CHAPTER IV RESULTS AND DISCUSSION

According to the previous work (Suwannabart *et al.*, 2008), the mixed feed reactants (ethylene and oxygen) to produce ethylene oxide in the dielectric barrier discharge (DBD) system gave low selectivity and yield. Hence, in this research, the dielectric barrier discharge system is selected to further study the effects of ethylene feed position, Ag/SiO₂ catalyst existence as well as other operating parameters, for enhancing the performance of ethylene oxide (desired product) production.

4.1 Catalyst Characterization Results

The specific surface areas of SiO₂ supported Ag catalyst with different Ag loadings were examined. It was found that the specific surface area was almost constant in range from $0.85 \text{ m}^2/\text{g}$ to $5.27 \text{ m}^2/\text{g}$ with increasing Ag loading up to 20%, This implies that the presence of Ag loading does not significantly affect the surface areas, or the surface area of SiO₂ support is too low to be significantly affected by Ag loading (Suttikul *et al.*, 2011)

Figure 4.1 shows the XRD patterns of SiO_2 supported Ag catalyst at different Ag loadings. The Ag phase was found at different peaks of approximately 38, 44, 64, and 77 degree and its intensity increased significantly with increasing Ag loading from 5% to 20%. The calculated mean Ag crystallite sizes on the SiO_2 support was also found in the range of 16.72 nm to 21.96 nm.

Figure 4.1 XRD patterns of SiO₂ supported Ag catalyst: (a) 5 wt.% Ag/SiO₂, (b) 10 wt.% Ag/SiO₂, (c) 15 wt.% Ag/SiO₂, and (d) 20 wt.% Ag/SiO₂

The SEM images of the SiO₂ supported Ag catalysts with different Ag loading is shown in Figure 4.2 The distribution of Ag over the SiO₂ supported was rapidly increase with increasing Ag loading from 5% to 20%. As shown in Figure 4.2(a) (5 wt.% Ag/SiO₂), the surface was incompletely covered with Ag particles, when compared to Figure 4.2(b) (10 wt.% Ag/SiO₂), the Ag particles was more completely covered the surface. With further increasing Ag loading (especially 15 wt.% Ag/SiO₂ and 20 wt.% Ag/SiO₂) some Ag particles was grown out from the SiO₂ support. Therefore Ag loading of 10% was considered to be an optimum.

Figure 4.2 SEM images of SiO₂ supported Ag catalysts: (a) 5 wt.% Ag/SiO₂, (b) 10 wt.% Ag/SiO₂, (c) 15 wt.% Ag/SiO₂ and (d) 20 wt.% Ag/SiO₂

4.2 Reaction Activity Performance

4.2.1 Effect of Ethylene Feed Position

The effect of ethylene (C_2H_4) feed position was initially studied in order to obtain the most suitable position for ethylene epoxidation reaction in the low-temperature DBD system. In this study, the ethylene feed position was varied in the fractional range from 0 to 1, while the feed molar ratio of O_2/C_2H_4 of 0.25:1, an applied voltage of 19 kV, an input frequency of 500 Hz, and a total feed flow rate of 50 cm³/min were used as base conditions to operate the DBD system. The effect of ethylene feed position on the ethylene and oxygen conversion is shown in Figure 4.3. The conversion of oxygen is almost constant with increasing ethylene feed position fraction. However, the conversion of ethylene tended to increase with increasing ethylene feed position fraction ranging from 0 to 0.5. At a higher ethylene feed position fraction, the ethylene conversion tended to decrease, and it reached a minimum at the ethylene feed position fraction of 0.75.

Figure 4.3 C_2H_4 and O_2 conversions as a function of ethylene feed position fraction at an O_2/C_2H_4 feed molar ratio of 0.25:1, an applied voltage of 19 kV, an input frequency of 500 Hz, and total feed flow rate of 50 cm³/min.

