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APPENDICES

Appendix A Adsorbent Physical Characterization

The technical specification of the CSAC that was certified by Carbokarn 
Co., Ltd. is summarized in Table Al.

Table Al Physical characteristic properties of investigated adsorbent

Physical Characterization Adsorbent Specification
Apparent Density (g/cmJ) >0.48
Moisture Content (%พ/พ) < 8.0

Ash Content (% พ/พ) <3.5
pH 9-11
Iodine Number (mg/g) > 1 , 1 0 0

Hardness Number (%) >98.0
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Appendix B Modeling Adsorption Isotherm

Binary gas adsorption equilibrium was measured using a volumetric- 
chromatographic apparatus. The experiment was taken place at room temperature, 
which was controlled by air-conditioning and atmospheric pressure. The gas phase 
composition at equilibrium was analyzed by a gas chromatograph (GC). The binary 
adsoiption equilibrium of methane and carbon dioxide were measured on the 
untreated CSAC for different gas phase compositions.

The predicted co-adsorption isotherm was performed by iteration method 
for 0 and 1 mole fraction of carbon dioxide with the fits of the Langmuir equation for 
the single component data in Eq. (B.l) (Rios et al., 2012). The assumptions of this 
prediction are; the surface containing the adsorbing sites is perfectly flat plane with 
no corrugations; all sites are equivalent; each site can hold only one molecule of gas; 
and there no interactions between adsorbates molecules on adjacent sites.

<7i =
Q m a x ' b i ' P j

1 + b f P t
(B.l)

where qi is excess amount adsorbed of the component i (mol/kg), qmax i is monolayer 
capacity of component i (mol/kg), bi is Langmuir parameter of the component i 
(MPa'1), and P i is partial pressure of the component i (MPa).

To obtain the model and the accuracy of the predictions in relation to the 
experimental results of binary adsorption, the average relative error (bqi). as 
expressed in Eq. (B.2), was calculated and used as a parameter of analysis.

( B .2)

where Sq.i is an average relative error, N is a number of isotherm points, and qpre,i is 
predicted amount adsorbed of the component i.
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Table B1 Parameters of Langmuir fit of carbon dioxide and methane isotherms at 
room temperature and atmospheric pressure on the untreated CSAC

Isotherm Langmuir Parameter
qmax (rnol/kg) bi (MPa'1) Sq

c h 4 14.184 0.76 12.34
C 02 36.656 0.89 51.77

As expected, higher qmax and bj are obtained for carbon dioxide in 
comparison with methane, as shown in Table Bl. The parameter bj indicates how 
strongly an adsorbate molecule is attracted onto an adsorbent surface (Do, 1998). 
Experimental and predicted adsorption data of carbon dioxide and methane mixtures 
at room temperature and atmospheric pressure for different molar compositions is 
shown in Figure B1.

Figure Bl Binary adsorption isotherms for carbon dioxide and methane mixtures at 
room temperature and atmospheric pressure on the untreated CSAC.

o
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From Figure Bl, the total adsorbed amount increases along with carbon 
dioxide composition, while the amount of methane adsorbed decreases, indicating 
competition for adsorption sites and preferential adsorption of carbon dioxide over 
methane. This result agrees with the higher value of the parameter b for carbon 
dioxide in relation to methane. Moreover, carbon dioxide presents a higher 
polarizability, which may enhance attractive forces with the surface and a permanent 
quadrupole, leading to stronger interactions with the solid surface (Rios et al.. 2012). 
The isotherms from the prediction show linear relationship between the increase in 
the carbon dioxide composition and the increase in the total amount of adsorbed gas. 
Carbon dioxide is present higher adsorbed amounts than that of methane after 
increasing the carbon dioxide concentration more than 25%. Comparison between 
the predicted data with the experiment data shows that the experimental data gives 
the higher adsorption capacity than that of the predicted data because the predicted 
data was calculated from the pure component, which might not be accurate for the 
gas mixture. Moreover, the relative error of carbon dioxide is more than 50%. which 
is higher than that of methane about 4 times. Therefore, this fit might not be suitable 
for the prediction of carbon dioxide adsorption.

To further investigate this, a new fit of the extend Langmuir; shown in Eq. 
(B.3) was performed considering mixing point at 50% carbon dioxide concentration. 
The basic assumptions of this model consider the case when there are two distinct 
adsorbates present in the system and there are no interactions between adsorbate 
molecules on adjacent sites. The new parameters of qmax>j and bj are shown in Table 
B2.

