
Phytochemical Screening, *In Vitro* Antimalarial Activity and Genetic Diversity of Selected Asteraceae Medicinal Plants Indigenous to Thailand

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Public Health Sciences Common Course COLLEGE OF PUBLIC HEALTH SCIENCES Chulalongkorn University Academic Year 2020 Copyright of Chulalongkorn University การตรวจสอบทางพฤกษเคมีเบื้องต้น ฤทธิ์ต้านมาลาเรียในหลอดทดลองและความหลากหลายทางพันธุกรรมของพืชสมุนไพร บางชนิดในวงศ์ทานตะวันที่พบในประเทศไทย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาวิทยาศาสตร์สาธารณสุข ไม่สังกัดภาควิชา/เทียบเท่า วิทยาลัยวิทยาศาสตร์สาธารณสุข จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2563 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	Phytochemical Screening, In Vitro Antimalarial Activity and Genetic Diversity of	
	Selected Asteraceae Medicinal Plants Indigenous to Thailand	
Ву	Miss Desy Liana	
Field of Study	Public Health Sciences	
Thesis Advisor	KANCHANA RUNGSIHIRUNRAT	

Accepted by the COLLEGE OF PUBLIC HEALTH SCIENCES, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Science

		Dean of the COLLEGE OF PUBLIC HEALTH
	0	SCIENCES
THESIS COMMITTE	e 🤍 9 🧱	
		Chairman
	(SATHIRAKORN PONGPANICH)	
		Thesis Advisor
	(KANCHANA RUNGSIHIRUNRAT)	
		External Examiner
	(Wanna Chaijaroenkul)	4
	จหาลงกรณ์มหาวิท	
		VERSITY

เดซี่ เลียน่า : การตรวจสอบทางพฤกษเคมีเบื้องด้น ฤทธิ์ด้านมาลาเรียในหลอดทดลองและความหลากหลายทางพันธุกรรมของพืชสมุนไพร บางชนิดในวงศ์ทานตะวันที่พบในประเทศไทย. (Phytochemical Screening, *In Vitro* Antimalarial Activity and Genetic Diversity of Selected Asteraceae Medicinal Plants Indigenous to Thailand) อ.ที่ปรึกษาหลัก : กาญจนา รังษีหิรัญรัตน์

การ ดื้อ ต่อ ขาอาร์เท มิซินินทำให้ เกิด ความพ ขาขามในการ ก้นหาขาด้านมาลาเรียช นิดใหม่ การใช้ข้อมูลการวิวัฒนาการร่วมกับข้อมูลทางพฤกษศาสตร์ในการ ก้นหาพืชที่มีฤทธิ์ด้านเชื้อมาลาเรียอาจเป็นประโยชน์ในการทำนายฤทธิ์ทา งชีวภาพและลดค่าใช้จ่ายและเวลาในการวิจัยในห้องปฏิบัติการ วัตถุประสงค์ของการศึกษานี้ กือการตรวจหาฤทธิ์ด้านเชื้อมาลาเรีย สารพฤกษเคมีเบื้องต้นและศึกษาความหลากหลายทางพันธุกรรมของพืชสมุนไพรบางชนิดในวงค์ Asteraceae ที่ได้จากข้อมูลการวิวัฒนาการร่วมกับข้อมูลทางพฤกษศาสตร์

จากการทบทวนวรรณกรรมสมุนไพรจำนวน 733 ชนิด พบว่ามีเพียง 340 ชนิดเท่านั้นที่มีกุณสมบัติตรงตามเกณฑ์การกัดเข้าเพื่อใช้ในการศึกษาลำดับเบสของ Internal Transcribed Spacer (ITS) ที่ได้จากฐานข้อมูล NCBI เมื่อนำมาวิเคราะห์การเรียงลำดับเบสด้วยโปรแกรม MUSCLE และ ITOL เพื่อสร้างแผนภูมิด้นไม้และจัดกลุ่ม พบว่าสมุนไพรที่ใช้ในการรักษามาลาเรียอยู่ในวงก์ Asteraceae, Apocynaceae, Rubiaceae และ Euphorbiaceae โดยพบมากในกลุ่ม Asteraceae

สารสกัดเอทานอลของพืชสมุนไพรไทยในวงค์ Asteraceae งำนวน 16 ชนิด ถูก กัด เลือก มาเพื่อ ตรวจ ส อบทางพฤ กางพฤก เคมีเบื้องต้นด้วยวิธีมาตราฐานเพื่อตรวจหาสารอัลกาลอยด์ ฟุนอลิกฟลาโวนอยด์ ไตรเทอร์พืน สเตียรอยด์ ซาโปนิน ไดเทอร์พืนและแลกโตนการทดสอบฤทธิ์ด้านมาลาเรียในหลอดทดลองด้วยวิธี DNA fluorescence-based assay ต่อเชื้อมาลาเรียชนิดพืลซิพารัมสายพันธุ์ 3D7 จากฤทธิ์ด้านมาลาเรียด้วยก่า IC₅₀ (µg/mL) สำหรับการศึกษาหลากหลายทางพันธุกรรม จากการสกัดดีเอ็นเอของพืชสมุนไพรด้วยวิธี CTAB ทำการเพิ่มปริมาณสารพันธุกรรม หาลำดับเบสโดยใช้ ITS ไพรเมอร์ เปรียบเทียบลำดับเบสด้วยโปรแกรม MAFFT และวิเคราะห์แผนภูมิต้นไม้ด้วย ITOL และ Adobe Illustrator 2020 โดยมี *Cannabis sativa* เป็นด้าเปรียบเทียบ

