Figure H34 Horvath and Kawazoe pore size distribution of a 30 wt% PEHA-
derived PBZ carbon aerogel.
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35 wt% PEHA-derived PBZ carbon aerogel

Figure H35 Isotherm of a 35 wt% PEHA-derived PBZ carbon aerogel.

Figure H36 Barrett-Joyner-Halenda pore size distribution of a 35 wt% PEHA-
derived PBZ carbon aerogel.

o
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Figure H37 Horvath and Kawazoe pore size distribution of a 35 wt% PEHA- 
derived PBZ carbon aerogel.

40 wt% PEHA-derived PBZ carbon aerogel

Figure H38 Isotherm of a 40 wt% PEHA-derived PBZ carbon aerogel.
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Figure H39 Barrett-Joyner-Halenda pore size distribution of a 40 พt% PEHA- 
derived PBZ carbon aerogel.

Pore size (nm)

Figure FI40 Horvath and Kawazoe pore size distribution of a 40 wt% PEHA-
derived PBZ carbon aerogel.
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Activated carbon from DETA-derived PBZ at activation temperature of 900 °c

Figure H41 Isotherm of activated carbon from DETA-derived PBZ at activation 
temperature of 900 ๐c.

Figure H42 Barrett-Joyner-Halenda pore size distribution of activated carbon from
DETA-derived PBZ at activation temperature of 900 °c.
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Pore size (nm)

Figure H43 Horvath and Kawazoe pore size distribution of activated carbon from 
DETA-derived PBZ at activation temperature of 900 °c.
30 wt% DETA-derived PBZ carbon aerogel at activation temperature of 900 °c

Figure FI44 Isotherm of a 30 wt% DETA-derived PBZ carbon aerogel at activation
temperature of 900 °c.
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Figure H45 Horvath and Kawazoe pore size distribution of a 30 wt% DETA- 
derived PBZ carbon aerogel at activation temperature of 900 °c.

30 wt% DETA-derived PBZ carbon aerogel loading with non-ionic surfactant at 
activation temperature of 900 °c

Figure H46 Isotherm of a 30 wt% DETA-derived PBZ carbon aerogel loading with
non-ionic surfactant at activation temperature of 900 ๐c.

๐
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Figure H47 Barrett-Joyner-Halenda pore size distribution of a 30 wt% DETA- 
derived PBZ carbon aerogel loading with non-ionic surfactant at activation 
temperature of 900 ๐c.

Pore size (nm)

Figure H48 Horvath and Kawazoe pore size distribution of a 30 wt% DETA-
derived PBZ carbon aerogel loading with non-ionic surfactant at ac-tivation
temperature of 900 °c.
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Activated carbon from PEHA-derived PBZ at activation temperature of 900 ๐c

Figure H49 Isotherm of activated carbon from PEHA-derived PBZ at activation 
temperature of 900 ๐c.

Figure H50 Barrett-Joyner-Halenda pore size distribution of activated carbon from
PEHA-derived PBZ at activation temperature of 900 ๐c.

๐
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Figure H51 Horvath and Kawazoe pore size distribution of activated carbon from 
PEHA-derived PBZ at activation temperature of 900 ๐c.

30 \vt% PEHA-derived PBZ carbon aerogel at activation temperature of 900 ๐c

Figure H52 Isotherm of a 30 wt% PEHA-derived PBZ carbon aerogel at activation
temperature of 900 ๐c.
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Figure H53 Barrett-Joyner-Halenda pore size distribution of a 30 wt% PEHA- 
derived PBZ carbon aerogel at activation temperature of 900 °c.

Figure H54 Horvath and Kawazoe pore size distribution of a 30 wt% PEHA-
derived PBZ carbon aerogel at activation temperature of 900 °c.
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30 wt% PEHA-derived PBZ carbon aerogel loading with non-ionic surfactant at 
activation temperature of 900 °c

Figure H55 Isotherm of a 30 wt% PEHA-derived PBZ carbon aerogel loading with 
non-ionic surfactant at activation temperature of 900 °c.

Figure H56 Barrett-Joyner-Halenda pore size distribution of a 30 wt% PEHA-
derived PBZ carbon aerogel loading with non-ionic surfactant at activation
temperature of 900 °c.

๐
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Figure H57 Horvath and Kawazoe pore size distribution of a 30 พt% PEHA- 
derived PBZ carbon aerogel loading with non-ionic surfactant at ac-tivation 
temperature of 900 °c.

๐



198

Appendix I Adsorption/Desorption Isotherms of all Materials
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Figure II Adsorption/desorption isotherms of DETA-derived activated carbons at 
activating temperature of 800 °c (at 40, 75, ! 10 ๐c  and 1 bar).

