SUSTAINABLE PROCESS DESIGN OF BIOFUELS: BIOETHANOL PRODUCTION FROM CELLULOSIC MULTI-FEEDSTOCKS

Siwanat Chairakwongsa

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
Case Western Reserve University, and Institut Français du Pétrole
2014

Thesis Title: Sustainable Process Design of Biofuels:

Bioethanol Production from Cellulosic Multi-Feedstocks

By: Siwanat Chairakwongsa

Program: Petroleum Technology

Thesis Advisors: Asst. Prof. Pomthong Malakul

Prof. Rafiqul Gani

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof. Pomthong Malakul)

(Prof. Rafiqul Gani)

(Asst. Prof. Kitipat Siemanond)

(Assoc. Prof. Thumrongrut Mungcharoen)

ABSTRACT

5573032063: Petroleum Technology Program

Siwanat Chairakwongsa: Sustainable Process Design of Biofuels:

Bioethanol Production from Cellulosic Multi-feedstocks.

Thesis Advisors: Asst. Prof. Pomthong Malakul, and Prof. Rafiqul

Gani 214 pp.

Keywords: Sustainable process design/ Biofuel/ Bioethanol/ Lignocellulose/

Life cycle assessment

This research focuses on sustainable process design of ethanol from lignocellulosic biomass in Thailand. Feedstocks used to produce bioethanol are cassava rhiome, corn stover and sugarcane bagasse as they are agricultural residues that are abundantly available, avoid competition with food industries, reduce CO₂ emission because of open burning, and independent of fossil fuel resources. For each feedstock, process design alternative cases were first established. Each case was investigated through a four-part method. The first part dealt with simulation to evaluate different process design alternatives. The second part dealt with economic evaluation in term of, total capital investment, total operating cost, net revenue and so on. The third part dealt with sustainability analysis to analyze three main factors (mass, energy and water usage) in the process and through the analysis identify the process bottleneck. The fourth part dealt with life cycle assessment (LCA) to analyze environmental impacts of the process such as acidification, eutrophication, global warming potential, and else. A sustainability metrics was generated after finishing the four main parts. Results from the studies were divided into two sections, one where each feedstock was considered separately and another where the feedstocks were combined into an optimal mixed feed. Attention was given to the second combined feed option because it enhances long-term security of feedstocks supply for sustainable bio-ethanol production, which is a critical factor for sustainability of biofuels. Finally, alternatives for the combined cases were generated and improved to determine the best sustainable process design.

บทคัดย่อ

ศิวณัฐ ชัยรักษ์วงศา : การออกแบบกระบวนการผลิตเชื้อเพลิงชีวภาพอย่างยั่งยืน : การ ผลิตใบโอเอทานอลจากสารตั้งต้นเซลลูโลซิกหลายชนิด (Sustainable Process Design of Biofuel: Bioethanol Production from Cellulosic Multi-Feedstocks) อาจารย์ที่ปรึกษา : ผศ. คร. ปมทอง มาลากุล ณ อยุธยา และ ศ. คร. ราฟิก กานี่ 214 หน้า