พึชสมุน ไพรที่สกัดด้วยเอทานอลทั้ง 16 ชนิด พบว่ามีสารฟีนอลิกและฟลาโวนอยด์ จากผลการทดสอบฤทธิ์ด้านมาลาเรียในหลอดทดลองในพืชสมุนไพร 16 ชนิด พบว่า 8 ชนิดมีฤทธิ์ด้านมาลาเรียระดับต่างกัน ได้แก่ ระดับดีถึงปานกลาง 1 ชนิด (Sphaeranthus indicus) ระดับน้อย 4 ชนิด (Blumea balsamifera, Artemisia chinensis, Artemisia vulgaris, Tridax procumbens) และระดับน้อยมาก 3 ชนิด (Wedeliatrilobata, Eupatorium capillifolium, Vernonia cinerea) ส่วนสารสกัดที่เหลืออีก 8 ชนิดพบว่าไม่มีฤทธิ์ด้านเชื้อมาลาเรียสายพันธุ์ 3D7 สารสกัดที่มีฤทธิ์ดีที่สุดคือส่วนของลำด้นเหนือดินของ Sphaeranthus indicusมีก่า IC₅₀ 6.59 µg/mL จากแผนภูมิด้นไม้โดยใช้ลำดับเบสของ ITS สามารถจัดจำแนกสมุนไพรที่ศึกษาออกเป็นกลุ่มๆ กล่าวโดยสรุป การศึกษาทางวิวัฒนาการนั้นมีประโยชน์ในการจำกัดการคัดเลือกกลุ่มสมุนไพรให้แคบลงเพื่อใช้ในการศึกษาฤทธิ์ทางชีวภาพ

สาขาวิชา วิทยาศาสตร์สาธารณสุข ปีการศึกษา 2563 ลายมือชื่อนิสิต ลายมือชื่อ อ.ที่ปรึกษาหลัก

##6278001453 : MAJOR PUBLIC HEALTH SCIENCES

KEYWORD: antimalarial phytochemicals genetic diversity Plasmodium falciparum phylogeny ethnobotany
 Desy Liana : Phytochemical Screening, *In Vitro* Antimalarial Activity and Genetic Diversity of Selected Asteraceae
 Medicinal Plants Indigenous to Thailand. Advisor: KANCHANA RUNGSIHIRUNRAT

The emergence of artemisinin resistance leaded the effort to find the new antimalarial drug or artemisinin activity booster. Due to the chance that secondary metabolites can be evolutionary conserved, combining phylogeny with ethnobotanical data for screening antimalarial activity may be helpful to predict bioactivity and minimize the expenditure and time for laboratory research. The aimed of this study is screening the antimalarial activity, phytochemicals and genetic diversity of selected Asteraceae medicinal plants generated by combinatorial phylogeny and ethnobotanical data.

733 medicinal plants were obtained from literature search however only 340 taxa were met the inclusion and exclusion criteria hence these taxa were further analysis. Obtained 340 Internal Transcribed Spacer (ITS) sequences from gene bank NCBI were analyzed by MUSCLE sequence alignment and Maximum Likelihood Phylogenetic Test to generate the phylogenetic tree. Interactive Tree of Life (ITOL) was used to analyze the clustered pattern in generated phylogenetic tree. Several clades were highlighted consistently in the phylogenetic tree for malaria treatment including Asteraceae, Apocynaceae, Rubiaceae and Euphorbiaceae while the strong signal was majorly shown in Asteraceae.

Afterwards, 16 ethanolic extract of Thai Asteraceae medicinal plants were investigated to determine the phytochemical screening, antimalarial activity, and the genetic diversity. Alkaloids, phenolics, flavonoids, triterpenes, steroids, saponins, diterpenes and lactones were screening by standard method. Antimalarial activity assay was done by DNA fluorescence-based assay against laboratory adapted 3D7 *Plasmodium falciparum*. Classification of antimalarial activity was done by categorizing the IC₅₀ (μ g/mL). In other hand, the genetic diversity was examined. Extracted plant DNA by CTAB method was amplified and sequenced by universal ITS primer. Phylogenetic analyses were performed with *Cannabis sativa* as outgroup species. MAFFT sequences alignment and RAxML with automatic bootstrapping were performed to generate phylogenetic tree followed by making up with ITOL and Adobe Illustrator 2020.

All 16 ethanolic extract medicinal plants showed the presence of phenolics and flavonoids. Among 16 medicinal plants tested, 8 showed active which exhibited good-moderate (1; *Sphaeranthus indicus*), weak (4; *Blumea balsamifera, Artemisia chinensis, Artemisia vulgaris, Tridax procumbens*) and very weak (3; *Wedelia trilobata, Eupatorium capillifolium, Vernonia cinerea*) and the 8 remaining extract were showed inactive. The best promising extract is *Sphaeranthus indicus* with the IC_{50} 6.59 µg/mL. Constructed phylogenetic tree using ITS region showed to be able to separate the species into their clade tribe based on current classification. In conclusion, phylogeny approach is useful to narrow down the selection of candidate taxa for bioactivity screening. Field of Study: Public Health Sciences Student's Signature

Academic Year:

2020

Advisor's Signature

ACKNOWLEDGEMENTS

would love to express my sincere gratitude to my beloved advisor, Assoc. Prof. Kanchana Rungsihirunrat who guide me with the full of patience on both thesis and academic issues during my master study. I could not finish my thesis writing without her continuous helps, immense knowledge, kind guidance, encouragement and nice motivation which were kept me stay mentally healthy. I am very thankful to have her during my master study.

Besides, I am grateful to my thesis committees: Prof. Sathirakhorn Pongpanich, Assoc. Prof. Wanna Chaijaroenkul for their valuable comments, advices and questions which were build up my knowledge.

My deepest thanks to Assoc. Prof. Wanna Chaijaroenkul and Dr. Matthew Phanchana for their kindness support hence I could learn and finished the antimalarial assay. I would like to express my sincere thanks also to Assoc. Prof. Chanida Palanuvej, Dr. Anuchit Phanumartwiwath and P'Somchai for their kindness supports, guidances and insightful discussions during developing of phytochemical screening method.

For all my professors in Public Health Sciences: Assoc. Prof. Kanchana Rungsihirat, Assist. Prof. Naowarat Kanchanakhan, Dr. Tepanata Pumpaibool, Assoc. Prof. Chanida Palanuvej, Dr. Anchalee Prasansuklab, Dr. Anuchit Phanumartwiwath and Dr. Onuma Zongram, I would express my sincere thanks for their invaluable advice during developing and doing my research.

For the staff and my fellow lab-mates in Biomolecular Laboratory, P' Napaporn, P' Kannittha and P' May Myath Thu, thank you for always supporting, accompany and cheer me up during my up and down in experimental study. My sincere thanks to all my friends in Public Health Sciences Program (Irfanul Chakim, P' Boonyarat, P' Mint, P' Pare, Phimkun, Sathakun, P' Alison, P' Akarat, P' Ploychat, P' Meen) and for all my Indonesian friends in Public Health Program (Nurnaningsih Herya Ulfah, Lafi Munira, Syarifah Aqilah, Ridwan Fauzi, Siti Syahidati Fauzana and Fena Amalia Untari). Also, I would like to express my sincere thanks to all my friends who could not be stated one by one here.

