PREPARATION OF POLYBENZOXAZINE-DERIVED PARTIALLY OREDERED CARBON

Watcharin Khiatdet

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2014

Thesis Title:

Preparation of Polybenzoxazine-derived Partially Ordered

Carbon

By:

Watcharin Khiatdet

Program:

Polymer Science

Thesis Advisors:

Asst. Prof. Thanyalak Chaisuwan

Assoc. Prof. Sujitra Wongkasemjit

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

...... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof.) Thanyalak Chaiswan)

(Assoc. Prof. Sujitra Wongkasemjit)

(Asst. Prof Mahit Nithitanakul)

(Assoc. Prof. Manop Panapoy)

ABSTRACT

5572028063: Polymer Science Program

Watcharin Khiatdet: Preparation of Polybenzoxazine-derived

Partially Ordered Carbon.

Thesis Advisors: Asst. Prof. Thanyalak Chaisuwan, and Assoc. Prof.

Sujitra Wongkasemjit 74 pp.

Keywords: Polybenzoxazine/ Partially ordered carbon

Partially ordered carbon have been widely studied and used in various applications such as gas separation, catalyst supports, and electrode materials. They have been conventionally prepared by pyrolysis and physical or chemical activation of organic precursors such as polymers, in which the pore size and pore structure, can be controlled at a high temperature in inert atmosphere. In this study, the solventless process was used to prepare polybenzoxazine precursor, which was synthesized from formaldehyde, phenol and aromatic diamine to produce nanocarbon with high chair yield. The effects of the pyrolysis temperatures on the microstructure of the obtained partially ordered carbon were investigated. The change in the chemical structure of polybenzoxazine was examined by FTIR and TGA was used to investigate thermal properties. The physical properties were examined by SAA. In addition, XRD was used to demonstrate the characteristics of d spacing in partially ordered carbon. The electrical property of partially ordered carbon was observed at room temperature by an electrometer with two-point probe.

บทคัดย่อ

วัชรินทร์ เขียดเดช: การเตรียมคาร์บอนที่ได้จากการสังเคราะห์พอลิเบนซ็อกซาซีนโดย กระบวนุการทางความร้อน (Preparation of Polybenzoxazine-derived Partially Ordered Carbon) อ. ที่ปรึกษา: ผู้ช่วยศาสตราจารย์ คร. ธัญญูลักษณ์ ฉายสุวรรณ์ และรองศาสตราจารย์ คร. สุจิตรา วงศ์เกษมจิตต์ 74 หน้า

ปัจจุบันได้มีการศึกษางานวิจัยเกี่ยวกับคาร์บอนอย่างกว้างขวาง อีกทั้งคาร์บอนสามารถ นำมาใช้งานได้อย่างหลากหลาย เช่น การแยกแก๊ส วัสดุใช้สำหรับบรรจุสารตัวเร่ง และอิเล็กโทรค คาร์บอนสามารถเตรียมได้จากสารอินทรีย์ เช่น พอลิเมอร์ และใช้กระบวนการเปลี่ยนแปลง องค์ประกอบทางเคมีเพื่อให้ได้คาร์บอน ด้วยวิธีการเผาภายใต้บรรยากาศแก๊สในโตรเจนโดยการ ควบคุมระดับความร้อนและอัตราการใหลของแก๊สในโตรเจน นอกจากนี้การกระตุ้นทางกายภาพ และเคมีสามารถเพิ่มคุณสมบัติทางกายภาพของคาร์บอนได้อีกด้วย งานวิจัยนี้ใช้กระบวนการที่ ปราสจากตัวทำละลายเพื่อเตรียมพอลิเบนซ็อกชาซีน สังเคราะห์ได้จากฟอร์มาลดีไฮด์ ฟีนอล และ เอมีนที่มีองค์ประกอบของอะโรมาติก เพื่อเพิ่มปริมาณสุทธิของคาร์บอนที่ได้จากการเผา งานวิจัยนี้ มุ่งเน้นศึกษาผลของความร้อนจากการเผา ซึ่งส่งผลกระทบต่อโครงสร้างระดับไมโครของคาร์บอน การเปลี่ยนแปลงโครงสร้างทางเคมีของพอลิเบนซ็อกชาซีนสามารถวัดโดย FTIR คุณสมบัติทาง ความร้อนของตัวอย่างสามารถตรวจสอบโดยใช้เครื่องวิเคราะห์การเปลี่ยนแปลงน้ำหนักของสาร โดยอาศัยคุณสมบัติทางความร้อน นอกจากนี้คุณสมบัติทางกายภาพสามารถตกอนบได้โดยการ วิเคราะห์พื้นที่ผิว และการศึกษาการเปลี่ยนแปลงโครงสร้างผลึกของคาร์บอน ฉามารถสามารถ วิเคราะห์ที่กัดอ XRD และศึกษาสมบัติการนำไฟฟ้าของคาร์บอน

ACKNOWLEDGEMENTS

The author would like to express his deep gratitude to all advisors, Assistant Professor Dr. Thanyalak Chaisuwan and Associate Professor Dr. Sujitra Wongkasemjit, who not only originated this work, but also gave him continuous support, good suggestion, intensive recommendation and for the help, patience, encouragement they have shown during his one year in their research group.

