TWO-STAGE MICROWAVE/CHEMICAL PRETREATMENT PROCESS OF NAPIER GRASS FOR MONOMERIC SUGAR PRODUCTION

Sujitra Treeboobpha

A Thesis Submitted in Partial Fulfilment of the Requirements

for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University

in Academic Partnership with

The University of Michigan, The University of Oklahoma,

and Case Western Reserve University

2012

Thesis Title: Two-Stage Microwave/Chemical Pretreatment Process of Napier

grass for Monomeric Sugar Production

By: Sujitra Treeboobpha

Polymer Science Program:

Thesis Advisors: Assoc. Prof. Sujitra Wongkasemjit

Assoc. Prof. Apanee Luengnaruemitchai

Asst. Prof. Thanyalak Chaisuwan

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

...... College Dean

(Asst. Prof. Pomthong Malakul)

(Assoc. Prof. Sujitra Wongkasemjit)

(Assoc. Prof. Apanee Luengnaruemitchai)

Hathaha M

Thanyalk Clawwe

(Asst. Prof. Thanyalak Chaisuwan) (Asst. Prof. Hathaikarn Manuspiya)

(Asst. Prof. Bussarin Ksapabutr)

ABSTRACT

5372026063: Polymer Science Program

Sujitra Treeboobpha: Two-Stage Microwave/Chemical Pretreatment

Process of Napier grass for Monomeric Sugar Production.

Thesis Advisors: Assoc. Prof. Sujitra Wongkasemjit, Assoc. Prof. Apanee Luengnaruemitchai, and Asst. Prof. Thanyalak Chaisuwan,

79 pp.

Keywords: Napier grass / Microwave irradiation/ Two-stage pretreatment

Disruption of the lignocellulosic structure of biomass by pretreatment plays a key role in producing bioethanol from lignocelluloses. A microwave pretreatment method using different catalysts, H₂SO₄, H₃PO₄, NH₄OH, and NaOH, was investigated. The pretreatment was performed at (0.5, 1, 2, 3, 4, and 5) % w/v concentrations while temperatures were studied in ranges of 40°C to 160 °C for alkaline pretreatment and 60°C to 160 °C for acid pretreatment. Pretreatment times were also performed at 5 min to 60 min. Three different liquid-to-solid ratios (15:1, 30:1 and 45:1) were also studied in the pretreatment. *Napier grass* was used as a raw material. Each catalyst provided different optimal conditions to produce amounts of monomeric sugars (30.93, 24.99, 6.19 and 6.15 g/100 g biomass) when treated with H₂SO₄, H₃PO₄, NH₄OH, and NaOH, respectively. In addition, optimal conditions for two-stage pretreatment provided the high total monomeric sugar yields 40.16 and 45.28 for microwave-assisted NH₄OH followed by H₂SO₄ and microwave-assisted NaOH followed by H₂SO₄, respectively. The structural change of the pretreated *Napier grass* was elucidated using Fourier transform infrared spectroscopy.

บทคัดย่อ

นางสาว สุจิตรา ตรีบุบผา : กระบวนการปรับสภาพสองขั้นตอนของพืชเนเปียร์ ด้วยรังสี ใมโครเวฟและสารเคมีเพื่อการผลิตน้ำตาลโมเลกุลเคี่ยว (Two-Stage Microwave/Chemical Pretreatment Process of Napier grass for Monomeric Sugar Production) อ. ที่ปรึกษา : รอง ศาสตราจารย์ ดร. สุจิตรา วงศ์เกษมจิตต์ รองศาสตราจารย์ ดร. อาภาณี เหลืองนฤมิตชัย และ ผู้ช่วย ศาสตราจารย์ ดร. ธัญญลักษณ์ ฉายสุวรรณ์ 79 หน้า

