REFERENCES

- Akay, G., Birch, M.A., and Bokhari, M.A. (2004) Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro. <u>Biomaterials</u>, 25, 3991–4000.
- Barbetta, A. and Cameron, N.R. (2004) Morphology and surface area of emulsionderived (polyHIPE) solid foams prepared with oil-phase soluble porogenic Span 80 as surfactant. <u>Macromolecules</u>, 37, 3188-3201.
- Barbetta, A. and Cameron, N.R. (2004) Morphology and surface area of emulsionderived (PolyHIPE) solid foams prepared with oil-phase soluble porogenic solvents: three-component surfactant system. <u>Macromolecules</u>, 37, 3202-3213.
- Bokharia, M.A., Akaya, G., Zhangd, S., and Birch, M.A. (2005) The enhancement of osteoblast growth and differentiation in vitro on a peptide hydrogel polyHIPE polymer hybrid material. <u>Biomaterials</u>, 26, 5198–5208.
- Brandt, R.K., Hughes, M.R., Bourget, L.P., Truszkowska, K., and Greenler, R.G. (1993) The interpretation of CO adsorbed on Pt/SiO₂ of two different particle-size distributions. <u>Surface Science</u>, 286(1–2), 15–25.
- Burt, S.S., Baxter, A., Bence, C., and Baxter, L.L. "Innovations of green process engineering for sustainable energy and environment" AlChe. 11 Aug. 2010. 27 May 2011

<http://apps.aiche.org/proceedings/Abstract.aspx?PaperID=2004 84>

- Cameron, N.R. (2005) High internal phase emulsion templating as a route to welldefined porous polymers, <u>Polymer</u>, 46, 1439–1449.
- Cameron, N.R. and Sherrington, D.C. (1996) High internal phase emulsions (HIPEs) structure, properties and use in polymer preparation. <u>Advances in</u> <u>Polymer Science</u>, 126, 165-210.
- Cavalcante Jr., C.L. (2000) Industrial adsorption separation process: Fundamentals, modeling and applications. <u>Latin American Applied Research</u>, 30, 357-364.
- Cetinkaya, S. Khosravi, E. and Thompson, R. (2006) Supporting ruthenium initiator on polyHIPE. Journal of Molecular Catalysis A: Chemical, 254 138–144.

- Chen, C., Son, W.J., You, K.S., Ahn, J.W., and Ahn, W.S. (2010) Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity. <u>Chemical Engineering Journal</u>, 161, 46–52.
- Chen, C., Yang, S.T., Ahn, W.S., and Ryoo, R. (2009) Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO₂ capture capacity <u>Chem. Commun</u>, 24, 3627–3629.
- Chern, C.S. (2006) Emulsion polymerization mechanisms and kinetics. Progress in Polymer Science. 31, 443–486.
- Clack, J. "Nucleophilic addition/ eliment in the reaction between acyl chlorides and amines." <u>Chemguide. 2000. 20 Feburary 2012</u> <<u>www.chemguide.co.uk/</u> <u>mechanisms/addelim/amines.html</u>>
- CO2 Capture Project. "Three basic methods to separate gases." 2008. 20 May 2011 <www.co2captureproject.com>
- Dizgea, N., Keskinlera, B., and Tanriseven, A. (2009) Biodiesel production from canola oil by using lipase immobilized onto hydrophobic microporous styrene-divinylbenzene copolymer. <u>Biochemical Engineering Journal</u>, 44, 220-225.
- Gargiulo, N., Caputo, D., and Colella, C. (2007) Preparation and characterization of polyethylenimine-modified mesoporous silicas as CO₂ sorbents. <u>Zeolites to</u> <u>Porous MOF Materials</u>, 40, 1938-1943.
- Hao, D.X., Gong, F.L., Weia, W., Huc, G.H., Maa, G.H., and Sua, Z.G. (2008)
 Porogen effects in synthesis of uniform micrometer-sized poly(divinylbenzene) microspheres with high surface areas. Journal of Colloid and Interface Science, 323, 52–59.
- Harkins, W. D. (1947), Journal of the American Chemical Society, 69, 1428.
- Hentze, H.P., and Antonietti, M. (2002) Porous polymers and resins for biotechnological and biomedical applications. <u>Reviews in Molecular</u> <u>Biotechnology</u>, 90, 27-53.
- Hussain, A. Kim, T.J. and Hägg, M.B. (2011) CO₂ capture from post combustion gas by employing membrane technology – a techno-economical analysis based on experimental pilot results. <u>1st Post Combustion Capture</u> <u>Conference.</u>

