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ABSTRACT

5081007063:  Petrochemical Technology
Thitiporn Suttikul: Ethylene Epoxidation in Low-Temperature
Alternating Current Plasma
Thesis Aavisors: Prof. Sumaeth Chavadej and
Prof. Hidetoshi Sekiguchi 175 pp.
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In this research, ethylene epoxidation reaction was investigated in low-
temperature plasma systems: parallel plate dielectric barrier discharge (DBD),
cylindrical DBD, corona discharge, and DBD jet. The combined catalytic and plasma
process was initially investigated in the parallel plate DBD system, cooperating with
silver catalysts loaded on two different supports (silica and alumina particles) for
ethylene oxide production. From the results, the presence of silver catalysts improved
the ethylene oxide production performance. The silica support interestingly provided
a higher ethylene oxide selectivity than the alumina support. The optimum Ag
loading on the silica support was found to be 20 wt%, exhibiting the highest
ethylene oxide selectivity of 30.6%. Next, the separate c 2+ «s0 feed was investigated
in the cylindrical DBD system in order to improve the epoxidation performance. The
c2ne fegd position of 0.25 was consicered to be an optimum position and other
operating conditions, including o2sc2x« feed molar ratio, applied voltage, input
frequency, and total feed flow rate, were subsequently investigated to find out the
best conditions. In comparisons with the mixed feed, the separate feed of ¢z« and
o2 Could provide a superior ethylene epoxidation performance, resulting in higher
EOQ selectivity and yield, and lower power consumption. These results can be
explained by the fact that the .« separate feed can reduce all undesired reactions of
c2ne Cracking, dehydrogenation, and oxidation reactions; therefore, the separate
cansr02 feed was used to further study in corona discharge and DBD jet. The effects



of C2Hs feed position, 02/C2Hs feed molar ratio, applied voltage, input frequency,
total feed flow rate, and electrode gap distance on ethylene epoxidation were
investigated in the corona discharge reactor. The optimum operating conditions; a
distance between plate electrode and C2Hz feed position of 0.2 cm, an O2/CzHs feed
molar ratio of 1:2, an applied voltage of 18 kv, an input frequency of 500 Hz, a total
feed flow rate of 100 cma/min, and an electrode gap distance of 10 mm; provided the
highest EO ield of 18%. The DBD jet, modified from the corona discharge and
cylindrical DBD was employed for the ethylene epoxidation. The highest EQO
selectivity of 55.2% and yield of 27.6%, as well as the lowest power consumption
were obtained at a total feed flow rate of 1,625 cma/min, an O2/C2Hs feed molar ratio
of 0.25:1, an applied voltage of 9 kv, an input frequency of 300 Hz, and an inner
electrode position of 0.3 mm,
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current, (¢) power consumption, and () coke and water
formation as a function of applied voltage (a total flow rate
of 1,625 cma/min, an 02/C2Hs feed molar ratio of 0.25, and
an applied voltage of 9 kV)

Images of generated plasma at different spacing of an inner
pin electrode and C2Hs feed point: (a) 0 mm, (b) 3 mm, and
(c) 6 mm (a total flow rate of 1,625 cma/min, an 02/CaHs
feed molar ratio of 0.25, an applied voltage of 9 kv, and an
input frequency of 300 Hz)

() CaHs and O2 conversions, (b) EO selectivity and yield,
(c) other product selectivities, (d) input power and discharge
current, () power consumption, and (f) coke and water
formation as a function of inner electrode position (a total
How rate of 1,625 cma/min, an O2/C2Hs feed molar ratio of
0.25, an applied voltage of 9 kv, and an input frequency of
500 Hz)
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