งานวิจัยนี้มุ่งเน้นศึกษาการออกแบบกระบวนการผลิตไบโอเอทานอลจากลิกโนเซลลูโลส ในประเทศไทย สารตั้งค้นที่ใช้ในการผลิตไบโอเอทานอล ได้แก่ เหง้ามันสำปะหลัง ต้นข้าวโพด และชานอ้อย เพราะสิ่งเหล่านี้เป็นเศษวัสดุที่เหลือใช้ทางการเกษตรซึ่งมีจำนวนมาก หลีกเลี่ยงการ แข่งขันกับอุตสาหกรรมอาหาร ช่วยลดการปลดปล่อยคาร์บอนไดออกไซด์ในการเผาทิ้งสู่ บรรยากาศ และช่วยลดการใช้ทรัพยากรจากเชื้อเพลิงซากดึกดำบรรพ์ สำหรับแต่ละสารตั้งคุ้นจะ ถูกนำมาใช้ในการสร้างแบบจำลองพื้นฐานสำหรับกระบวนการผลิตไบโอเอทานอล โดยแต่ละ กระบวนจะถูกวิเคราะห์ด้วย 4 วิธีหลัก โดยวิธีแรกเป็นการสร้างแบบจำลองกระบวนการผลิตใบ-โอเอทานอลเพื่อประเมินรายละเอียดและศักยภาพของกระบวนการผลิตที่แตกต่างกัน วิธีที่สองเป็น การวิเคราะห์เชิงเศรษฐศาสตร์ในส่วนของเงินลงทุนทั้งหมคในกระบวนการผลิต ต้นทุนคำเนินการ ผลิต รายได้สุทธิ และอื่นๆ วิธีที่สามเป็นการวิเคราะห์ความยั่งยืน โดยประกอบด้วย 3 ปัจจัยหลัก ได้แก่ มวล พลังงาน และน้ำในกระบวนการผลิต และวิเคราะห์ระบุหากระบวนการคอขวด วิธีที่สี่ เป็นการประเมินวัฏจักรชีวิตของผลิตภัณฑ์ เช่น การเกิดฝนกรค การเจริญเติบโตอย่างรวคเร็วของ จุลินทรีย์ในแหล่งน้ำ การเกิดภาวะ โลกร้อน และอื่นๆ ตารางวิเคราะห์ความยั่งยืนจะถูกสร้างขึ้นเมื่อ ผ่านกระบวนการวิเคราะห์เหล่านี้ ผลของการศึกษาจะถูกแบ่งออกเป็น 2 ส่วน โดยในส่วนแรกเป็น การวิเคราะห์สารตั้งต้นชนิคเคียว และในส่วนที่สองเป็นการวิเคราะห์สารตั้งต้นหลายชนิครวมกัน ซึ่งในงานนี้ให้ความสำคัญในส่วนนี้ เพราะการใช้สารตั้งต้นหลายชนิดช่วยเพิ่มความยั่งยืนใน กระบวนการผลิตระยะยาว ซึ่งเป็นปัจจัยที่สำคัญสำหรับความยั่งยืนของการผลิตเชื้อเพลิงชีวภาพ โดยการศึกษาจะวิเคราะห์และพัฒนากระบวนการผลิตของสารตั้งต้นหลายชนิดรวมกันเพื่อ วิเคราะห์หาความยั่งยืนของกระบวนการผลิตใบ โอเอทานอลที่ดีที่สุด

ACKNOWLEDGEMENTS

This thesis work would not have been successful without the assistance and support of the following individuals:

First and foremost, I sincerely appreciate Asst. Prof. Pomthong Malakul and Prof. Rafiqul Gani, two advisors for providing invaluable knowledge, creative comments, untouchable experience in classroom, giving me the best chance of visiting Computer Aided Process-Product Engineering Center (CAPEC), Technical University of Denmark, and kind support throughout this research work.

I would like to thank the Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Thailand for providing the financial support for this thesis work.

I would like to thank Asst. Prof. Kitipat Siemanond and Assoc. Prof. Thumrongrut Mungcharoen for being my thesis committee. Their suggestions and comments are very beneficial for me and this work.

I would like to acknowledge to Assoc. Prof. Ed Sarobol (Faculty of Agriculture, Kasetsart University), Ms. Saranya Mangnimit, Ms. Sawity KalaKul and Ms. Carina Loureiro da Costa Lira Gargalo for their consultation, data information and supporting.

This thesis work is funded by The Petroleum and Petrochemical College, Thailand. I would also like to thank Computer Aided Process Engineering Center, Technical University of Denmark for funding and research office.

TABLE OF CONTENTS

				PAG	E
	Title P	ge		i	
	Abstra	t (in English)		iii	
	Abstra	t (in Thai)		iv	
	Ackno	ledgements		v	
	Table o	f Contents		vi	
	List of	Tables		ix	
	List of	Figures		_ xi	
СНА	PTER				
	I	INTRODUC'	TION	1	
	II	LITERATUI	RE REVIEW	3	
		2.1 Energy in	Thailand	3	
		2.1.1 Ene	ergy Consumption in Thailand	3	
		2.1.2 Pet	roleum in Thailand	4	
		2.1.3 Alte	ernative and Renewable Energy	6	
		2.2 Biofuels		8	
		2.2.1 Ov	erview Biofuels	-8	
		2.2.2 Bio	fuels Situation in Thailand	10	
		2.2.3 Bio	ethanol in Thailand	11	
		2.3 Biomass,	Lignocellulosic Biomass and Agricultural	Residues 12	
		2.3.1 Bio	omass	12	
		2.3.2 Lig	noocellulosic Biomass	16	
		2.3.3 Pot	ential of Agricultural Residues in Thailand	1 19	
		2.4 Bioethand	ol Production from Lignocellulosic Biomas	ss 20	