- Kabalnov, A.S., Makarov, K.N., and Shchukin, E.D. (1992) Stability of perfluoroalkyl halide emulsions. <u>Colloids and Surfaces</u>, 62, 101-104.
- Krajnca, P., Lebera, N., Stefaneca, D., Kontrecb, S., and Podgornik, A. (2005)
 Preparation and characterisation of poly(high internal phase emulsion)
 methacrylate monoliths and their application as separation media. Journal of
 <u>Chromatography A</u>, 1065, 69–73.
- Li, P., Ge, B., Zhang, S., Chen, S. Zhang, Q., and Zhao, Y. (2008) CO₂ capture by polyethylenimine-modified fibrous adsorbent. <u>Langmuir</u>, 24, 6567–6574.
- Liang, Y. and Harrison, D.P. (2004) Carbon dioxide capture using dry sodiumbased sorbents. Energy and Fuels, 18 (2), 569-575.
- Lissant, K.J. (1974) <u>Emulsions and Emulsion Technology</u>., New York: Marcel Dekker.
- Lu, C. Su, F. Hsu, S.C. Chen, W. Bai, H. Hwang, J.F. and Lee, H.H. (2009) Thermodynamics and regeneration of CO2 adsorption on mesoporous spherical-silica particles. <u>Fuel Processing Technology</u>. 90, 1543–1549.
- Odian, G. (2004) Principles of Polymerization. New York: Wiley.
- Olajire, A.A. (2010) CO₂ capture and separation technologies for end-of-pipe applications A review, <u>Energy</u>, 35, 2610-2628.
- Plaza, M.G. Pevida, C. Arenillas, A. Rubiera, F. and Pis, J.J. (2007) CO2 capture by adsorption with nitrogen enriched carbons, <u>Fuel</u>, 86, 2204–2212.
- Reay, D., Pidwirny, M., Gulledge, J., and Draggan, S. "Carbon dioxide." <u>Encyclopedia of Earth</u>. 2010. 20 May 2011 <www.eoearth.org/article/ Carbon_dioxide>
- Rojey, A. and Torp, T.A. (2005) Capture and geological storage of CO2: an overview, <u>Oil Gas Sci Technol</u>, 60, 445–448.
- Ruthven, D.M. (1988). Zeolites as Selective. Adsorbents, Chem. Eng. Prog., 42.
- Satyapal, S., Filburn, T., Trela, J., and Strange, J. (2001) Performance and properties of a Solid Amine Sorbent for Carbon Dioxide Removal in Space Life Support Applications. <u>Energy Fuels</u>, 15, 250–255.
- Sayari, A., Belmabkhout, Y., and Guerrero, R.S. (2011) Flue gas treatment via CO2 adsorption. Chem. Eng. J., 171(3), 760-774.