_ Q m a x ' ^ i ' P  i

h  =  1 + Z IL 1 b i - P i
(B.3)
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Table B2 Parameters of the extend Langmuir fit of carbon dioxide and methane 
isotherms at room temperature and atmospheric pressure on the untreated CSAC

Isotherm Langmuir Parameter
qmtix (mol/kg) bi (M Pa1) รq

CH4 12.176 1.03 10.54
CO, 34.833 1.75 9.36

Comparison between the relative errors of methane in Table B2 shows that 
the error decreases from 12.34 to 10.54% similar to carbon dioxide decreases from 
51.77 to 9.36%, which is acceptable in this range (Goetz et a l, 2006; Harlick and 
Tezel, 2003). For the new value of qmax.i, which was predicted by using the mixture 
components of methane and carbon dioxide, is lower than the previous one. 
Moreover, it can be observed in Tables B1 and B2 that the higher values for qmax are 
obtained for carbon dioxide because of a strong adsorption preference in the mixture.

A comparison between the experimental data and predicted data of the 
extend Langmuir isotherms for the binary equilibrium at atmospheric pressure is 
shown in Figure B2. It shows the carbon dioxide adsorption increases along with 
carbon dioxide composition before constant at 0.7 of carbon dioxide composition. 
Carbon dioxide might be saturated onto the untreated CSAC. The main reason for 
this behavior is the significantly higher critical temperature of carbon dioxide (304 
K) in comparison with methane (190 K) (Tagliabue et al., 2009). Carbon dioxide is 
more likely to behave as a condensable steam than as a supercritical gas, becoming 
less volatile and being easy saturated. Comparison between the predicted data with 
the experiment data shows that the experimental data and the predicted data agree 
very well. Therefore, this model may suit for prediction the amount of methane and 
carbon dioxide adsorption in the binary system than the previous model.
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Figure B2 New binary adsorption isotherms for carbon dioxide and methane 
mixtures at room temperature and atmospheric pressure on the untreated CSAC.

The iteration of the Langmuir parameters for C 0 2, C H 4 , and C O 2 -C H 4  

mixture in the adsorption system is shown in Tables B3-B6, which were calculated 
by using Eq. (B. 1 ) and (B.2).
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Table B3 Iteration of CO2

p, 9 inax bi O predict 8q *9max *b,
0.1 1 0.01 0.000999001 0.999640116 1.000999001 0.0 2

0.1 1.000999001 0.02 0.001998002 0.999280233 1.002997003 0.03
0.1 1.002997003 0.03 0.002999991 0.998919273 1.005996994 0.04
0.1 1.005996994 0.04 0.004007956 0.99855616 1.01000495 0.05
0.1 1.01000495 0.05 0.0050249 0.998189812 1.01502985 0.06
0.1 1.015Q2985 0.06 0.006053856 0.997819138 1.021083706 0.07
0.1 1.021083706 0.07 0.007097901 0.997443027 1.028181607 0.08
0.1 1.028181607 0.08 0.008160171 0.997060351 1.036341779 0.09
0.1 1.036341779 0.09 0.009243881 0.996669952 1.04558566 0.1

0.1 1.04558566 0.1 0.010352333 0.996270639 1.055937993 0 .1 1

0.1 26.98220563 0.85 2.113813344 0.238512431 29.09601897 0 .8 6

0.1 29.09601897 0.86 2.304104633 0.169961226 .. 31.4001236 0.87
0.1 31.4001.236 0.87 2.513165367 0.09464845 33.91328897 0.88

0.1 33.91328897 0.88 2.742986608 0.011856836 36.65627558 0.89
0.1 36.65627558 0.89 2.995783771 0.079211705 39.65205935 0.9
0.1 39.65205935 0.9 3.274023249 0.179445675 42.9260826 0.91
0.1 42.9260826 0.91 3.580452352 0.289834775 46.50653495 0.92
0.1 46.50653495 0.92 3.918132981 0.411482035 50.42466793 0.93

o
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Table B4 Iteration of CH4

Pi Qmax bi Opredict ôq *9max ทา1

0.1 1 0.01 0.000999001 0.998964766 1.000999001 0.02

0.1 1.000999001 0.02 0.001998002 0.997929532 1.002997003 : 0.03
0.1 1.002997003 0.03 0.002999991 0.996891201 1.005996994 0.04
0.1 1.005996994 0.04 0.004007956 0.995846678 1.01000495 0.05
0.1 1.01000495 0.05 0.0050249 0.994792849 1.01502985 0.06
0.1 1.01502985 0.06 0.006053856 0.993726574 1.021083706 0.07
0.1 1.021083706 0.07 0.007097901 0.992644663 1.028181607 0.08
0.1 1.028181607 0.08 0.008160171 0.991543864 1.036341779 0.09
0.1 1.036341779 0.09 0.009243881 0.990420849 1.04558566 0.1