The EO selectivity and EO yield are shown in Figure 4.4. The increase in the ethylene feed position fraction slightly affected the EO selectivity, EO yield and reactant conversions, especially in the ethylene feed position fraction range between 0 to 0.5. The EO selectivity and EO yield are highest at the ethylene feed position fraction of 0.5 and decreased with further increasing ethylene feed

position fraction. Furthermore, at the highest ethylene feed position fraction of 1, the selectivity for EO is lowest. This can be explained in that a lower ethylene feed position fraction leads to more opportunity of ethylene molecule to be cracked before colliding with O_2 active species, whereas at a higher ethylene feed position fraction the ethylene has a short residence time for epoxidation reaction.

Figure 4.4 EO selectivity and yield as a function of ethylene feed position fraction at an O_2/C_2H_4 feed molar ratio of 0.25:1, an applied voltage of 19 kV, an input frequency of 500 Hz, and total feed flow rate of 50 cm³/min.

The selectivities of CO, CO₂, H₂, CH₄, C₂H₆, and C₃H₈ are shown in Figure 4.5. The selectivities for CO, CO₂, C₂H₆, C₃H₈ and CH₄ tended to decrease, but in contrast, the selectivity for H₂ remain almost unchang with increasing ethylene feed position. The selectivity for CO and CO₂ tended to increase in the study range of ethylene feed position fraction from 0.5 to 1. The CO selectivity increase when

the ethylene feed position fraction increase, and it reached a maximum at the ethylene feed position fraction of 0.75.

Figure 4.5 Other product selectivities as a function of ethylene feed position fraction at an O_2/C_2H_4 feed molar ratio of 0.25:1, an applied voltage of 19 kV, an input frequency of 500 Hz, and total feed flow rate of 50 cm³/min.

Figure 4.6 shows the power consumptions to convert an ethylene molecule and to produce an EO molecule at different ethylene feed position fractions. The power consumption per molecule of converted ethylene reached a minimum when the ethylene feed position fraction increased up to 0.5 and rapidly increased with further increasing feed position fraction up from 0.5 to1. However, It is significant increasing in the power consumption per molecule of produced EO with further increasing ethylene feed position fraction, especially at the feed position fraction higher than 0.5. Hence, an ethylene feed position fraction of 0.5 is therefore

selected for further investigation because it provided the highest selectivity and yield for EO and the lowest power consumption per molecule of EO produced.

Figure 4.6 Power consumptions as a function of ethylene feed position fraction at an O_2/C_2H_4 feed molar ratio of 0.25:1, an applied voltage of 19 kV, an input frequency of 500 Hz, and total feed flow rate of 50 cm³/min.

4.2.2 Effect of O₂/C₂H₄ Feed Molar Ratio

To determine the influence of the feed gas composition, the O_2/C_2H_4 feed molar ratio is next varied in the range of 0:1 to 0.5:1 (O_2 -lean conditions), while the other operating parameters are fixed at a C_2H_4 feed position fraction of 0.5 (optimum condition), an applied voltage of 19 kV, an input frequency of 500 Hz, and total feed flow rate of 50 cm³/min.

As shown in Figure 4.7, an increase in O_2/C_2H_4 feed molar ratio slightly affects the C_2H_4 and O_2 conversions, and the highest conversions of both reactants are obtained at the highest O_2/C_2H_4 feed molar ratio of 0.5:1. The explanation is that an increase in the molar ratio of O_2/C_2H_4 results in having more O_2 available to react with ethylene molecules, leading to higher ethylene conversion and O_2 conversion.

Figure 4.7 C_2H_4 and O_2 conversions as a function of O_2/C_2H_4 feed molar ratio at a ethylene feed position fraction of 0.5, an applied voltage of 19 kV, an input frequency of 500 Hz, and total feed flow rate of 50 cm³/min.