My sincere gratitude to all professors and supporting staffs of College of Public Health Sciences, Chulalongkorn University for their insightful lectures, sharing and technical supports. And also, I would like to acknowledge AEC Educational Scholarship and 90th Anniversary Research grant from Chulalongkorn University hence I could achieve to study here.

At last, foremost, I am extremely grateful to my parents, my sisters and brother who always pray for me and support me from miles away hence I could survive and happy studying here.

จุฬาลงกรณิมหาวิทยาลัย Chulalongkorn University

Desy Liana

TABLE OF CONTENTS

Pag	ze
ABSTRACT (THAI)iii	
iv	
ABSTRACT (ENGLISH) iv	
ACKNOWLEDGEMENTS	
TABLE OF CONTENTS	
LIST OF TABLES	
LIST OF FIGURES	
CHAPTER I INTRODUCTION	
1.1. BACKGROUND AND RATIONALE	
1.2. RESEARCH GAP	
1.3. RESEARCH QUESTIONS	
1.4. OBJECTIVE จุฬาลงกรณ์มหาวิทยาลัย	
CHULALONGKORN UNIVERSITY 1.4.1. GENERAL OBJECTIVE	
1.4.2. SPECIFIC OBJECTIVES	
1.5. CONCEPTUAL FRAMEWORK	
CHAPTER II LITERATURE REVIEW	
2.1. MALARIA	
2.2. HISTORY OF ANTIMALARIAL DRUG11	
2.2.1. Quinine 11	
2.2.2. Synthetic Antimalarials	

2.2.3. Artemisinin and derivatives	14
2.3. EMERGENCE OF RESISTANCE	16
2.4. PLANT NATURAL PRODUCT	18
2.4.1. Alkaloids	19
2.4.1.1. Extraction of Alkaloid	21
2.4.1.2. Chemical Test for Alkaloid Detection	22
2.4.1.3. Antimalarial Activity of Alkaloid	22
2.4.2. Phenolic Compounds	23
2.4.2.1. Main Type of Phenolic Compounds and Detection	24
2.4.2.2. Antimalarial Activity of Phenolic Compounds	28
2.4.3. Terpenes	29
2.4.3.1. Chemical Test for Terpenes Detection	30
2.4.3.2. Antimalarial Activity from Terpenes	31
2.5. SESQUITERPENE LACTONES	
2.6. NATURAL PRODUCT EXTRACTION	
2.6.1. Solvent Selection	
GHULALONGKORN UNIVERSITY	
2.6.2. Extraction Techniques	
2.6.2.1. Maceration	
2.6.2.2. Soxhlet extraction	
2.6.2.3. Decoction39	
2.6.2.4. Infusion 39	
2.6.2.5. Digestion 39	
2.6.2.6. Percolation	
2.6.2.7. Ultrasound assisted solvent extraction/ sonication	40

2.6.2.8. Pressurized solvent extraction (accelerated solvent extraction)	40
2.6.2.9. Reflux and steam distillation	41
2.6.2.10. Microwave Assisted Extraction (MAE)	41
2.7. ANTIMALARIAL SCREENING ASSAY	41
2.7.1. Microtest	42
2.7.2. Radioisotopes based assay	42
2.7.3. Enzyme based assay	
2.7.4. Flowcytometry Assay	43
2.7.5. Fluorescence Based Assay	43
2.7.6. In vitro beta-hematin Formation Assay	43
2.7.7. In vitro Assay Targeting Liver Stages	43
2.8. GENETIC DIVERSITY	44
2.9. DESCRIPTION SELECTED ASTERACEAE MEDICINAL PLANTS	46
2.9.1. Artemisia vulgaris	46
2.9.2. Artemisia lactiflora	
จุฬาลงกรณ์มหาวิทยาลัย 2.9.3. Blumea balsamifera	
2.9.4. Ageratum conyzoides	
2.9.5. Bidens pilosa	
2.9.6. Vernonia cinerea (Cyanthillium cinereum)	
2.9.7. Gynura divaricata	
2.9.8. Gynura pseudochina	
2.9.9. Tridax procumbens	
2.9.10. Wedelia trilobata / Sphagneticola trilobata	
2.9.11. Eupatorium odoratum / Chromolaena odorata	64

2.9	9.12.	Artemisia dracunculus	65
2.9	9.13.	Eupatorium capillifolium	67
2.9	9.14.	Artemisia chinensis/ Crossotephium chinense	68
2.9	9.15.	Sphaeranthus indicus	69
2.9	9.16.	Acmella oleracea	71
CHAPTE	R III METH	IODOLOGY	73
3.1	1.1. Data co	llection	73
3.1	1.2. Phyloge	enetic Tree Construction	73
3.2. PL	LANT COLI	LECTION AND EXTRACTION	74
3.3. PH	IYTOCHEN	MICAL SCREENING	75
3.3	3.1. Phenoli	cs compound test (Ferric chloride test)	75
3.3	3.2. Flavono	bid test (Alkaline test)	75
3.3	3.3. Alkaloi	d test	76
3.3	3.4. Steroid	and triterpenes test (Salkowski's test)	76
3.3	3.5. Saponin	n test (foam test) จุฬาลงกรณีมหาวิทยาลัย	76
3.3	3.7. Diterper	nes test (Copper acetate test)	77
3.3	3.8. Lactone	es (Baljet test)	77
3.4. Al	NTIMALAF	RIA ACTIVITY ASSAY	77
3.4	4.1. Parasite	Culture	77
3.4	4.2. Assessn	nent of <i>in vitro</i> antimalarial activity assay	78
3.5. GI	ENETIC DI	VERSITY OF ITS REGION	78
3.:	5.1. Plant G	enomic DNA Extraction	78
3.:	5.2. DNA C	oncentration and Purity Measurement	79
	3.5.3. N	Aeasurement genomic DNA concentration and Purity using NanoDrop	79