- Scholes, C.A., Kentish, S.E., and Stevens, G.W. (2008) Carbon dioxide separation through polymeric membrane Systems for flue gas applications. <u>Chemical</u> <u>Engineering</u>, 1, 52-66.
- Scholes, C.A., Smith, K.H., Kentish, S.E., and Stevens, G.W. (2010) CO₂ capture from pre-combustion processes—Strategies for membrane gas separation, <u>International Journal of Greenhouse Gas Control</u>, 4, 739–755.
- Smith, W.V., and Ewart, R. H. (1948) The journal of Chemical Physics. 16, 592.
- Son, W.J., Choi, J.S., and Ahn, W.S. (2008) Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. <u>Micropor.</u> <u>Mesopor. Mater</u>, 113, 31–40.
- Strube, R. and Manfrida, G. (2011) CO₂ capture in coal-fired power plants Impact on plant performance, <u>International Journal of Greenhouse Gas Control</u>, 5, 710-726.
- Subagyono, D.J.N., Zhijian Lianga, Z., Knowlesa, G.P., Webleyb, P.A., and Chaffee, A.L., (2011) PEI modified mesocellular siliceous foam: a novel sorbent for CO2. <u>Energy Procedia 4</u>, 839–843.
- Thiruvenkatachari, R., Su, S., An, H., and Yu, X.X. (2009) Advanced technology for the capture of carbon dioxide from flue gases. <u>Process in Energy and</u> <u>Combustion Science</u>, 35, 438-455.
- Thiruvenkatachari, R., Su, S., An, H., and Yu, X.X. (2009). Post combustion CO₂ capture by carbon fibre monolithic adsorbents, <u>Progress in Energy and Combustion Science</u>, 35, 438–455.
- Tuinier, M.J., van Sint Annaland, and MKuipers, J.A.M. (2011) A novel process for cryogenic CO₂ capture using dynamically operated packed beds—An experimental and numerical study, <u>International Journal of Greenhouse Gas</u> <u>Control</u>, 5(4), 694-701.
- Tuiniera, M.J., van Sint Annalanda, M. Kramerb, G.J., and Kuipersa, J.A.M. (2010). Cryogenic CO₂ capture using dynamically operated packed beds. <u>Chemical</u> <u>Engineering Science.</u> 65, 114 – 119.
- Wang, H.H. and Chu, H.H. (1990) The stabilization effect of mixed-surfactants in the emulsion polymerization of methyl methacrylate. <u>Polymer Bulletin</u>, 24(2), 207-214.

- Xiaoliang, X., Xiang, Z.X., Bing, S.L., and Qin. L.X. (2009) Adsorption separation of carbon dioxide, methane and nitrogen on monoethanol amine modified βzeolite. Journal of Natural Gas Chemistry, 18 (2), 167-172.
- Xu, X., Song, C., Andre'sen, J.M., Miller, B.G., and Scaroni, A.W. (2002) Novel polyethylenimine-modified mesoporous molecular Sieve of MCM-41 type as high-capacity adsorbent for CO₂ capture. <u>Energy Fuels</u>, 16, 1463–1469.
- Yang, R.T. (2003). <u>Adsorbents: Fundamentals and Applications</u>. New York: Wiley. 280-363.
- Zhang, P., Shi, Y., Wei, J., Zhao W., and Ye, Q. (2008). Regeneration of 2-amino- 2methyl-1-propanol used for carbon dioxide absorption. <u>Journal of</u> <u>environmental sciences</u>, 20, 39-44.
- Zhang, S. Chen, J. Perchyonok, T. (2009) Stability of high internal phase emulsions with sole cationic surfactant and its tailoring morphology of porous polymers based on the emulsions. <u>Polymer</u>, 50, 1723–1731.

APPENDICES

Appendix A Chemical Properties

Table A1 Chemical Properties

Chemical Full name		Density	Mw
	Fun hame		(g/mole)
DVB	Ddivinylbenzene	0.914	130
VBC	Vinyl benzyl chloride	1.074	152.6
Toluene	Toluene	0.8669	92
Span 80	Sarbitan manaalaata	0.995 ~	129.6
Spanou	Sofoliali monooleate	1.0	428.0
СТАВ	Cetyl trimethyl	_	364.5
DDBSS	Dodecylbenzene sulfonic acid sodium salt	-	348.5
H ₂ O	Water	1	18
CaCl ₂ .2H ₂ O	Calcium chloride dihydrate	-	147
$K_2S_2O_8$	Potassium persulfate	2.477	270.3
50 wt% PEI	Polyethyleneiming	0.9 ~	1200
JU WI/0 I EI	i oryettiytenentine	1.08	1200
Salicylaldehyde	Salicylic aldehyde	1.146	122.12