The effect of the O_2/C_2H_4 feed molar ratio on EO selectivity and EO yield are shown in Figure 4.8. Both of them increased with increasing O_2/C_2H_4 feed molar ratio from 0.17:1 to 0.2:1 and rapidly decreased with further increasing O_2/C_2H_4 feed molar ratio greater than 0.2:1, suggesting that EO can be formed dominantly under the deficient O_2 condition. The highest EO selectivity and EO yield is found at an O_2/C_2H_4 feed molar ratio of 0.2:1

Figure 4.8 EO selectivity and yield as a function of O_2/C_2H_4 feed molar ratio at a ethylene feed position fraction of 0.5, an applied voltage of 19 kV, an input frequency of 500 Hz, and total feed flow rate of 50 cm³/min.

The effect of O_2/C_2H_4 fed molar ratio on the selectivities for other products is shown in Figure 4.9. The H₂, CH₄, C₃H₈, and C₂H₆ tended to decrease, but in contrast, the selectivities for CO and CO₂ increased with increasing O_2/C_2H_4 feed molar ratio, as aforementioned. Interestingly, The CO and CO₂ selectivities increased when the O_2/C_2H_4 feed molar ratio increased, and they reached a maximum at the O_2/C_2H_4 feed molar ratio of 0.5:1. Under the studied conditions, the main products were CO and CO₂ with significant amounts of EO, H₂, CH₄, C₃H₈ and C₂H₆ product. The largest hydrocarbon, i.e. C₃H₈, was found in a very small fraction. The results can be explained by the fact that, both complete and partial oxidation reactions are controlled by the ratio of oxygen in the system. The decreases in the selectivities for these hydrocarbons and H₂ and the increase in the selectivities for CO and CO₂ with increasing oxygen fraction in feed clearly reveal that the oxidative dehydrogenation and coupling reactions unfavorably occur under O₂-rich conditions, as expected. Furthermore, at a very high O_2/C_2H_4 feed molar ratio of 0.5:1, the selectivity for EO dropped to zero level since this high O_2/C_2H_4 feed molar ratio induced the complete combustion to occur more favorably than the partial oxidation, as well as the epoxidation, indicating that the epoxidation reaction to produce EO is more likely to occur under O_2 -lean conditions.

Figure 4.9 Other product selectivities as a function of O_2/C_2H_4 feed molar ratio at a ethylene feed position fraction of 0.5, an applied voltage of 19 kV, an input frequency of 500 Hz, and total feed flow rate of 50 cm³/min.

The power consumptions required to convert C_2H_4 molecule and to produce EO molecule at different O_2/C_2H_4 feed molar ratios are shown in Figure 4.10. The power consumption per molecule of produced EO reached a minimum at an O_2/C_2H_4 molar ratio of 0.2:1, which corresponded well with the obtained highest EO selectivity. However, The power consumption per molecule of converted C_2H_4 remained almost unchanged in the O_2/C_2H_4 feed molar ratio range of 0.2:1-0.25:1, but then slightly decreased with increasing O_2/C_2H_4 feed molar ratio to 0.5:1, at which the lowest EO selectivity is observed.

Figure 4.10 Power consumptions as a function of O_2/C_2H_4 feed molar ratio at a ethylene feed position fraction of 0.5, an applied voltage of 19 kV, an input frequency of 500 Hz, and total feed flow rate of 50 cm³/min.

4.2.3 Effect of Ag Loading on SiO₂ Support

To determine the influence of Ag/SiO₂ catalyst existence, the loading of Ag on SiO₂ support was next varied in the range of 5% to 20%, while the other operating parameters were fixed at an optimum conditions followed by C_2H_4 feed position fraction of 0.5, an oxygen to ethylene feed molar ratio of 0.2:1, an applied voltage of 19 kV, an input frequency of 500 Hz, and total feed flow rate of 50 cm³/min. The effect of Ag loading on SiO_2 for the ethylene and oxygen conversion are shown in Figure 4.11. The conversion both of ethylene and oxygen rapidly decrease with increasing Ag loading. In contrast, the conversion of oxygen slightly increased with increasing Ag loading rang from 15% to 20% and react a minimum at 15% of Ag loading. The results can be explained in that, when increasing Ag loading up to 20% the distribution of Ag over SiO₂ supported catalyst was decreased as indicated by crystallite size result and SEM result (Figure 4.2).