3.5.4. Agarose gel electrophoresis
3.5.5. Amplification of ITS Region80
3.5.6. ITS region sequencing and Phylogenetic Tree Analyses of selected medicinal
plants81
3.6. DATA ANALYSIS
3.7. EXPECTED BENEFITS
3.8. RESEARCH BUDGETS
3.9. TIME SCHEDULE
CHAPTER IV RESULT
4.1. Combinatorial approach using phylogeny and ethnobotanical data for selecting
antimalarial plants target
4.2. Preliminary phytochemical screening of 16 selected Asteraceae medicinal plants90
4.3. Internal Transcribed Spacer (ITS) region of 16 selected Asteraceae medicinal plants92
4.4. Antimalarial activity of 16 selected Asteraceae medicinal plants
4.5. Clustered pattern on phylogeny of 16 selected Asteraceae medicinal plants with traditional
uses, phytochemical and antimalarial activity against 3D7 P. falciparum103
CHAPTER V DISCUSSION
CONCLUSSION
REFERENCES
VITA
VITA

LIST OF TABLES

		Page
Table	1. Alkaloids classes	.19
Table	2. Terpenoid classes	.29
Table	3. Polarity index of the solvents [46]	.34
Table	4. Solvent for phytochemicals extraction [47]	.35
Table	5. Residual solvent class classification [48]	.36
Table	6. 1st class solvents [48]	.36
Table	7. 2 nd class solvent [48]	.37
Table	8. 3 rd class solvent (less toxicity) [48]	.38
Table	9 Different method for phylogenetic analysis [52]	.45
Table	10. Part used of selected medicinal plants.	.74
	11. Preliminary phytochemical screening result of 16 selected Asteraceae medicinal plan	
•••••		.90
Table	12. IC ₅₀ (µg/mL) ethanolic extract of 16 selected Asteraceae plants	.01

LIST OF FIGURES

Page
Figure 1 Conceptual framework
Figure 2. Life cycle of P. falciparum parasites [19]7
Figure 4. Blood stage (ring, trophozoite, schizont) of Plasmodium [21]9
Figure 5. Parasite life stage in the single red blood smear [21]10
Figure 6. Chincona tree
Figure 7. Structure of quinine
Figure 8. Structure of artemisinin and its derivatives
Figure 9. Timeline between introduction antimalarial drug and the first case of resistance [26]16
Figure 10. P. falciparum artemisinin resistance proposed mechanism. Ferrous ions activated the
artemisinin (ARTs) within malarial parasites, lead the DNA damage, reactive oxygen species
(ROS) production, protein alkylation and trigger the death of parasites. Kelch 13 (K13) mutation
will decrease proteolysis of P13K (phosphatidylinositol-3-kinase) and increase lipid product
PL3P which stimulate autophagy, engage the unfolded protein response and eventually promote
the survival of the parasites [27]
Figure 11. Structure of cryptolepine
Figure 12. Basic structure of flavonoids
Figure 13. Structure of gallic acid, ellagic acid and hexahydroxydiphenic acid27
Figure 14. Structure of flavonoid glycoside (phloridzin)
Figure 15. Structure of yingzhaosu A
Figure 16. Structure of Brusatol
Figure 17. Structure of the internal transcriber spacer (ITS) region
Figure 18. Selected Asteraceae medicinal plants

Figure 19. phylogenetic mapping of medicinal plants used for malaria (red), fever (blue),
diarrhea (purple) and tuberculosis (green) generated by Maximum Likelihood Test and MUSCLE
sequences alignment
Figure 20. phylogenetic mapping of medicinal plants used for malaria and its associated
symptoms (fever and diarrhea) generated by Maximum Likelihood Test and MUSCLE sequences
alignment. Plants used for malaria was represented with red color, fever was represented with
blue color while diarrhea was represented with purple color
Figure 21 phylogenetic mapping of medicinal plants used for malaria (red), fever (blue) and
tuberculosis (green) generated by Maximum Likelihood Test and MUSCLE sequences alignment.
Figure 22. phylogenetic mapping of plants used for malaria (red color) and fever (blue color)
generated by Maximum Likelihood Test and MUSCLE sequences alignment
Figure 23. Genomic DNA of 16 plants on 1.5% agarose gel (M=1 kb marker)92
Figure 24. ITS region PCR products of 16 tested plants on 1.5% agarose gel (M=100 bp marker)
Figure 25. Sequence alignment of ITS region of selected Asteraceae medicinal plants
Figure 26. phylogeny, phytochemicals and antimalarial activities of 16 ethanolic extracts of
medicinal plants generated from combinatorial phylogeny based on ITS sequences data and
ethnobotanical bioprospecting

CHAPTER I INTRODUCTION

1.1. BACKGROUND AND RATIONALE

Malaria is a vector borne infectious disease caused by protozoan parasites called *Plasmodium*, transmitted by female *Anopheles* mosquito. This disease still became major challenge in the health problems. WHO reports that there are 228 million cases occured in 2018 and 405.000 people death because this disease[1]. Nowadays, there are 5 species of *Plasmodium* which can infect human such as *Plasmodium falciparum*, *Plasmodium vivax*, *Plasmodium malariae*, *Plasmodium ovale* and *Plasmodium knowlesii*. However, *P. falciparum* is the deadly one among the others [2].

From ancient time, plant has been used to treat malaria in various region around the world. In 1820, the first antimalarial drug (alkaloid quinine) was extracted from bark *Cinchona* (Rubiaceae) and become the core of malaria treatment but after that the usage was suspended by chloroquine. This chloroquine drug was successful for malarial treatment but then resistance has been occurred afterwards [3]. After the spread of resistant to the chloroquine and other synthetic drugs, artemisinin then replacing the core treatment for malaria disease [4]. Artemisinin is antimalarial drug which derived from Chinese plant "qinghao" (*Artemisia annua*). Currently, artemisinin and its derivatives are being used as the first and second-line treatment for malaria [2].

Artemisinin based combination therapies (ACTs) is the first and second line treatment for uncompleted *P. falciparum* and chloroquine resistance *P.vivax* which are recommended by WHO. This drug and derivatives able to reduce the number of parasites during the first 3 days of treatment while the partner drug is functioning to eliminate the remaining parasites [1]. Artemisinin has fast action and shorter time for clearance the parasite compare to other malarial drugs and only active in the bloodstage parasites. Artemisinin act quickly and can kill every asexual red blood cell stage. The rapid action made artemisinin derivatives effective against severe malarial. However, this drug also disappeared quickly hence recrudescences may be occurred when using monotherapy[5].