CHAPTER		PAGE
	2.4.1 Pretreatment Technologies for Lignocellulosic F	Biomass 20
	2.4.2 Saccharification	36
	2.4.3 Fermentation	37
	2.4.4 Technological Configurations	38
	2.5 Sustainable Development	41
	2.5.1 Definition of Sustainable Development	41
	2.5.2 Sustainable Energy for the Future	42
	2.6 Life Cycle Assessment(LCA)	43
	2.6.1 Definition of LCA	43
	2.6.2 Overview of LCA	44
	2.6.3 Methodology of LCA	46
	2.6.4 LCA Studies on Bioethanol	48
Ш	EXPERIMENTAL	53
	3.1 Materials and Equipment	53
	3.1.1 Equipment	53
	3.1.2 Software	53
	3.2 Experimental procedures	53
	3.2.1 Literature Survey	53
	3.2.2 Process Simulation	53
	3.2.3 Economic Evaluation	54
	3.2.4 Sustainability Analysis	54
	3.3 Life Cycle Assessment	56
	3.3.1 Goal and Scope	56
	3.3.2 Inventory Analysis	56
	3.3.3 Life Cycle Impact Assessment	56
	3.3.4 Interpretation	56
IV	RESULTS AND DISCUSSION	58
	4.1 Feedstocks and Composition	58

CHAPTER	CR		
	4.2 Process D	Design Description	60
	4.3 Base Case	e Design of One Feedstock Case	62
	4.3.1 Pro	cess Specification of Base Case Design	62
	4.3.2 Per	formance Criteria of Base Case Design	66
	4.4 New Case	e Design of One Feedstock Case	72
	4.4.1 Alt	ernative A Case Design	72
	4.4.2 Alt	ernative B Case Design	79
	4.4.3 Alt	ernative C Case Design	84
	4.5 New Case	e Design of Multi-Feedstocks Cases	89
	4.5.1 Alt	ernative D Case Design	90
	4.5.2 Alt	ernative E Case Design	100
*	4.5.3 Alt	ernative F Case Design	108
	4.5.4 Alt	ernative G Case Design	115
	4.6 Overall A	lternative Cases Design Comparison	123
V	CONCLUSIO	ONS AND RECOMMENDATIONS	125
	REFERENC	ES	127
	APPENDICES		137
	Appendix A	Chemical Reactions and Conversions	137
	Appendix B	Main Process Condition for Process Design	141
	Appendix C	Economic Data for Process Design	144
	Appendix D	Stream Table of Process Design	156
	Appendix E	Results of Sustainability Analysis	164
	Appendix F	Results of Life Cycle Inventory of Bioethanol	
		Production	192
	CHEDICHI	IIM VITAE	214

LIST OF TABLES

TABL	TABLE		
2.1	Final total energy consumption in Thailand 2012	3	
2.2	Performance on alternative and renewable energy policy in		
	Thailand	7	
2.3	Ethanol plants in Thailand	12	
2.4	Contents of cellulose, hemicellulose, and lignin based		
	lignocellulosic materials	17	
2.5	Energy potential of agricultural residues in Thailand 2011	19	
2.6	Effect of various pretreatment methods on the chemical		
	composition and chemical/physical structure of		
	lignocellulosic biomass	34	
2.7	Most promising pretreatment technologies	35	
2.8	Comparison of GHG emission from difference sources	49	
3.1	The sustainability metrics of process design	55	
4.1	Total ethanol plants in Thailand 2011	58	
4.2	Agricultural residues in Thailand 2011	58	
4.3	Chemical composition of feedstocks in Thailand	60	
4.4	Breakdown of total utility costs of base case design	71	
4.5	The sustainability metrics of alternative A case design		
	compared with base case design	76	
4.6	The sustainability metrics of alternative B case design		
	compared with previous cases design	81	
4.7	The sustainability metrics of alternative C case design		
	compared with previous cases design	86	
4.8	The sustainability metrics of alternative D case compared		
	with the best of separated case design	93	
4.9	Sensitivity analysis results of high bottlenecks of alternative		
	D case	95	

TABLE			PAGE	
4.10	Path-flow details of each compound and its score of			
	probability		97	
4.11	The conclusion of methods to process improvement		98	
4.12	Results from life cycle impact assessment of bioethanol			
	production of alternative D case design		99	
4.13	Cold and hot streams in the process in each heat exchanger		100	
4.14	The de-bottlenecks of alternative E case compared with			
	alternative D case		104	
4.15	The sustainability metrics of alternative E case compared			
	with previous cases		105	
4.16	Results from life cycle impact assessment of bioethanol			
	production of alternative E case design compared with the			
	previous case		108	
4.17	The de-bottlenecks of alternative F case compared with			
	alternative E case		111	
4.18	The sustainability metrics of alternative F case compared			
	with previous cases		112	
4.19	Results from life cycle impact assessment of bioethanol			
	production of alternative F case design compared with			
	previous cases		114	
4.20	The de-bottlenecks of alternative G case compared with			
	alternative F case		117	
4.21	The sustainability metrics of alternative G case compared			
	with previous cases		119	
4.22	Results from life cycle impact assessment of bioethanol			
	production of alternative G case design compared with			
	previous cases		122	