Figure 4.11 C_2H_4 and O_2 conversions as a function of Ag loading on SiO₂ support at an ethylene feed position fraction of 0.5, an O_2/C_2H_4 feed molar ratio of 0.20:1, an applied voltage of 19 kV, an input frequency of 500 Hz, and total feed flow rate of 50 cm³/min.

The EO selectivity and EO yield are shown in Figure 4.12. The increase of Ag loading mainly affected the EO selectivity and EO yield, especially in the Ag loading range between 5% to 10%. The EO selectivity and EO yield were

highest at the Ag loading of 10% and then decreased with further increasing Ag loading. However, the EO yield was not significantly changed with increase Ag loading because, the C_2H_4 conversion decreased when increasing Ag loading up to 20% as shown in Figure 4.11. For these caused was corresponded to effect of EO yield. Furthermore, at a highest Ag loading of 20%, both of selectivity and yield for EO were lowest. These results imply that the amount of the catalyst as used in the DBD system has a significant influence on the ethylene epoxidation activity. Moreover, the combined of catalyst in DBD system with 10 wt.% of Ag loading on SiO₂ provided much higher EO selectivity as compared to the sole DBD system can enhance the ethylene epoxidation performance in term of EO selectivity.

Figure 4.12. EO selectivity and yield as a function of Ag loading on SiO₂ support at an ethylene feed position fraction of 0.5, an O_2/C_2H_4 feed molar ratio of 0.20:1, an applied voltage of 19 kV, an input frequency of 500 Hz, and total feed flow rate of 50 cm³/min.

The effect of Ag loading on the selectivities for other products are shown in Figure 4.13. The H₂, CH₄, C₃H₈, and C₂H₆ tended to increase with increasing Ag loading range from 5% to 10%, rapidly decreased with further increase Ag loading, and finally reached a minimum at Ag loading of 20%. In contrast, the selectivities for CO sharply increased with increasing Ag loading. The results can be explained by the fact that, the existence of Ag active sites on the SiO₂ supported not only catalyze the ethylene epoxidation, but also affect to further reactions during the plasma process, especially CO. However when compared the combined catalyst in DBD system with the sole DBD system, it can be seen that the selectivity for CO under the combined catalyst in DBD system was lower than the sole DBD system and that also prevented to produce CO₂.

Figure 4.13. Other product selectivities as a function of Ag loading on SiO₂ support at an ethylene feed position fraction of 0.5, an O_2/C_2H_4 feed molar ratio of 0.20:1, an applied voltage of 19 kV, an input frequency of 500 Hz, and total feed flow rate of 50 cm³/min.

Figure 4.14 shows the power consumptions to convert an ethylene molecule and to produce an EO molecule at a different Ag loading. The power consumption per molecule of converted ethylene slightly increased when the Ag loading increased and reached a maximum at the Ag loading of 20%. Whereas the power consumption per molecule of produced EO almost unchanged with increasing Ag loading range from 5% to 10%. The power consumption per molecule of produced EO sharply increased and reach a maximum at the Ag loading of 20%. Therefore, at an Ag loading of 10% was considered to be selected for the optimum value because it provided the highest EO selectivity and EO yield with relatively low power consumption per molecule of EO produced.

Figure 4.14. Power consumptions as a function of Ag loading on SiO₂ support at an ethylene feed position fraction of 0.5, an O_2/C_2H_4 feed molar ratio of 0.20:1, an applied voltage of 19 kV, an input frequency of 500 Hz, and total feed flow rate of 50 cm³/min.