Unfortunately, the emergence of *P. falciparum* resistance to ACTs including artemisin derivative and their partner drug has occurred. In 2008, reduced clinical efficacy of ACTs was reported in Western Cambodia (Thailand- Cambodia border area) which showed the delayed clearance of the parasites. Resistance to artemisin has spread over in Southeast Asia. In 2017, artemisin resistance was limited in the Greater Mekong subregion (Cambodia, Thailand, Myanmar, Lao PDR, Vietnam, Myanmar-China-India border [6]. One of the solutions for this case is discovery of new drug of antimalarial which could be act as replacement of artemisinin or artemisinin activity booster.

Emergence of resistance is the major challenge for malaria eradication mission. Various strategies are laid down by World Health Organization such as vector control, source reduction, early case detection, prompt treatment, development of new diagnosis and vaccines, nevertheless the need for new and efficacious drugs has become critical priority [7]. World Health Organization (WHO) reported that about 65-80% people where live in developing country depend inessentially on plant for primary health care. Herbal material has been used since a long time ago as a medicine for treatment or prevention of numerous of disease. Over the past decade, interest in drug derived from plant has increased expressively which about 25% of modern medicines are derived from plants[8]. A lot of drugs have been developed from plant natural products due to its bioactive compounds (e.g. alkaloids, terpenoids, phenolics) which well known to have therapeutic properties.

Targeted approach in natural product research for drug discovery can be based on ethnobotanical and chemo-taxonomical data. Local people's wisdom of knowledge and experience from ancient years ago about using various herbs for treating the disease may become a tool for discovery new promising agent. Moreover, similar group of compounds can be expected to be found under one genera or family.

Ethnobotanical bioprospecting has contributed in drug discovery generating various current modern drug including antimalarial. However, merely using ethnobotanical directed bioprospecting may encountered several disadvantages. Placebo effects may be occurred in traditional medicine practices. Additionally, there are still many traditional herbal medicines have not been tested or have tested but showed none

or less efficacy. Furthermore, there are no robust methods which suggest for selecting the plants for further bioactivity screening effectively in purpose to avoid exhaustive testing. Phylogenetic approach becoming a new prospective tool to predict the power of traditional medicine whereas several studies showed that related medicinal plants species are used by local people in the different region to treat medical condition in the same therapeutic areas. This approach also may be useful for discovering new candidate plant which never been used in ethnomedicine. The study by combining phylogeny with ethnobotanical data from three different biodiversity hotspot area including Nepal, South Africa Cape and New Zealand showed that medicinal plant showed to be pretty concentrated in certain sites of the constructed phylogenetic trees, were not scattered randomly [9]. Based on this finding, some suggest that the exploration for looking new medicinal plant for drug discovery should begin from the "hot" groups which were assumed to share similar phytochemical or bioactivity power [10].

Phylogeny or relatedness among species can be construct using the heritable characters. The characters may be morphological, chemical or genetical. Conventionally, the phylogenetic trees are constructed by physical examination. Nowadays, molecular analysis has been used to refine or support the constructed phylogenetic tree using DNA sequence of particular-gene or DNA region to examine the similarities. DNA barcoding can be performed using various marker including Internal transcribed spacer (ITS) region. ITS region is ribosomal DNA which occurred as arrays of tandem repeats and dispersed in the various locations in the genome [11]. Despite ITS, there are common nuclear sequences which being used for plant DNA barcoding such as plastid genes (e.g. *matK, rbcL, psbA-trnH, trnL* intron, etc) and intergenic spacer (IGS). However, ITS region showed high authentication efficiency due to the length and sequence and have relatively high mutation and evolution rates [12] hence this region widely used as a marker because of its high resolution of intra- and interspecific relationships [13]. Furthermore, this region is easy to amplify using universal primer [14].

The well-known herbs *Artemisia annua* ("qinghao"), which produce sesquiterpene lactone artemisinin is belong to Asteraceae family [15]. Asteraceae is the largest flowering plant families which have members over 900 genera and 14.000 species

[16]. Several species in this family has being used by local people in various region of the world for treating malaria and fever traditionally.

Thailand is relatively small country but well known on its richness in the biodiversity including plant diversity. Moreover, Thai people have used the plants as a sources or traditional medicine for making the remedies of ailments in such of a long history.

1.2. RESEARCH GAP

Due to the emergence of artemisinin resistance, new candidate drug for malarial become urgently needed. Ethnobotanical study may be a tool to lead the drug discovery due to experience and knowledge of the people from ancient time whereas preliminary screening of bioactive compound is useful for guiding the further research in drug discovery derived from plants. Exhaustive testing for discovery new candidate drug from ethnobotanical studies was trigger people to discover new approach to looking for the more effective way. Phylogeny among species which can be constructed using molecular marker become a new candidate tool to predict the power of traditional medicine due to the possibility of sharing similar bioactivities and chemical characters between related species. However, oversimplify for making the conclusion regarding to this approach should not be done. Until this time, this relation has rarely been tested hence investigation of this approach is needed in order to observe the pattern between the phylogeny, phytochemical diversity and the power of bioactivity.

There is no reported study which investigate *in vitro* antimalarial activities, phytochemical and genetic diversity in the population of indigenous Thailand's medicinal plants generated by combinatorial phylogeny and ethnobotanical data approach. Furthermore, this study is first attempt which investigate the relationship between phylogeny and the diversity of the phytochemical and the antimalarial activity of the selected medicinal plants.

1.3. RESEARCH QUESTIONS

- 1.3.1. How does the clustered pattern of ethnobotanical plants used for malaria treatment in the constructed phylogenetic tree?
- 1.3.2. How are the profiles of the bioactive compounds of selected Asteraceae medicinal plants indigenous to Thailand?
- 1.3.3. How does the *in vitro* antimalarial activities of selected Asteraceae medicinal plants indigenous to Thailand?
- 1.3.4. Which plant showed promising antimalarial activity among all tested plants?
- 1.3.5. How are the patterns of ITS sequence among all plant species tested?
- 1.3.6. Is there any pattern or relation between phylogeny with the phytochemical diversity and the power of bioactivity from antimalarial assay?

1.4. OBJECTIVE

1.4.1. GENERAL OBJECTIVE

To investigate the phytochemical screening, *in vitro* antimalarial activities, and genetic relationship of selected medicinal plants indigenous to Thailand generated from combinatorial phylogeny and ethnobotanical data approach.