He wishes to extend his appreciation to Associate Professor Dr. Manop Panapoy, his committee, for the wonderful comment, worth advices, his kindness, help and suggestion.

He would also like to extend his thanks to other thesis committee; Assitant Professor Dr. Manit Nithitanakul for his suggestion and help.

He also thanks Dr. Stephan Dubas for all his suggestions and kindness.

He is grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College; and the Center of Excellence on Petrochemical, and Materials Technology, Thailand

His special thanks are extended to all Sujitra's, Thanyalak's and Stephan's group members both his seniors and friends for their helps, good suggestions and all the good memories.

Finally, the special thanks should be given to his family for their support and encouragement throughout his study and also for their love.

TABLE OF CONTENTS

			PAGE
	Title F	Page	i
	Accep	tance Page	ii
	Abstra	act (in English)	iii
	Abstra	act (in Thai)	iv
	Ackno	owledgements	V
	Table	of Contents -	vi
	List of	Tables _	х
	List of Figures		
	List of	Scheme	xiii
CH A	APTER		
	I	INTRODUCTION	1
	II	LITERATURE REVIEW	4
	III	EXPERIMENTAL	18
		3.1 Materials	18
		3.2 Equipment	18
		3.3 Methodology	19
		3.3.1 Synthesis of Aniline-based Polybenzoxazine (PBZ-A)	19
		3.3.2 Synthesis of Methylenedianiline-based	
		Polybenzoxazine (PBZ-MDA)	20
		3.3.3 Synthesis of Tetraethylenepentamine-based	
		Polybenzoxazine (PBZ-TEPA)	20
		3.3.4 Synthesis of Methylenedianiline-based	
		Polybenzoxazine with Silver Nitrate	
		(PBZ-MDA- AgNO ₃)	21
		3.3.5 Preparation of Partially Ordered Carbon by Pysolysis	21
		3.3.6 Preparation of Activated Carbon	21

CHAPTER PAGE

	3.3.7 Cha	aracteriza	ation of Polybenzoxazine and Partially Ordered	
	Car	bon		22
IV	MODIFIC	CATION	OF POLYBENZOXAZINE-DERIVED	
	PARTIAL	LY ORI	DERED CARBON BY HEAT TREATMENT	23
à	4.1 Absti	ract		23
	4.2 Introd	duction	-	24
	4.3 Expe	rimental	-	26
	4.3.1	Materia	ls	26
	4.3.2	Measur	ements	26
	4.3.3	Method	ology	27
		4.3.3.1	Synthesis of Aniline-based Polybenzoxazine	
			(PBZ-A)	27
		4.3.3.2	Synthesis of Methylenedianiline-based	
			Polybenzoxazine (PBZ-MDA)	28
		4.3.3.3	Synthesis of Tetraethylenepentamine-based	
			Polybenzoxazine (PBZ-TEPA)	28
		4.3.3.4	Synthesis of Methylenedianiline-based	
			Polybenzoxazine with Silver Nitrate	
			(PBZ-MDA- AgNO ₃)	29
		4.3.3.5	Preparation of Partially Ordered Carbon by	
			Pysolysis (NC)	29
		4.3.3.6	Preparation of Activated carbon	29
		4.3.3.7	Characterization of Polybenzoxazine and	
			Partially Ordered Carbon	30
	4.4 Resu	lts and di	scussions	30
	4.4.1	The Phy	sical Structure of Polybenzoxazines and	
		Partially	Ordered Carbon	30
	4.4.2	The Che	emical Structure of Benzoxazine Precursors and	
		Polyhen	70X37ines	31

CHAPTER PAGE

4.4.2.1 The Chemical Structure of Aniline-based

				Benzoxazine Precursors and Polybenzoxazines	31
			4.4.2.2	The Chemical Structure of TEPA-based	
				Benzoxazine Precursors and Polybenzoxazines	31
			4.4.2.3	The Chemical Structure of MDA-based	
				Benzoxazine Precursors and Polybenzoxazines	33
			4.4.2.4	The Chemical Structure of Partially Ordered	
				Carbon	33
		4.4.3	Therma	l Properties of Benzoxazine Precursors and	
			Polyben	zoxazines	34
			4.4.3.1	Thermal Properties of Benzoxazine Precursors	34
	-		4.4.3.2	Thermal Properties of Polybenzoxazines	37
		4.4.4	Crystall	ine Structure of Partially Ordered Carbon	38
			4.4.4.1	The Crystalline Structure of Activated Carbon	
				Partially Ordered and Carbon Derived from	
				MDA-based Polybenzoxazine	38
			4.4.4.2	The Crystalline Structure of Partially Ordered	
				Carbon Derived from Darious Types Amine	
				Polybenzoxazine and Pyrolyzed at 500 and	
	2			800 °C	39
	-	4.4.5	Surface	Area Analysis of Partially Ordered Carbon and	
			Activate	d Carbon	42
		4.4.6	The Elec	ctrical Conductivities of Partially Ordered	
			Carbon	and Activated Carbon	43
V	CO	NCLU	JSIONS	AND RECOMMENDATIONS	52
	RE	FERE	NCES		53