Appendix B PolyHIPEs Preparation

• Preparation of polyHIPE with different monomer ratio and 0 wt% PEI

 Table B1
 Theoretical weight and volume of each component

Oil phase (total 2 mL)				Aqueous phase (total 18 m				
DVB	VBC	Toluene	SPAN80	CTAB	DDBSS	CaCl ₂ 2H ₂ O	$K_2S_2O_8$	H ₂ O
(mL)	(mL)	(mL)	(g)	(g)	(g)	(g)	(g)	(mL)
1.00	0.00	1.0	0.3600	0.0171	0.0229	0.2000	0.0400	18
1.00	0.00	1.0	0.3599	0.0172	0.0233	0.2001	0.0401	18
1.00	0.00	1.0	0.3605	0.0170	0.0226	0.2004	0.0402	18
1.00	0.00	1.0	0.3603	0.0171	0.0231	0.2000	0.0407	18
0.90	0.10	1.0	0.3600	0.0171	0.0229	0.2000	0.0400	18
0.90	0.10	1.0	0.3602	0.0174	0.0231	0.2000	0.0404	18
0.90	0.10	1.0	0.3606	0.0175	0.0230	0.2004	0.0401	18
0.90	0.10	1.0	0.3608	0.0171	0.0228	0.2007	0.0403	18
0.80	0.20	1.0	0.3600	0.0171	0.0229	0.2000	0.0400	18
0.80	0.20	1.0	0.3604	0.0174	0.0230	0.2001	0.0401	18
0.80	0.20	1.0	0.3609	0.0172	0.0228	0.2002	0.0400	18
0.80	0.20	1.0	0.3610	0.0170	0.0234	0.2008	0.0401	18
0.70	0.30	1.0	0.3600	0.0171	0.0229	0.2000	0.0400	18
0.70	0.30	1.0	0.3598	0.0178	0.0230	0.2001	0.0409	18
0.70	0.30	1.0	0.3601	0.0171	0.0229	0.2001	0.0401	18
0.70	0.30	1.0	0.3605	0.0173	0.0233	0.2003	0.0402	18
0.60	0.40	1.0	0.3600	0.0171	0.0229	0.2000	0.0400	18
0.60	0.40	1.0	0.3602	0.0171	0.0229	0.2000	0.0402	18
0.60	0.40	1.0	0.3601	0.0172	0.0234	0.2001	0.0401	18
0.60	0.40	1.0	0.3607	0.0169	0.0231	0.2003	0.0405	18
0.50	0.50	1.0	0.3600	0.0171	0.0229	0.2000	0.0400	18
0.50	0.50	1.0	0.3603	0.0170	0.0233	0.2002	0.0402	18
0.50	0.50	1.0	0.3609	0.0172	0.0232	0.2001	0.0400	18
0.50	0.50	1.0	0.3600	0.0171	0.0233	0.2001	0.0401	18

Note: "Bold" number = Theoretical value

"Normal" number = Actual value

• Preparation of polyHIPE with different monomer ratio and 10 wt% PEI

Oil phase (total 2 mL)			Aqueous phase (total 18 mL)							
DVB (mL)	VBC (mL)	Toluene (mL)	SPAN80 (g)	CTAB (g)	DDBSS (g)	CaCl _{2.} 2H ₂ O (g)	K ₂ S ₂ O ₈ (g)	30 wt% PEI stock solution	H ₂ O (mL)	wt% PEI
1.0	0.0	1.0	0.3600	0.0171	0.0229	0.2000	0.0400	6	12	10
1.0	0.0	1.0	0.3607	0.0174	0.0224	0.2001	0.0402	6	12	10
1.0	0.0	1.0	0.3603	0.0171	0.0231	0.2000	0.0409	6	12	10
1.0	0.0	1.0	0.3601	0.0175	0.0230	0.2008	0.0406	6	12	10
0.9	0.1	1.0	0.3600	0.0171	0.0229	0.2000	0.0400	6	12	10
0.9	0.1	1.0	0.3598	0.0172	0.0230	0.2004	0.0401	6	12	10
0.9	0.1	1.0	0.3605	0.0174	0.0231	0.2002	0.0405	6	12	10
0.9	0.1	1.0	0.3606	0.0175	0.0230	0.2009	0.0401	6	12	10
0.8	0.2	1.0	0.3600	0.0171	0.0229	0.2000	0.0400	6	12	10
0.8	0.2	1.0	0.3601	0.0178	0.0229	0.2001	0.0405	6	12	10
0.8	0.2	1.0	0.3600	0.0173	0.0228	0.2003	0.0402	6	12	10
0.8	0.2	1.0	0.3597	0.0175	0.0233	0.2009	0.0401	6	12	10
0.7	0.3	1.0	0.3600	0.0171	0.0229	0.2000	0.0400	6	12	10
0.7	0.3	1.0	0.3604	0.0172	0.0232	0.2002	0.0402	6	12	10
0.7	0.3	1.0	0.3602	0.0171	0.0229	0.2000	0.0402	6	12	10
0.7	0.3	1.0	0.3607	0.0171	0.0234	0.2001	0.0403	6	12	10
0.6	0.4	1.0	0.3600	0.0171	0.0229	0.2000	0.0400	6	12	10
0.6	0.4	1.0	0.3602	0.0171	0.0226	0.2001	0.0400	6	12	10
0.6	0.4	1.0	0.3606	0.0173	0.0230	0.2003	0.0403	6	12	10
0.6	0.4	1.0	0.3608	0.0170	0.0233	0.2002	0.0401	6	12	10
0.5	0.5	1.0	0.3600	0.0171	0.0229	0.2000	0.0400	6	12	10
0.5	0.5	1.0	0.3607	0.0174	0.0228	0.2000	0.0402	6	12	10
0.5	0.5	1.0	0.3605	0.0172	0.0231	0.2004	0.0401	6	12	10
0.5	0.5	1.0	0.3608	0.0171	0.0230	0.2001	0.0401	6	12	10