1.4.2. SPECIFIC OBJECTIVES

- 1.4.2.1. Investigate the clustered pattern of medicinal plants used for malaria and its associated symptoms by combining phylogeny and ethnobotanical data.
- 1.4.2.2. Determine the presence of secondary metabolites in crude extract using standard phytochemical screening of each selected Asteraceae medicinal plant indigenous to Thailand.
- 1.4.2.3. Determine the antimalarial activity of each selected Asteraceae medicinal plant indigenous to Thailand.
- 1.4.2.4. Determine the promising plant among all plant species tested.
- 1.4.2.5. Determine the ITS sequence of all plant species tested.
- 1.4.2.6. Investigate any pattern or relation in phylogeny on their phytochemical diversity and the power of antimalarial activity among all tested plants.

1.5. CONCEPTUAL FRAMEWORK

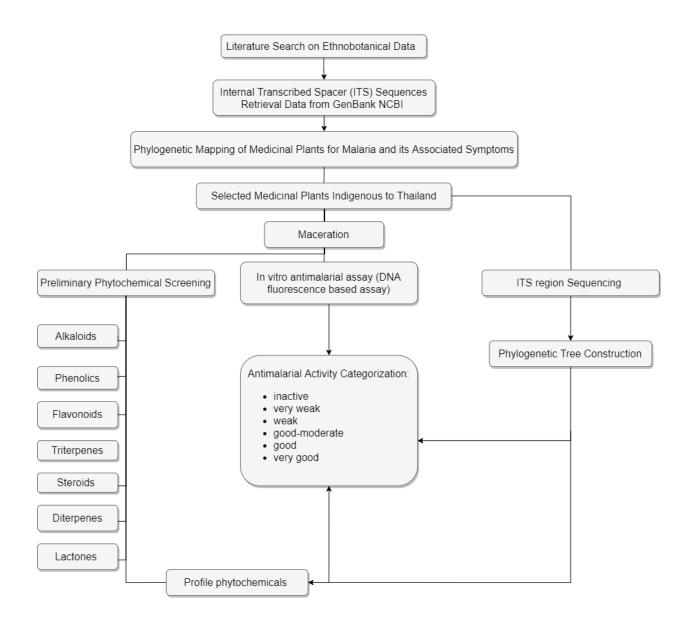


Figure 1 Conceptual framework

CHAPTER II LITERATURE REVIEW

2.1. MALARIA

Malarial is infectious diseases cause by protozoan parasites, *Plasmodium*. There are 5 *Plasmodium* species which can infect human (P. *falciparum*, *P. vivax*, *P. ovale*, *P. malariae and P. knowlesi*). However, *P. knowlesi* is known as causative agent of zoonotic disease because the reservoir host is not human but long tailed *Macaca* monkey.

Major human malarial are caused by *P. falciparum* and *P. vivax* while *P. falciparum* is more virulent and cause severe malarial anemia. It can induce anemia during their blood stages of infection [17]. *Plasmodium* species is a protozoan parasite belong to Phylum Apicomplexa, Class Aconoidasida, Order Haemosporida and Family Plasmodiidae [18]. Among of *Plasmodium* species, *P. falciparum* known to has ability to progress rapidly to severe illness or death. This species predominates in Papua New Guinea, sub-saharan Africa and Hispaniola [19].

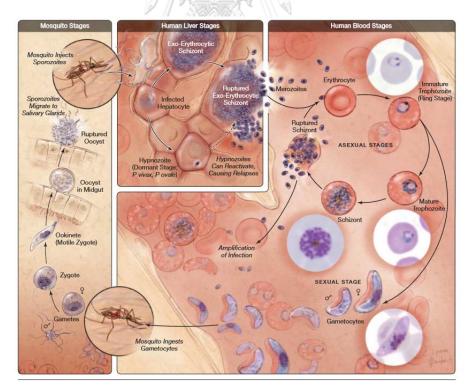


Figure 2. Life cycle of P. falciparum parasites [19]

During blood feeding of female *Anopheles* mosquito, sporozoites are injected into the skin then invading the hepatocytes [18]. Sporozoite which infect liver cell will mature into schizont. This schizont can rupture and release number of merozoites. There is an exception in *P. vivax* and *P. ovale* which can persist in a dormant stage, a hypnozoite. The dormant hypnozoites can cause relapse and release in the bloodstream after a week or years later. Released merozoites then infect red blood cells and then turn into trophozoites. The ring stage (immature tropozoites) will mature and turn into schizont stage which can produce and releasing merozoites when rupture. Disease is caused by this asexual blood stages. The cycle repeated when microgametocyte and macrogametocyte are ingested during a blood meal. Multiplication in the body of mosquito is called sporogony cycle. Microgamete will penetrate the macrogamete in the stomach and produce zygotes. These zygotes will turn into ookinetes which elongated and have ability to mobile. Ookinetes will invade the midgut wall and then will turn into oocysts which can develop later become sporozoites [20].

Human Malaria					
Stages Species	Ring	Trophozoite	Schizont	Gametocyte	
P. falciparum	Des				 Parasitised red cells (pRBCs) not enlarged. RBCs containing mature trophozoites sequestered in deep vessels. Total parasite biomass = circulating parasites + sequestered parasites.
P. vivax			R. C		 Parasites prefer young red cells pRBCs enlarged. Trophozoites are amoeboid in shape. All stages present in peripheral blood.
P. malariae	2				 Parasites prefer old red cells. pRBCs not enlarged. Trophozoites tend to have a band shape. All stages present in peripheral blood
P. ovale					 pRBCs slightly enlarged and have an oval shape, with tufted ends. All stages present in peripheral blood.
P. knowlesi	101		3		 pRBCs not enlarged. Trophozoites, pigment spreads inside cytoplasm, like P. malariae, band form may be seen Multiple invasion & high parasitaemia can be seen like P. falciparum All stages present in peripheral blood.