การทำถายโครงสร้างถิกโนเซลลูโลสจากชีวมวลโดยการปรับสภาพ มีบทบาทสำคัญในการ ผลิตเอทานอลจากพืช มีการศึกษาวิธีการปรับสภาพโดยใช้ไมโครเวฟและตัวเร่งปฏิกิริยาที่แตกต่างกัน ได้แก่ กรดซัลฟูลิก, กรดฟอสฟอริก, แอมโมเนียมไฮดรอกไซด์, โชเดียมไฮดรอกไซด์ กระบวนการ ปรับสภาพได้ศึกษาที่ความเข้มข้น 0.5, 1, 2, 3, 4, และ 5 เปอร์เซ็นต์โดยน้ำหนักต่อปริมาตร ในขณะ ที่อุณหภูมิการศึกษาอยู่ในช่วงของ 40 ถึง 160 องศาเซลเซียสสำหรับการปรับสภาพด้วยค่าง และ 60 ถึง 160 องศาเซลเซียสสำหรับการปรับสภาพด้วยค่าง และ 60 ถึง 160 องศาเซลเซียสสำหรับการปรับสภาพด้วยกรด เวลาที่ใช้ในการศึกษา 5 ถึง 60 นาที อัตราส่วน ของเหลวต่อของแข็งที่ศึกษาคือ 15:1, 30:1 และ 45:1โดยใช้หญ้าเนเปียร์เป็นวัตถุดิบ ปริมาณน้ำตาล โมเลกุลเดี๋ยวสูงสุด (30.93, 24.99, 6.19 และ 6.15 กรัม/100 กรัมของกรัมชีวมวล) ที่สามารถผลิตได้ เมื่อใช้ตัวเร่งปฏิกิริยาด้วยกรดซัลฟูลิก, กรดฟอสฟอริก, แอมโมเนียมไฮดรอกไซด์ และโซเดียมไฮดรอกไซด์ ตามลำดับ นอกจากนี้สภาวะที่เหมาะสมสำหรับการปรับสภาพสองขั้นตอนที่ให้ผลผลิตที่ น้ำตาลโมเลกุลเดี๋ยวที่มีปริมาณสูงคือ 40.16 กรัม/100 กรัมของกรัมชีวมวล เมื่อใช้ไมโครเวฟร่วมกับ แอมโมเนียมไฮดรอกไซด์ ตามด้วยกรดซัลฟูลิกและ 45.28 กรัม/100 กรัมของกรัมชีวมวล เมื่อใช้ ไมโครเวฟร่วมกับ แอมโมเนียมไฮดรอกไซด์ ตามด้วยกรดซัลฟูลิก การเปลี่ยนแปลงทางโครงสร้างเคมีทั้ง ก่อนและหลังกระบวนการบำบัดของหญ้าแน่ปียร์ ศึกษาโดยใช้วิธีฟูเรียทรานสฟอร์มสเปลโดรสโคปี

ACKNOWLEDGEMENTS

The author would like to take this opportunity to thank Assoc. Prof. Sujitra Wongkasemjit, Assoc. Prof. Apanee Luengnaruemitchai, Asst. Prof. Thanyalak Chaisuwan, Ph. D. Students, all of my friends, and staffs for their kind assistance, creative suggestion, and encouragement. The author had enjoyable time working with all of them. The acknowledgments would not be complete without saying how much I appreciate the warm support I have received from my family.

Finally, the author is grateful for the scholarship and funding of the thesis work provided by the Ratchadapisake Sompote Fund, Asahi Glass Foundation, and the Center of Excellence on Petrochemical and Materials Technology.

TABLE OF CONTENTS

		PAGE
Title	e Page	i
Abs	tract (in English)	iii
Abs	tract (in Thai)	iv
Ack	nowledgements	v
Tabl	e of Contents	vi
List	List of Tables	
List	of Figure	xi
СНАРТЕ	R	
I	INTRODUCTION	1
II	LITERATURE REVIEW	3
	2.1 The Composition of Lignocellulosic Biomass	3
	2.1.1 Cellulose	4
	2.1.2 Hemicellulose	7
	2.1.3 Lignin	9
	2.2 Ethanol Conversion Process	12
	2.3 Pretreament of Lignocellulosic Biomass	13
	2.3.1 Physical Pretreatment	15
	2.3.2 Chemical Pretreatment	16
	2.3.3 Microwave Pretreatment	20
III	EXPERIMENTAL	24
	3.1 Materials	24
	3.2 Equipment	24
	3.3 Methodology	25