 Table B3
 Theoretical weight and volume of each component

Note: "Bold" number = Theoretical value

"Normal" number = Actual value

		Oil p	ohase (tota	ul 2 mL)		Aqı	se (total 18 mL)				
DVB (mL)	VBC (mL)	Toluene (mL)	SPAN80 (g)	CTAB (g)	DDBSS (g)	CaCl _{2.} 2H ₂ O (g)	K ₂ S ₂ O ₈ (g)	30 wt% PEI stock solution	H ₂ O (mL)	wt% PEI	
0.6	0.4	1.0	0.3600	0.0171	0.0229	0.2000	0.0400	0	18	0	
0.6	0.4	1.0	0.3605	0.0174	0.0231	0.2002	0.0405	0	18	0	
0.6	0.4	1.0	0.3601	0.0171	0.0229	0.2001	0.0401	0	18	0	
0.6	0.4	1.0	0.3603	0.0171	0.0231	0.2000	0.0409	0	18	0	
0.6	0.4	1.0	0.3600	0.0171	0.0229	0.2000	0.0400	3	15	5	
0.6	0.4	1.0	0.3608	0.0170	0.0233	0.2002	0.0401	3	15	5	1
0.6	0.4	1.0	0.3607	0.0174	0.0224	0.2001	0.0402	3	15	5	1
0.6	0.4	1.0	0.3602	0.0171	0.0229	0.2000	0.0402	3	15	5	
0.6	0.4	1.0	0.3600	0.0171	0.0229	0.2000	0.0400	6	12	10	
0.6	0.4	1.0	0.3606	0.0170	0.0228	0.2001	0.0403	6	12	10	
0.6	0.4	1.0	0.3601	0.0175	0.0230	0.2008	0.0406	6	12	10	
0.6	0.4	1.0	0.3604	0.0172	0.0233	0.2002	0.0402	6	12	10	
0.6	0.4	1.0	0.3600	0.0171	0.0229	0.2000	0.0400	9	9	15	
0.6	0.4	1.0	0.3601	0.0171	0.0234	0.2001	0.0404	9	9	15	
0.6	0.4	1.0	0.3600	0.0173	0.0228	0.2003	0.0402	9	9	15	
0.6	0.4	1.0	0.3605	0.0175	0.0235	0.2002	0.0401	9	9	15	
0.6	0.4	1.0	0.3600	0.0171	0.0229	0.2000	0.0400	12	6	20	
0.6	0.4	1.0	0.3602	0.0174	0.0230	0.2002	0.0405	12	6	20	
0.6	0.4	1.0	0.3609	0.0173	0.0232	0.2001	0.0403	12	6	20	
0.6	0.4	1.0	0.3604	0.0170	0.0228	0.2006	0.0400	12	6	20	
0.6	0.4	1.0	0.3600	0.0171	0.0229	0.2000	0.0400	15	3	25	
0.6	0.4	1.0	0.3607	0.0171	0.0235	0.2003	0.0401	15	3	25	
0.6	0.4	1.0	0.3605	0.0173	0.0229	0.2000	0.0402	15	3	25	
0.6	0.4	1.0	0.3602	0.0171	0.0230	0.2001	0.0406	15	3	25	
0.6	0.4	1.0	0.3600	0.0171	0.0229	0.2000	0.0400	18	0	30	
0.6	0.4	1.0	0.3605	0.0172	0.0230	0.2004	0.0407	18	0	30	
0.6	0.4	1.0	0.3606	0.0171	0.0231	0.2001	0.0402	18	0	30	
0.6	0.4	1.0	0.3601	0.0104	0.0233	0.2005	0.0403	18	0	30	