Figure 3. Blood stage (ring, trophozoite, schizont) of *Plasmodium* [21]

CHULALONGKORN UNIVERSITY

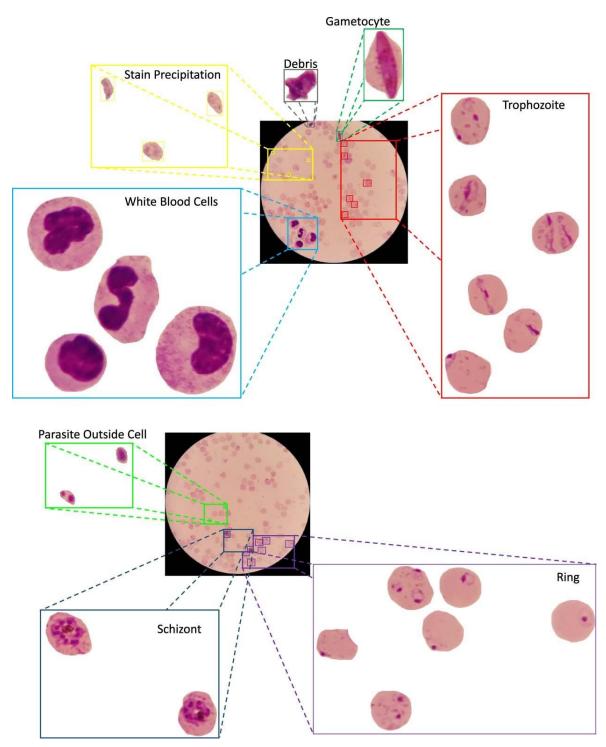


Figure 4. Parasite life stage in the single red blood smear [21]

Period of incubation varies between 7 and 18 days for *P. falciparum*, *P. vivax, and P. ovale*. In other hand *P. malariae* show longer which is 18-40 days. The most common reported symptoms are fever and can be followed by other symptoms such like chills,

headache, dizziness, back pain, myalgias, cough, weakness, abdominal pain, or coma which may occur in weeks or even months after the infection. These symptoms can be occurred because of inadequate treatment or as a response to immunity. Severe malaria is characterized by one or more of the symptoms and mostly caused by *P. falciparum* [19].

Diagnosis is done according to patient's symptoms and physical examination. However, in the first patient showed vary and very non-specific symptoms. Delaying diagnosis and treatment can cause of death hence the rapid diagnosis can decrease the rate of case transmission. Thin and thick peripheral blood smears usually are conducted in the laboratory for diagnosis. In other hand, rapid diagnostic tests are also available (e.g. ICT, OptiMAL, Para-HIT-f, ParaScreen, Paracheck, SD Bioline and molecular technique such as polymerase chain reaction (PCR)) [22].

Nowadays, ACTs is the first and second-line treatment for uncomplicated malaria infection which is recommended by WHO. Treatment with this therapy is helpful to saving the life. The more problem to eradicate this disease is because of the emergence of resistance in all available antimalarial drug in the field [18].

2.2. HISTORY OF ANTIMALARIAL DRUG

2.2.1. Quinine

Quinine is derived from various *Chincona* species originating from South America which has been used traditionally to treat fevers including malaria fever since about 1630. After that, the introduction of more effective drug, chloroquine, has replaced the usage of quinine [4]. In the 18th century, *Chincona* has begun popular then lead the extinction of several species. In 1820, Pierre Pelletier and Joseph Caventou, young French Chemist did successfully isolate the active compound quinine. Afterwards, for more than a century, this compound became the only effective antimalarial available in the world. Mechanism of action of quinine is known to inhibit the formation of haemozoin because this compound can form a complex with the haem. The haem is toxic to the parasite which can cause the death of parasite [4, 23]. In 19th century the world's supply of quinine has been monopoly by the Dutch plantation in Java and quinine became the standard treatment for

intermittent fever for about mid-19th century to 1940s. After introduction of chloroquine and other synthetic antimalarials drug, the use of quinine has declined [23].

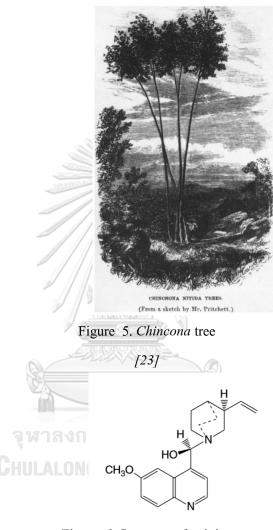


Figure 6. Structure of quinine

[4]

After emergence *P. falciparum* resistance due to the use of chloroquine and other antimalarials, people planned to use back quinine for chloroquine resistant malaria but then artemisinin has replacing the core treatment [4].

2.2.2. Synthetic Antimalarials

In 1856, an 18 years old Chemist, William Henry Perkins, planned to synthesize quinine but did not succeed. However, he was able to synthesize the first textile dye "mauve" which was persist and could not be wash with the water. This successfulness led the development of industry of synthetic dye and then triggered the advance of medicine. After that, the microbiologist used this synthetic dye to stain the microbial for their study. German scientist, Paul Ehrlich using methylene blue to stain malarial parasites and noticed that the parasite took this stain intensely. He assumed that the stain may be toxic to the parasites. Afterthat, in 1891, he cured two malarial patients using this stain. It was become the first synthetic drug for malaria ever which used for human treatment. After that, Bayer, the leading chemical company, immediately became the leading pharmaceutical company. Methylene blue was used as a prototype to developed new synthetic antimalarial drug. In 1925, they synthesized the plasmoquine or pamaquine which was effective against *P. vivax* and mepacrine or atebrine which was active to *P. falciparum* [23].

When Japanese took over Java during World War II, the supply of quinine was cut off and then plasmoquine and mepacrine were widely used. Then, the allied scientist from American, British and Australia was doing experimental through trial and error in purpose to discover new antimalarial drug. They synthesized and tested 16.000 compound and afterward discovered the chloroquine which known to be the powerful antimalarial was superior compared to atebrine. Furthermore, this drug became the most important drug for malaria during that time [23].

In 1950s, strategy to distribute the chloroquine drug in wider scale was done by using Pinnoti's method. People put the chloroquine into the common cooking salt which known as medicated salt program. This strategy has been introduced in Brazil by Mario Pinnoti and was applied in South America, Africa and Asia. At that time, treatment with chloroquine (CQ) or CQ-medicated salt was an important as a complement of malaria eradication program. However, the use of chloroquine was only curtailed in the beginning of 1960s because of the spreading of *P. falciparum* chloroquine resistant. This may be happened partly by medicated salt program. Afterwards, people developed and

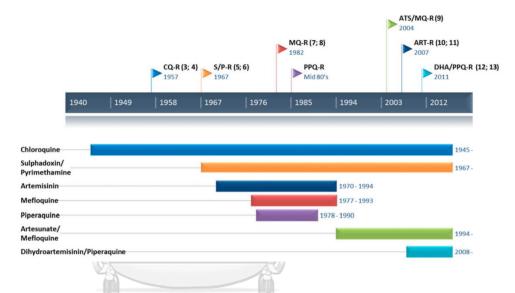
introduced various synthetic drugs (e.g. primaquine, tafenoquine, pyrimethamine, sulfadoxine, mefloquine and atovaquone) [23].