CHAPTER		PAGE
	3.3.1 Biomass Preparation	25
	3.3.2 Compositional Analysis	25
	3.3.3 Pretreatment	27
	3.3.4 Composition Analysis of The Prehydrolysates	28
IV	RESULTS AND DISCUSSION	30
	4.1 Raw Material Composition	30
	4.2 Optimization of Microwave-Assisted Alkali Pretreatment	31
	4.2.1 Effect of Time and Temperature	31
	4.2.2 Effect of Alkali Concentration	34
	4.2.3 Effect of Liquid-to-Solid Ratio (LSR)	35
	4.3 Optimization of Microwave-Assisted Acid Pretreatment	36
	4.2.1 Effect of Time and Temperature	36
	4.2.2 Effect of Acid Concentration	40
	4.2.3 Effect of Liquid-to-Solid Ratio	42
	4.4 Two-stage Pretreatment	43
	4.5 Effect of Pretreatment on Chemical Composition	44
	4.6 FT-IR Analysis	46
	4.7 Solid loss (%) and pH	48
V	CONCLUSIONS AND RECOMMENDATIONS	53
	REFERENCES	54
	APPENDIX	60
	CURRICULUM VITAE	82

LIST OF TABLES

FABLE		PAGE
2.1	Cellulose, hemicellulose, and lignin contents in common	4
	agricultural residues and wastes	
2.2	Comparison of advantages and disadvantages of different pre-	15
	treatment options for lignocellulosic materials	
4.1	Chemical composition of Napier grass	29
4.2	Chemical composition of the solid residues from each treatment	43
A1	Peak areas and retention times of standard glucose	59
A2	Peak areas and retention times of standard xylose	58
A3	Peak areas and retention times of standard arabinose	58
В1	Momomeric sugar yields of Napier grass hydrolyzed with 0.5 %	61
	(w/v) NaOH using 15:1 LSR under different times and	62
	temperatures (g sugar/100 g biomass)	63
B2	Monomeric sugar yields of NaOH-pretreated Napier grass using	
	15:1 LSR at 60 °C for 10 min with different NaOH concentrations	
	(g sugar/100 g biomass)	63
В3	Monomeric sugar yields of Napier grass using 0.5 % (w/v)	
	NaOHat 60 °C for 10 min with different LSRs (g/100 g biomass)	
B4	Momomeric sugar yields of Napier grass hydrolyzed with 0.5 %	63
	(w/v) NH ₄ OH using 15:1 LSR under different times and	
	temperatures (g sugar/100 g biomass)	65
B5	Monomeric sugar yields of NH ₄ OH-pretreated Napier grass using	
	15:1 LSR at 60 °C for 30 min with different NH ₄ OH	
	concentrations (g sugar/100 g biomass)	

TABLE		PAGE
В6	Monomeric sugar yields of Napier grass using 0.5 % (w/v)	65
	NH ₄ OHat 60 °C for 30 min with different LSRs (g/100 g biomass)	
B7	Momomeric sugar yields of <i>Napier grass</i> hydrolyzed with 0.5 %	
	(w/v) H ₂ SO ₄ using 15:1 LSR under different times and	66
	temperatures (g sugar/100 g biomass)	
B8	Monomeric sugar yields of H ₂ SO ₄ -pretreated Napier grass using	
	15:1 LSR at 160 °C for 15 min with different H ₂ SO ₄ concentrations	67
	(g sugar/100 g biomass)	
B9	Monomeric sugar yields of Napier grass using 1.0 % (w/v)	
	H ₂ SO ₄ at 160 °C for 15 min with different LSRs (g/100 g biomass)	68
B10	Momomeric sugar yields of Napier grass hydrolyzed with 0.5 %	
	(w/v) H ₃ PO ₄ using 15:1 LSR under different times and	68
	temperatures (g sugar/100 g biomass)	
B11	Monomeric sugar yields of H ₃ PO ₄ -pretreated Napier grass using	
	15:1 LSR at 140 °C for 15 min with different H ₃ PO ₄ concentrations	70
	(g sugar/100 g biomass)	
B12	Monomeric sugar yields of Napier grass using 1.0 % (w/v)	70
	H ₃ PO ₄ at 140 °C for 30 min with different LSRs (g/100 g biomass)	
C1	% Weight loss and pH of Napier grass hydrolyzed with 0.5 %	71
	(w/v) NaOH using 15:1 LSR under different times and	
	temperatures	
C2	%Weight loss and pH of Napier grass hydrolyzed with 0.5 % (w/v)	72
	NH ₄ OH using 15:1 LSR under different times and temperatures	
C3	Weight loss and pH of Napier grass hydrolyzed with 0.5 % (w/v)	74
	H ₂ SO ₄ using 15:1 LSR under different times and temperatures	
C4	% Weight loss and pH of <i>Napier grass</i> hydrolyzed with 0.5 %(w/v)	75
	H ₂ PO ₄ using 15:1 LSR under different times and temperatures	