Table B5 Theoretical weight and volume of each component

•

Preparation of polyHIPE with monomer ratio 60/40 and different wt% PEI

Note: "Bold" number = Theoretical value, "Normal" number = Actual value

Appendix C Example of Calculation

• Calculate weight of 50 wt% PEI solution for preparing PEI solution for using as an water phase

(50 wt% PEI solution = 50 g of PEI + 50 g of water)

Example: 10 wt% PEI, 18 mL aqueous solution

Define: weight of PEI must be calculated in term of weight of monomer

For the polyHIPE with DVB/VBC ratio 100/0,

-	DVB volume	=	1	mL
-	DVB density	=	0.914	g/mL

Mass = Density x Volume

Hence, weight of monomer (DVB) = 0.914 x 1 = 0.914 g

In order to load 10 wt% PEI into this polyHIPE, weight of pure PEI needed

= 0.914 x (10/100) = 0.0914 g

The purchased PEI is 50 wt% PEI in water. In order to get 0.0914 g pure PEI, the weight of 50 wt% PEI solution is double.

Weight of 50 wt% PEI solution needed = 0.0914 x 2= 0.1828 g

The aqueous phase was made up of 0.1828 g of 5%wt PEI solution and distilled water added to reach 18 mL volume. Different amount of PEI in the aqueous phase was calculated and shown in Table C1.

PEI solution	Volume	Calculated weight of
concentration (wt%)	(mL)	50%PEI solution(g)
1	18	0.0183
10	18	0.1828
1	250	0.2539
10	250	2.5390
20	250	5.0780
30	250	7.6170

Table C1 Theoretical preparation of PEI solution

• Calculation of the Amount of Amine in PEI Solution

Example: At 10 wt% PEI solution (Mw of PEI = 1200 g/mol)

Weight of 50 wt% PEI solution	=	0.1828	g
Thus, weight of pure PEI (exclude water)	=	0.1828/2	
	=	0.0914	g
Mole of PEI	=	g/Mw	
	=	0.0914/1200	
	=	7.617 x 10 ⁻⁵	mol PEI

1 repeating unit of PEI (with 25% primary amine, 50% secondary amines and 25% tertiary amine (Harpe *et al.*, 2000)) has molecular weight = 172 g/mol, the repeating unit of PEI is shown in Figure C1.

So, PEI 1 molecule (with Mw =1200 g/mol):

- contains = 1200/172 = 7 repeating units
- each repeating unit contains nitrogen (N) 4 atoms
- there are nitrogen (N) or amine in 10 wt% PEI solution

 $= 7 \times 4 \times 7.617 \times 10^{-5}$

= 2.1327×10^{-3} mol N / 7 repeating units

mol N

- in each repeating unit, there are primary, secondary and tertiary amine
- The ratio of primary/secondary/tertiary amines are 1/2/1

Figure C1 Repeating unit of polyethyleneimine.

Table C2 mmol of primary amine in each 18 mL PEI solution

Percent of PEI solution	Actual weight (g)	mmol of PEI in solution	mmol of overall amines in PEI solution	mmol of primary amine
1	0.0091	0.0076	0.2133	0.0533
5	0.0457	0.0381	1.0663	0.2666
10	0.0914	0.0762	2.1327	0.5332
15	0.1371	0.1143	3.1990	0.7998
20	0.1828	0.1523	4.2653	1.0663
25	0.2285	0.1904	5.3317	1.3329
30	0.2742	0.2285	6.3980	1.5995

• Salicylaldehyde Calculation (For UV-VIS method)

