STUDY ON MACROCYCLIZATION ON ACETYLENE-BASED BENZOXAZINE DIMER

Patcharida Chouwatat

A Thesis Submitted in Partial Fulfilment of the Requirements

for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University

in Academic Partnership with

The University of Michigan, The University of Oklahoma,

and Case Western Reserve University

2012

Thesis Title: Study on Macrocyclization on Acetylene-based Benzoxazine

Dimer

By: Patcharida Chouwatat

Program: Polymer Science

Thesis Advisor: Prof. Suwabun Chirachanchai

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

...... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Prof. Suwabun Chirachanchai)

(Assoc.Prof. Masaya Kotaki)

Apirat Carbuther

purya fotin

(Asst. Prof. Apirat Laobuthee)

(Asst. Prof. Thanyalak Chaisuwan)

Thougald Chaise

บทคัดย่อ

พัชริคา เชาวทัต : การศึกษาปฏิกิริยาการเกิดสารวงแหวนของเบนซอกซาซีนไดเมอร์ที่ มีหมู่อะเซทิลีน (Study on Macrocyclization on Acetylene-based Benzoxazine dimer) อ. ที่ ปรึกษา : ศาสตราจารย์ คร. สุวบุญ จิรชาญชัย 41 หน้า

จนถึงปัจจุบัน กลุ่มวิจัยของเราประสบความสำเร็จในการเสนอองค์ความรู้ใหม่เกี่ยวกับ การศึกษาปฏิกิริยาการเปิดวงแหวนของเบนซอกซาซีน ซึ่งปฏิกิริยานี้สามารถสิ้นสุดปฏิกิริยาได้ ด้วยตนเอง และให้ใคเมอร์เป็นผลผลิต เบนซอกซาซีนใคเมอร์ที่มีหมู่อะเซทิลีนบนตำแหน่งอะซา ซึ่งเป็นหมู่ที่ไวต่อการเกิดปฏิกิริยาเป็นสารที่มีความพิเศษ เนื่องจาก สารวงแหวนของเบนซอก ซาซินไคเมอร์ที่มีหมู่อะเซทิลีนนั้น สามารถนำไปสู่พอลิเมอร์ที่เชื่อมต่อกับสารวงแหวนของเบน ซอกซาซีนได้ วิทยานิพนธ์ฉบับนี้จึงมุ่งเน้นไปที่การศึกษาปฏิกิริยาการเกิดสารวงแหวนระหว่าง เบนซอกซาซีนไดเมอร์ที่มีหมู่อะเซทิถีนและไดแอสิดคลอไรด์ ภายใต้ปฏิกิริยาเนื้อผสม, ปฏิกิริยา เนื้อเคียว และปฏิกิริยาพอลิเมอไรเซซันแบบควบแน่นระหว่างผิวหน้า ในกรณีของปฏิกิริยาเนื้อ ผสมของเบนซอกซาซีนไคเมอร์ที่มีหมู่อะเซทิลีนและเทเรพธาลโลอิล ไคคลอไรค์สามารถให้ [2+1] เอสเทอร์ โอลิโกเมอร์แบบเส้นตรง ในขณะที่ปฏิกิริยาเนื้อเคียว และปฏิกิริยาพอลิเมอ ไรเซซัน แบบควบแน่นระหว่างผิวหน้าให้ [2+2] สารวงแหวน และ [2+1] เอสเทอร์โอลิโกเมอร์แบบ เส้นตรง นอกจากนี้ยังพบว่าการเปลี่ยนชนิดของใดแอสิดคลอไรค์เป็นอะดิพออิลไดคลอไรค์สา มาถเกิด [1+1] สารวงแหวน และ [2+1] เอสเทอร์ โอลิโกเมอร์แบบเส้นตรง ถึงแม้ว่าตามทฤษฎีแล้ว ปฏิกิริยาการเกิดสารวงแหวนสามารถให้ผลผลิตที่หลากหลาย แต่ในงานวิจัยนี้เราแสดงให้เห็นถึง ปฏิกิริยาที่ง่ายและจำเพาะ ซึ่งให้ผลผลิตแค่สองชนิค ได้แก่ [2+1] เอสเทอร์โอลิโกเมอร์แบบ เส้นตรง และ [2+2] สารวงแหวน หรือ [1+1] สารวงแหวน

ABSTRACT

5372018063: Polymer Science Program

Patcharida Chouwatat: Study on Macrocyclization on Acetylene-

based Benzoxazine Dimer.

Thesis Advisor: Prof. Suwabun Chirachanchai 41 pp.

Keywords: Acetylene-based Benzoxazine/ Macrocyclization/ Macrocyclic

compound/ Diacidchloride

Up to the present, our group has succeeded in showing a unique benzoxazine chemistry of which the ring opening reaction terminates when the dimer is formed. Acetylene-based benzoxazine dimers, which a reactive alkyne exists at the aza group, are unique compound since their macrocycles can lead to polymers containing benzoxazine macrocycles. In this work, the macrocyclizations between acetylene-based benzoxazine dimers with diacidchlorides under heterogeneous, homogeneous and interfacial polycondensation are focused. In case of heterogeneous reaction, benzoxazine dimer with terephthaloyl dichloride provides only [2+1] linear oligoester whereas the homogeneous reaction and interfacial polycondensation give [2+2] macrocycle and [2+1] linear oligoester. By changing diacidchloride to aliphatic one, adipoyl dichloride, [1+1] macrocycle and [2+1] linear oligoester are obtained. Although theoretically, various compounds can be obtained from the macrocyclization, the present work demonstrates a simple and selective reaction to result only two types of the compounds, i.e. [2+1] linear oligoester and [1+1] or [2+2] macrocycles.