LIST OF FIGURES

FIGURE		PAGE	
2.1	Final energy consumption by fuels in Thailand 2012.	3	
2.2	Final energy consumption by economic sectors in Thailand 2012.	4	
2.3	Top Southeast Asian net oil importer in 2011.	5	
2.4	Average annual spot price for Brent and WTI crude oil in 2002-		
	2012.	6	
2.5	Alternative and renewable energy shares of Thailand final energy		
	consumption in 2012.	7	
2.6	Pathways for biofuel production from various biomass feedstocks.	9	
2.7	Comparison of first, second generation biofuel and petroleum fuel.	10	
2.8	Biomass as renewable feedstock for biorefineries.	13	
2.9	Main conversion routes for production of biofuels, energy, and		
	chemical from different biomass sources.	15	
2.10	World average composition of the above ground standing biomass.	15	
2.11	Diagrammatic illustration of the framework of lignocelluloses.	18	
2.12	Generic block diagram of bioethanol production from		
	lignocellulose biomass.	20	
2.13	Schematic of goals of pretreatment on lignocellulosic biomass.	21	
2.14	Technological Configurations of each process.	41	
2.15	Sustainable development concept.	42	
2.16	Structure of the life cycle assessment.	43	
2.17	Life cycle of biofuels.	45	
2.18	Life cycle assessment framework.	48	
2.19	Greenhouse gas emission of ethanol from sugarcane.	50	
2.20	The comparison (between allocation factors) of CO ₂ equivalent		
	emission for ethanol production and main process involved.	51	
2.21	The characterized impact factor for natural regeneration scenario.	52	

FIGURE			PAGE
	3.1	The block flow diagram shows the methodology of this work	
		to get the best sustainable process design of biofuels.	57
	4.1	Block flow diagram of bioethanol production from cassava	
		rhizome of base case.	63
	4.2	The process design of bioethanol production using cassava	
		rhizome feedstock of base case design.	64
	4.3	Overall mass balance of base case design.	65
	4.4	Overall energy balance of base case design.	65
	4.5	Breakdown of total capital investment cost of base case	
		design.	66
	4.6	Breakdown of total direct cost section of base case design.	67
	4.7	Equipment costs of each main area in the process of base	
		case design.	67
	4.8	Breakdown of total operating cost of base case design.	68
	4.9	Breakdown of raw material prices of base case design.	69
	4.10	Breakdown of total utility costs of base case design.	70
	4.11	Block flow diagram of bioethanol production from cassava	
		rhizome of alternative A case.	74
	4.12	The process design of bioethanol production using cassava	
	-	rhizome feedstock of alternative A case design.	75
	4.13_	Equipment costs of alternative A case compared with base	
		case design.	77
	4.14	Breakdown of raw material prices of alternative A case	
		compared with base case design.	77
	4.15	Breakdown of utility costs of alternative A case design	
		compared with base case design.	78
	4.16	Block flow diagram of bioethanol production from corn	
		stover of alternative B case.	80

FIGUI	RE	PAGE
4.17	Breakdown of raw material prices of alternative B case	
	compared with previous cases.	82
4.18	Breakdown of utility costs of alternative B case compared	
	with previous cases.	83
4.19-	Block flow diagram of bioethanol production from sugarcane	
	bagasse of alternative C case.	85
4.20	Breakdown of raw material prices of alternative C case	
	compared with previous cases.	87
4.21	Breakdown of utility costs of alternative C case compared	
	with previous cases.	*87
4.22	Block flow diagram of bioethanol production from combined	
	feedstocks of alternative D case.	91
4.23	The process design of bioethanol production using combined	
	feedstocks of alternative D case design.	92
4.24	Breakdown of raw material prices of alternative D case.	94
4.25	Breakdown of utility costs of alternative D case.	94
4.26	System boundary of alternative D case design.	98
4.27	Composite curve of alternative E case design.	101
4.28	Heat exchanger networks of alternative E case design.	102
4.29	The process design of bioethanol production of alternative E	
	case design with heat exchanger networks.	103
4.30	Breakdown of utility costs of alternative E case compared	
	with the previous case.	107
4.31	The process design of bioethanol production of alternative F	
	case design with heat exchanger networks and water	
	recycling.	110
4.32	System boundary of alternative F case design.	113

FIGURE		
4.33	The process design of bioethanol production of alternative G	
	case design with heat exchanger networks, water recycling	
	and solid waste combustion.	116
4.34	Breakdown of raw material prices of alternative G case	
	compared with previous cases	120
4.35	Breakdown of utility costs of alternative G case compared	
	with previous cases.	120
4.36	System boundary of alternative G case design.	121
4.37	Seven main factors comparison of sustainability in overall	
	alternative cases design.	123
4.38	Overall comparison of overall criteria of seven main	
	sustainability factors.	124