Preparation of 0.02 M salicylaldehyde in methanol

5	(0.02 mol salicylaldehyde)(122.12 g)				
-	(1 L of solution)(1 mol salicylaldehyde)				

= 2.4424 g salicylaldehyde/ 1 L solution

1 L solution uses salicylaldehyde	=	2.4424	g
250 mL solution uses salicylaldehyde	=	2.4424 x (2	250/1000)
	=	0.6106	g salicylaldehyde

the concentration 0.2 M was prepared and then diluted to 0.02 M using Eq. 3.1.

$$C_1 V_1 = C_2 V_2$$
 Eq. 3.1
(0.2 M) (V₁) = (0.02) (250 mL)
 $V_1 = 25 mL$

The purchased salicylaldehyde has concentration 98 %w/w

If 98 g of salicylaldehyde was in 100 g of this purchased salicylaldehyde

Sa there are (1000 a calibridate in	cylaldehyde in = $\frac{6.1060 x}{98}$	6.1060×100
so, there was 0.1000g sancylaidenyde in		98
	=	6.2306 g salicylaldehyde

• Preparation of 1 wt% Acetic Acid in Water

The purchased acetic acid has concentration 99.8 %w/w Dilute to 1 wt% and 250 mL by:

$$C_1V_1 = C_2V_2$$
 Eq. 3.1
(99.8 %) (V₁)= (1 %) (250 mL)
 $V_1 = 2.505 mL$

400 times dilution factor

First:	C_1V_1	=	C_2V_2	Eq. 3.1
(0.02 M salicylaldehyde) (0.5	5 mL)	=	(C ₂) (10 mL)	
	C_2	=	0.001 M salicylaldehyde	

Second:
$$C_1V_1 = C_2V_2$$
 Eq. 3.1
(0.001 M salicylaldehyde) (0.5 mL) = (C_2) (10 mL)
 $C_2 = 0.00005$ M salicylaldehyde
 $\frac{0.02}{0.00005} = 400$ times

• Calculation the Amount of VBC Reacts with 10 wt% PEI

From 10 wt% PEI solution 18 mL, there is amine = 2.1327×10^{-3} mol (The calculation is shown in page 55)

- 1 mol of primary amine reacts with 1 mol of VBC
- Each PEI repeating unit consists of 25% primary amine, 50% secondary amine and 25% tertiary amines

Mole fraction of primary amine	=	$\frac{1}{4}$ × 2.1327 x 10 - 3
	=	5.327×10^{-4} mol
Mole fraction of secondary amine	=	$\frac{2}{4}$ × 2.1327 x 10 - 3
	=	1.065×10^{-3} mol

Mole fraction of tertiary amine	-	$\frac{1}{4}$ × 2.1327 x 10 - 3
	÷	5.327×10^{-4} mol

From 1 mol of primary amine reacts with 1 mol of VBC,

-	There is primary amine	$= 5.327 \times 10^{-4}$	mol
÷	Hence, need VBC	$= 5.327 \times 10^{-4}$	mol
	(VBC Mw = 152.6 g/mol,	density = 1.074 g/mL	I
-	Weight of VBC	= Mw x Mole	
		= 152.6 x 5.327 x	10-4
		= 0.081 g VBC	
4	Volume of VBC	= Weight / Densit	у
		= 0.081 / 1.074	
		= 0.75 mL VBC	

Table C3 Calculation the amount of VBC reacts with 10 wt% PEI

Amine in DEL reacted by VBC	Mol of	Used VBC	Weight of	Volume of
Annue in FEI reacted by VBC	amine	(mol)	VBC (g)	VBC (mL)
Only primary amine in PEI	5.33x10 ⁻⁴	5.33x10 ⁻⁴	0.081	0.075
Only primary + secondary amine	1.60×10^{-3}	1.60×10^{-3}	0.244	0.225
All amines	2.13×10^{-3}	2.13×10^{-3}	0.325	0.300