ACKNOWLEDGEMENTS

First and foremost, the author would like to acknowledge her supervisor, Professor Suwabun Chirachanchai who provided the invaluable suggestion and discussion, guidance, intensive recommendation and constructive criticism. This thesis would not have been possible without his help and support.

She would like to thank thesis committees, Assoc. Prof. Masaya Kotaki, Asst. Prof. Apirat Laobuthee and Asst. Prof. Thanyalak Chaisuwan, for their comments and suggestion.

She is grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College, and by the Center of Excellence on Petrochemicals and Materials Technology, Thailand. She also appreciates Basic Research Grant (BRG5380010), the Thailand Research Fund (TRF) for the financial support.

Special thanks are extended to SWB members not only for their help, support and encouragement but also for their taking care and friendship.

Last but not least, she is deeply grateful to her parents for their love, support, and understanding throughout her life. Without their encouragement, she would not have finished her master degree.

TABLE OF CONTENTS

			PAGE
	Title P	age	i
	Abstra	ct (in English)	iii
	Abstract (in Thai)		iv
	Acknowledgements		v
	Table	of Contents	vi
	List of	Schemes	ix
	List of	Tables	X
	List of	Figures	xi
CHA	PTER		
	I	INTRODUCTION	1
	II	THEORETICAL BACKGROUND AND LITERATURE	
		REVIEW	3
		2.1 Supramolecular Chemistry	3
		2.1.1 Macrocyclic Chemistry	3
		2.1.1.1 Macrocycle Synthesis	4
		2.2 Development of Benzoxazines	5
		2.3 Macrocyclic Polymer	7
		2.3.1 Polymer Containing Macrocycles as a Side Chain	7
		2.3.1 Polymer Containing Macrocycles as a Main Chain	8
		2.4 Points of the Present Work	8
	III	EXPERIMENTAL	10
		3.1 Materials	10
		3.2 Experimental	10
		3.2.1 Preparation of Benzoxazine Monomer	10
		3.2.2 Preparation of Benzoxazine Dimer	11

CHAPTER		PAGE
	3.2.3 Preparation of Macrocyclic Ester:	
	Heterogeneous Reaction	11
	3.2.4 Preparation of Macrocyclic Ester:	
	Homogeneous Reaction	12
	3.2.5 Preparation of Macrocyclic Ester:	
	Interfacial Polycondensation	12
	3.3 Characterizations	13
IV	STUDY ON MACROCYCLIZATION ON	
	ACETYLENE-BASED BENZOXAZINE DIMER	14
	4.1 Abstract	14
	4.2 Introduction	15
	4.3 Experimental	16
	4.3.1 Chemicals	16
	4.3.2 Instruments	16
	4.3.3 Syntheses	17
	4.3.3.1 Benzoxazine Dimer	17
	4.3.3.2 Heterogeneous Reaction	17
	4.3.3.3 Homogeneous Reaction	17
	4.3.3.4 Interfacial Polycondensation	17
	4.4 Results and Discussion	18
	4.4.1 Acetylene-based Benzoxazine Dimer	18
	4.4.2 Benzoxazine-based Macrocycle:	
	Heterogeneous Reaction	20
	4.4.3 Benzoxazine-based Macrocycle:	
	Homogeneous Reaction	23
	4.4.4 Benzoxazine-based Macrocycle:	
	Interfacial Polycondensation	26

CHAPTER	PAGE
4.4.5 Types and contents of Macrocyclization	29
4.5 Conclusions	31
4.6 Acknowledgements	31
4.7 References	32
V CONCLUSIONS AND RECOMMENDATIONS	34
REFERENCES	35
CURRICULUM VITAE	41

LIST OF SCHEMES

SCHEME	PAGE
СНА	PTER II
2.1	5
2.2	5
2.3	6
2.4	8
2.5	8
2.6	8
2.7	9
СНА	PTER III
3.1	10
3.2	11
3.3	12
СНА	PTER IV
4.1	18
4.2	21
4.3	28

LIST OF TABLES

TABLE		PAGE	
	CHAPTER IV		
4.1	Reaction condition of the products obtained from	26	
	homogeneous reaction		
4.2	Reaction condition of the products obtained from interfacial	27	
	polycondensation of 2		

LIST OF FIGURES

FIGURE		PAGE
	CHAPTER II	
2.1	Methods of cyclization.	4
	CHAPTER IV	
4.1	FTIR spectra of (A) I, and (B) 2.	19
4.2	¹ H-NMR spectra of (A) I , and (B) 2 .	20
4.3	FTIR spectra of 9.	22
4.4	ESI mass spectrum of 9.	23
4.5	FTIR spectra of the product obtained from homogeneous	
	reaction; (A) condition 1, (B) condition 2, and (C) condition	
	3.	25
4.6	Types and contents of macrocyclization: (■) [2+1] linear	
	oligoester, (■) [2+2] macrocycle, and (■) [1+1] macrocycle.	30
4.7	Contents of [2+2] macrocycle from homogeneous reaction:	
	(♠) 0.5 mmol / 150 mL, (♠) 1 mmol / 150 mL, and (♠) 2	
	mmol / 150 mL.	31