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ABSTRACT

5572029063:  Polymer Science Program
Watit Wongphonchai: Admicellar Polymerization of
Polycaprolactone-polylactice on Natural Rubber Latex Particles and
its Nanocomposites with Nanoclay.
Thesis Advisor: Assoc. Prof. Rathanawan Magaraphan &6 pp.
Keywords:  Admicellar polymerization/ Natural rubber/ Polycaprolactone-
polylactide copolymer

Natural rubber was modified its surface by core-shell particle formation via
admicellar polymerization by using polycaprolactong-polylactide copolymer as shell
layer. Effect of particle factor, monomers ratio and initiator to monomers ratio, were
observed for morphology, size, chemical function and thermal stability of admicelled
particles. Then, it was incorporated with organaclay to become nanocomposite and
using for PLA toughness modification. Effects of the particles factors and clay
content were observed for mechanical and thermal properties of blends. Optical and
transmission electron microscope revealed that core-shell structure of admicelled
particles. That mean core-shell particles of natural rubber can be prepared via
admicellar polymerization. IR spectra of shell layer showed characteristic peaks of
PCL and PLA and also showed pattern of copolymer. TGA thermogram showed that
the shell polymer did not sufficiently improve thermal stability of rubber core
because there is only single decomposition which amazingly reveals good miscibility
of the three components. DMA result showed that glass transition temperature (Tg) of
the two components shifted close together, that means two components were more
compatible. Impact testing showed that the particles with a high initiator to
monomers ratio cause increasing of PLA's Impact force. Organoclay addition into
admicelled rubber improved miscibility and storage modulus of blends in DMA, but
impact force decreased severely.
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