Figure 12 Adsorption/desorption isotherms of carbon aerogels from 30 wt% DETA-
derived PBZ at activating temperature of 800 ๐c  (at 40, 75, 110 °c and 1 bar).
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Figure 13 Adsorption/desorption isotherms o f carbon aerogels from 35 wt% DETA- 
derived PBZ at activating temperature o f 800 °c (at 40, 75, 110 ๐c  and 1 bar).

Figure 14 Adsorption/desorption isotherms of carbon aerogels from 40 wt% DETA-
derived PBZ at activating temperature of 800 °c (at 40, 75, 110 °c and 1 bar).
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Figure 15 Adsorption/desorption isotherms of PEHA-derived activated carbons at 
activating temperature of 800 ๐c  (at 40, 75, 110 ๐c  and 1 bar).

AC from PEHA (800 Ç) at 40 c  
AC from PEHA (800 Ç) at 75 c  
AC from PEHA (S00 C) at 110 c

Figure 16 Adsorption/desorption isotherms of carbon aerogels from 30 wt% PEHA-
derived PBZ at activating temperature of 800 °c (at 40, 75, 110 °c and 1 bar).



201

Figure 17 Adsorption/desorption isotherms of carbon aerogels from 35 wt% PEHA- 
derived PBZ at activating temperature of 800 °c (at 40, 75, 110 ๐c  and 1 bar).

Figure 18 Adsorption/desorption isotherms of carbon aerogels from 40 wt% PEHA-
derived PBZ at activating temperature of 800 ๐c  (at 40, 75, 110 ๐c  and 1 bar).
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Figure 19 Adsorption/desorption isothermร of DETA-derived activated carbons at 
activating temperature of 900 °c (at 40, 75, 110 ๐c  and 1 bar).

Figure no Adsorption/desorption isotherms of carbon aerogels from 30 wt%
DETA-derived PBZ at activating temperature of 900 °c (at 40, 75, 110 °c and 1
bar).
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Figure 111 Adsorption/desorption isotherms of carbon aerogels from 30 wt% 
DETA-derived PBZ loading non-ionic surfactant at activating temperature of 900 ๐c  
(at 40, 75, 110 ๐c  and 1 bar).

Figure 112 Adsorption/desorption isotherms of PEHA-derived activated carbons at 
activating temperature of 900 ๐c  (at 40, 75, 110 ๐c  and 1 bar).
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Figure 113 Adsorption/desorption isotherms of carbon aerogels from 3 0  wt% 
PEHA-derived PBZ at activating temperature of 9 0 0  ๐c  (at 40 , 75 , 110 ๐c  and 1 
bar).

Time (mill)

Figure 114 Adsorption/desorption isotherms of carbon aerogels from 30 wt%
PEHA-derived PBZ loading non-ionic surfactant at activating temperature of 900 °c
(at 40, 75, 110 °c and 1 bar).
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Appendix J SEM Images of all Materials

Figure J1 SEM images of (a) fully cured DETA-derived PBZ aerogel at 20 พ!0/อ, 
(b) 25 wt%, and (c) 30 wt% of monomer solutions.

Figure J2 SEM images of (a) activated carbon from DETA-derived PBZ and (b) 
activated carbon from PEHA-derived PBZ at activating temperature of 800 °c.
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Figure J3 SEM images of (a) DETA-derived PBZ carbon aerogel at 30 wt%, (b) 30 
wt%, (c) 35 wt%, (d) 35 wt%, (e) 40 wt%, and (f) 40 \vt% of monomer solutions at 
activating temperature of 800 ๐C; low magnification for (a), (c), and (e); high 
magnification for (b), (d), and (f).
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Figure J4 SEM images of (a) PEHA-derived PBZ carbon aerogel at 30 wt%, (b) 30 
wt%, (c) 35 wt%, (d) 35 wt%, (e) 40 wt%, and (f) 40 wt% of monomer solutions at 
activating temperature of 800 °C; low magnification for (a), (c), and (e); high 
magnification for (b), (d), and (f).
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Figure J5 SEM images of (a) activated carbon from DETA-derived PBZ, (b) 
activated carbon from PEHA-derived PBZ, (c) DETA-derived PBZ carbon aerogel at 
30 wt% (d) PEHA-derived PBZ carbon aerogel at 30 wt%, (e) DETA-derived PBZ 
carbon aerogel at 30 wt% loading non-ionic surfactant, and (f) PEHA-derived PBZ 
carbon aerogel at 30 wt% loading non-ionic surfactant at activating temperature of 
900 °c.
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