FABLE		PAGE
D1	The amount of H ₃ PO ₄ using 15:1 LSR and optimal pretreatment	
	time at the each temperature (g/100g biomass)	77
D2	The amount of H ₃ PO ₄ using 15:1 LSR at 140 °C for 30 min with	
	different H ₃ PO ₄ concentrations (g sugar/100 g biomass)	77
D3	The amount of H_3PO_4 using 1.0 % (w/v) H_3PO_4 at 140 °C for 30	
	min with different LSRs (g/100 g biomass)	78

LIST OF FIGURES

FIGURE		PAGE
2.1	Representation of lignocellulose structure showing cellulose,	4
	hemicellulose	
2.2	Illustration of a cellulose chain	5
2.3	Schematic structure of corn fiber heteroxylan	7
2.4	Model for corn fiber cell walls	8
2.5	Phenyl propene unit	9
2.6	The structure of softwood lignin	11
2.7	Schematic representation of the cellulase enzymes over the	
	cellulose structure	13
2.8	Schematic of the role of pretreatment in the conversion of	
	biomass to fuel	14
2.9	FTIR spectra of raw rice straw and pretreated solid residues.	19
2.10	The temperature profile after 60 sec	21
4.1	Effect of NaOH concentration on the release of monomeric	
	sugars of NaOH- pretreated Napier grass	31
4.2	Effect of NH ₄ OH concentration on the release of monomeric	
	sugars of NH ₄ OH- pretreated Napier grass	32
4.3	The comparison of the total yield of monomeric sugars at	
	different temperatures and times using 0.5 % w/v of NaOH	
	and NH₄OH	33
4.4	Effect of NaOH and NH ₄ OH concentrations on the release	
	of monomeric sugars of pretreated Napier grass	34
4.5	Effect of LSR on the release of the monomeric sugars using	
	NaOH and NH₄OH	35

FIGURE		PAGE
4.6	Effect of H ₂ SO ₄ concentration on the release of monomeric	
	sugars of H ₂ SO ₄ - pretreated Napier grass	37
4.7	Effect of H ₃ PO ₄ concentration on the release of monomeric	
	sugars of H ₃ PO ₄ - pretreated Napier grass	38
4.8	The comparison of the total yield of monomeric sugars at	
	different temperatures using 0.5 % w/v of H_2SO_4 and H_3PO_4	39
4.9	Effect of H ₂ SO ₄ and H ₃ PO ₄ concentration on the release of	
	monomeric sugars of pretreated Napier grass	40
4.10	Effect of LSR on the release of the monomeric sugars of	
	H ₂ SO ₄ and H ₃ PO ₄	41
4.11	The effect of pretreatment processes on the release of	
	monomeric sugar yields of Napier grass	42
4.12	FTIR spectra of (A) raw Napier grass, (B) microwave-	
	assisted alkali, (C) microwave-assisted acid, and (D) Two-	
	stage pretreated Napier grass	46
4.13	The % solid loss of Napier grass after pretreatment	47
4.14	The pH of Napier grass hydrolysate	48
4.15	Hydrolysis of cellulose in acidic media	49
4.16	Alkaline cleavage of α-aryl ether bonds	50
4.17	Alkaline cleavage of β-aryl ether bonds	50
A1	Relationship between peak area and glucose concentration	59
A2	Relationship between peak area and xylose concentration	59
A3	Relationship between peak area and arabinose concentration	60