Percent of amine in polyHIPE		0	0	0	0		0.11	1.71	1.68	1.60	1.71	1.61		1.39	1.80	2.05	2.57
Initial amine Ioaded		0	0	0	0		2.133	2.133	2.133	2.133	2.133	2.133		1.066	2.133	3.199	4.265
mmol of overall amine in polyHIPE		0	0	0	0		0.023	0.364	0.358	0.341	0.364	0.344		0.297	0.384	0.438	0.548
mmol of primary amine in polyHIPE		0	0	0	0		0.006	0.091	0.089	0.085	0.091	0.086		0.074	0.096	0.109	0.137
mmol of used salicylaldehyde in 20 mL		0	0	0	0	I	0.006	0.091	0.089	0.085	0.091	0.086	EI	0.074	0.096	0.109	0.137
mmol/L	% PEI	0	0	0	0	t% PE	0.292	4.554	4.470	4.261	4.554	4.303	wt% F	3.718	4.805	5.473	6.852
Used salicylaldehyde (mg/L)	ind 0 wt	0.00	-5.10	10.20	0.00	and 10 w	35.71	556.12	545.92	520.41	556.12	525.51	different	454.08	586.73	668.37	836.73
400X times dilution factor(mg/L)	ner ratio a	2721.94	2727.04	2711.73	2721.94	ner ratio	2686.22	2165.82	2176.02	2201.53	2165.82	2196.43	0/40 and	2267.86	2135.20	2053.57	1885.20
Residual conc. Of salicylaldehyde in diluted fitrate (mg/L)	rent monon	6.805	6.818	6.779	6.805	rent monon	6.716	5.415	5.440	5.504	5.415	5.491	mer ratio 6	5.670	5.338	5.134	4.713
Absobance at 255 nm	ith diffe	0.577	0.578	0.575	0.577	ith diffe	0.570	0.468	0.470	0.475	0.468	0.474	ith mon	0.488	0.462	0.446	0.413
Solution	(a) PolyHIPEs wi	0.02M Salicylaldehyde	100/0, 0% PEI	75/25, 0% PEI	50/50, 0% PEI	(b) PolyHIPEs w	100/0, 10% PE	90/10, 10% PEI	80/20, 10% PEI	70/30, 10% PEI	60/40, 10% PEI	50/50, 10% PEI	(c) PolyHIPEs wi	60/40, 5% PEI	60/40, 10% PEI	60/40, 15% PEI	60/40, 20% PEI

Table C3 UV-VIS results calculated from calibration curve

Appendix D FTIR wavenumber

Table D1FTIR wavenumber

Origin	Wavenumber (cm ⁻¹)	Assignment
		Primary amino
N - H	3400–3380	Aliphatic primary amine, NH stretch
	+3345-3325	
N - H	1650–1590	Primary amine, NH bend
C - N	1090–1020	Primary amine, CN stretch
		Secondary amino
>N - H	3360-3310	Aliphatic secondary amine, NH stretch
>N - H	~3450	Aromatic secondary amine, NH stretch
>N - H	3490–3430	Heterocyclic amine, NH stretch
= N - H	3350-3320	Imino compounds, NH stretch
>N - H	1650–1550	Secondary amine, NH bend
C - N	11901130	Secondary amine, CN stretch
	1250-1020	
		Tertiary amino
C - N	1210-1150	Tertiary amine, CN stretch
C - Cl	~1200	Aliphatic chloro compounds,
	800-700	C - Cl stretch
0 - H	3570-3200 (broad)	Hydroxy group, H-bonded
		OH stretch
С - Н	2820 - 2810	C-H stretch

CURRICULUM VITAE

Name:	Mr. Pacharakhorn Dejburum
Date of Birth:	February 01, 1988
Nationality:	Thai

University Education:

2005 – 2009 Bachelor Degree of Engineering (Petrochemical and Polymeric material), Faculty of Engineering, Silpakorn University, Nakhon Pathom, Thailand **Working Experience:**

April-June 2009	Position:	Student Internship in area I-17 (tank
		farm)
	Company name:	PTT Aromatics and Refining Public
		Company Limited

Proceedings:

1. Dejburum, P., Saiwan, C., Tontiwachwuthikul, P., and Muchan, P. (2012, April 24) Poleethyleneimine Loading into High Internal Phase Emulsion Polymer for CO₂ Adsorption: Synthesis and Characterization of the PolyHIPE. <u>Proceedings of The 3nd</u> <u>Research Symposium on Petroleum, Petrochemicals, and Advanced Materials and The 18th PPC Symposium on Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand</u>