CHAPTER			PAGE
	APPENDIX		63
	Appendix A	Electrical Conductivities of Partially Ordered	
		Carbon and Activated Carbon	63
	CURRICUL	UM VITAE	73

LIST OF TABLES

TABLE		
4.1	The Curing Temperatures of Benzoxazine Precursors	37
4.2	The Decomposition Temperatures Polybenzoxazines	37
4.3	Characteristics of Pore Structure of Partially Ordered Carbon	
	and Activated Carbon	43

LIST OF FIGURES

FIGURE		
2.1	The Structure of Fullerene, Carbon Nanotube, Graphite and	
	Graphene: Mother of All Graphitic Forms.	5
2.2	Simple Model of Electricity Flowing Through a Material	
	under an Applied Voltage. The White Circle is An Electron	
-	Moving from Left to Right Through The Material. The	
	Black Circles Represent The Stationary Atoms of the	
	Material. Collisions between the Electron and the Atoms	
	Slow Down the Electron, Causing Electrical Resistivity.	14
2.3	Two-terminal Resistance Measurement Arrangement.	14
2.4	Two-point Probe Arrangement Showing the Probe	
	Resistance R _P , the Contact Resistance R _C , and the Spreading	
	Resistance R _{SP} .	15
2.5	A Two-point Technique for Measuring the Resistivity of the	
	Sample. The Voltage Source Applies a Voltage Across the	
	Sample Thickness, and the Ammeter Measures the Current	
	Flowing Through the Sample.	16
4.1	Photographs of Bulk Polybenzoxazine and Partially Ordered	
	Carbon based on MDA were obtained by Pyrolysis at 800	
	$^{\circ}C$	30
4.2	FTIR Spectra of Aniline-based Benzoxazine Precursor and	
	the Polybenzoxazine.	32
4.3	FTIR Spectra of TEPA-based Benzoxazine Precursor and	
	the Polybenzoxazine.	32
4.4	FTIR Spectra of MDA-based Benzoxazine Precursor and the	
	Polybenzoxazine.	33
4.5	FTIR Spectra of Partially Ordered Carbon based on MDA	
	were obtained by Pyrolysis at 500, 800 and 1200 °C.	35

LIST OF FIGURES

FIGU	FIGURE		
4.6	DSC Thermograms of Benzoxazine Precursors.	36	
4.7	DSC Thermogram of Fully Cured Polybenzoxazine.	36	
4.8	TGA Thermogram of Polybenzoxazines.	38	
4.9	XRD Spectra of Partially Ordered Carbon derived from		
	MDA-based Polybenzoxazine with Various Pyrolyzed		
	Temperature.	40	
4.10	XRD Spectra of Activated Carbon derived from MDA-based		
	Polybenzoxazine with Various Pyrolyzed Temperature.	40	
4.11	XRD Spectra of Partially Ordered Carbon derived from		
	Various Types of Amine and Pyrolyzed at 500 °C.	41	
4.12	XRD Spectra of Partially Ordered Carbon derived from		
	Various Types of Amine and Pyrolyzed at 800 °C.	42	
4.13	The Electrical Conductivities of Partially Ordered Carbon		
	and Activated Carbon with Various Pyrolyzed Temperature.	44	

LIST OF SCHEME

SCHEME			
2.1	Acid Catalyst Ring Opening Polymerization of 3,4-dihydro-		
	2H-1,3-benzoxazines.	8	
2.2	Synthesis of 3,4-dihydro-2 <i>H</i> -1,3-benzoxazines.	9	
2.3	Synthesis of DDM-based Benzoxazine Monomer.	11	
2.4	The Reaction of a Typical Benzoxazine Monomer Prepared		
	from Bisphenol-A, Aniline and Formaldehyde	12	
2.5	The Network Structure of the Cured Polybenzoxazine		
	Precursors obtained from the Thermal Cure of the AB-type		
	Benzoxazine Precursors.	12	
3.1	Synthesis of Aniline-based Polybenzoxazine.	19	
3.2	Synthesis of Methylenedianiline-based Polybenzoxazine.	20	
3.3	Synthesis of Tetraethylenepentamine-based		
	Polybenzoxazine.	21	
4.1	Synthesis of Aniline-based Polybenzoxazine.	27	
4.2	Synthesis of Methylenedianiline-based Polybenzoxazine.	28	
4.3	Synthesis of Tetraethylenepentamine-based		
	Polyhenzoxazine	20	