0.1 1.04558566 0.1 0.010352333 0.989272194 1.055937993 0 .1 1

0.1 12.40423319 0.74 0.854667836 0.1 14333849 13.25890102 0.75
0.1 13.25890102 0 .7 5 0.925039606 0.041409735 14.18394063 0.76
0.1 14.18394063 0.76 1.001839673 0.038175826 15.1857803 0.77
0.1 15.1857803 0.77 1.085705741 0.125083669 16.27148604 0.78 ~
0.1 16.27148604 0.78 1.177343146 0.220044711 17.44882919 0.79
0.1 17.44882919 0.79 1.277532443 0.323867816 18.72636163 0.8

0.1 18.72636163 0.8 1.387137898 0.437448599 20.11349953 0.81
0.1 20.11349953 0.81 1.507116986 0.56177926 21.62061651 0.82

๐



82

Table B5 Iteration of CO2 in equivolume mixture

p, Oinax bi p̂redict Sq *q.nax *bi
0.05 1 0.01 0.00049975 0.999825871 1.00049975 0.02

0.05 1.000249875 0.0 2 0.000999251 0.999651829 1.001249126 0.03
0.05 1.0007495 0.03 0.001498876 0.999477744 1.002248376 0.04
0.05 1.001498938 0.04 0.001999 0.999303484 1.003497938 0.05
0.05 1.002498438 0.05 0.002499996 0.999128921 1.004998434 0.06
0.05 1.003748436 0.06 0.003002239 0.998953924 1.006750675 0.07
0.05 1.005249556 0.07 0.003506102 0.998778362 1.008755658 0.08
0.05 1.007002607 0.08 0.004011963 0.998602104 1.011014569 0.09
0.05 1.009008588 0.09 0.004520198 0.998425018 1.013528786 0.1

0.05 1.011268687 0.1 0.005031187 0.998246973 1.016299874 0 .1 1

0.05 33.49267263 1.74 2.680646291 0.065976902 36.17331892 1.75
0.05 34.83299577 1.75 2.802654832 0.023465215 37.63565061 1.76
0.05 36.23432319 1.76 2.930717317 0.02115586 39.16504051 1.77
0.05 37.69968185 1.77 3.065155575 0.067998458 40.76483742 1.78
0.05 39.23225964 1.78 3.206309557 0.11718103 42.43856919 1.79
0.05 40.83541441 1.79 3.354538403 0.168828712 44.18995282 1 .8

0.05 42.51268362 1.8 3.510221583 0.223073722 46.0229052 1.81
0.05 44.26779441 1.81 3.673760104 0.280055786 47.94155451 1.82

๐
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Table B6 Iteration of CH4 in equivolume mixture

Pi 9 nia\ bi Opredict *q,«ax *bj
0.05 1 0 . 0 1 0.00049975 0.999138362 1.00049975 0 . 0 2
0.05 1.00049975 0 . 0 2 0.0009995 0.998276724 1.00149925 0.03
0.05 1.00149925 0.03 0.001499999 0.997413795 1.002999249 0.04
0.05 1.002999249 0.04 0.002001995 0.996548285 1.005001244 0.05
0.05 1.005001244 0.05 0.002506238 0.995678901 1.007507481 0.06
0.05 1.007507481 0.06 0.003013482 0.994804341 1.010520963 0.07
0.05 1.010520963 0.07 0.003524488 0.993923297 1.014045451 0.08
0.05 1.014045451 0.08 0.004040022 0.993034445 1.018085473 0.09
0.05 1.018085473 0.09 0.004560861 0.992136447 1.022646333 0.1
0.05 1.022646333 0.1 0.005087793 0.991227944 1.027734126 0 . 1 1

0.05 11.07962067 1 . 0 1 0.532623364 0.081683855 11.61224403 1 . 0 2
0.05 11.61224403 1 . 0 2 0.563486628 0.028471332 12.17573066 1.03
0.05 12.17573066 1.03 0.596338687 0.028170149 12.77206935 1.04
0.05 12.77286935 1.04 0.631319017 0.088481064 13.40338837 1.05
0.05 13.40338837 1.05 0.668577567 0.152719943 14.07196593 1.06
0.05 14.07196593 1.06 0.708275588 0.221164807 14.78024152 1.07
0.05 14.78024152 1.07 0.750586541 0.294114727 15.53082806 1.08
0.05 15.53082806 1.08 0.795697073 0.371891506 16.32652513 1.09

๐
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