2.2.3. Artemisinin and derivatives

Artemisinin is the sesquiterpene lactone isolated from the Chinese plant Qing Hao. For at least 2000 years, Qing hao (*Artemisia annua*, Asteraceae) is known to be Chinese herbal medicine for treatment of hemorrhoids. However, in 1596, the herbalist Li Shizzen, recommended this plant to be soaked in the cold water then applied to treat fever. Qing Hao was tested in the program of drug screening activity from traditional herbal medicine [23]. Afterthat, in 1972, scientist has discovered the active substance, known as qinghaosu (name later as artemisinin). This substance was shown to be highly potent to *P. falciparum* and showed to be effective against CQ-resistant and cerebral malaria in clinical trial. However, unfortunately, after first month of treatment, recrudescence has occurred because the drug could not kill all parasites. Due to this, then the drug is derivatized to improve their characteristics regarding to formulation strategy. Derivatization was done by reduction of lactone carbonyl to form dihydro-artemisinin and followed by making ether or ester derivatives [4].

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University




Figure 7. Structure of artemisinin and its derivatives

[4]

The ether, artemether is soluble in oil while the esters, sodium artelinate or sodium artesunate are water soluble. Artemether is given by intramuscular injection, whereas those two esters are given by intravenous injection or orally. According to regulation by WHO, artemisinin and its derivatives are not allowed to be used as monotherapy to prevent development of resistance. Artemisinin derivatives will be metabolized to active dihydro-artemisinin in the body [4].

Artemisinin and its derivatives which have 1,2,4-trioxane structure and its endoperoxide bridge known to be played in the mechanism of action against the parasites [24]. Malarial parasites are known to uptake the hemoglobin extensively and digest them during the erythrocytic stage. This activity makes a releasing number of active heme and free Fe^{2+} . Iron from heme is strongly activate the artemisinin and the endoperoxide bridge of artemisinin structure react with the iron haem and produce highly reactive free radicals which can attack parasite molecules such as proteins and nucleic acid. Artemisinin also active to gametocyte hence may contribute to decrease the rate of

transmission [4, 24]. Artemisinin have ability to directly alkylating the cellular protein such as TCTP (translationally control tumor protein) and endoplasmic reticulum Ca^{2+} ATPase PfATP6 then cause the death of the parasite [24]. Artemisinin is stable in neutral organic solvent in temperature reach up to 150 $^{\circ}$ C, degrades during drying at 190 $^{\circ}$ C, fairly stable during exposure of light and heat but there is no report about in certain intensity [25].

2.3. EMERGENCE OF RESISTANCE

Figure 8. Timeline between introduction antimalarial drug and the first case of resistance

CHULALONGKORN ^[26]

ACTs is become standard core treatment for uncomplicated *P. falciparum*. The purpose of the use drug in combination is rational to prevent the occurrence of drug resistant. Artemisinin resistance is assumed to be unlikely happened because of its short half-life and quick action. Unfortunately, after first year recommendation, the sensitivity of *P. falciparum* toward artemisinin was reduced. First report was come from Thailand-Cambodia border. Since the first report, then a various report has come from the other region such as China, Equatorial Guiniea and Uganda Africa [27].

Artemisinin resistance is defined as the delayed clearance of the parasite more than 5 hours. In 2008, first partial *P. falciparum* resistance to artemisinin was reported at Battambang, Western Cambodia and also other region such as southern Myanmar (Burma), western Thailand, southern Vietnam and China [26]. Resistance to artemisinin was observed in the ring stage of parasites which show the delayed clearance in the circulation. *pfkelch13* (K13) is the primary gene marker for the resistance [28]. Various study had confirmed the association of polymorphisms in the *P. falciparum* Kelch13 propeler protein. Nowadays, PfK13 mutation is carried by the parasites including N458Y, F4461, Y493H, M4761, R539T, 1543T, R561H, P553L and C580Y which have known to attribute the delayed clearance and decrease the sensitivity of the drug [27].

K13 protein is E3 ligase substrate adapter which bind to phosphatidylinositol-3kinase (P13K) for proteosomal degradation. Mutation in *Kelch* 13 may result in decreasing the P13K proteolysis and increasing levels of lipid PI3. This can lead autophagy, unfolded protein response (UPR) can be accumulated response of stress which can lead survival of the parasites [27].

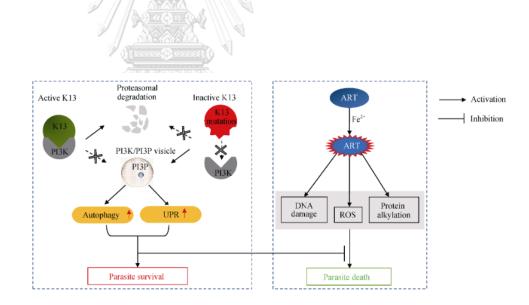


Figure 9. *P. falciparum* artemisinin resistance proposed mechanism. Ferrous ions activated the artemisinin (ARTs) within malarial parasites, lead the DNA damage, reactive oxygen species (ROS) production, protein alkylation and trigger the death of parasites. Kelch 13 (K13) mutation will decrease proteolysis of P13K (phosphatidylinositol-3-kinase) and increase lipid product PL3P which stimulate autophagy, engage the unfolded protein response and eventually promote the survival of the parasites [27]

Despite of that worrying condition, ACTs still be remained as the most effective treatment for uncomplicated falciparum malarial. According to WHO, treatment prescription is no required to be change radically as long as the complement drug in ACTs combination is effective continuously. Selection should be taken carefully to minimize the risk of multiply resistant strain. Compound discovery to overcome this artemisinin resistant recently has become more urgent [27].

2.4. PLANT NATURAL PRODUCT

Plant natural products have been widely known to have the therapeutic effect against various diseases or agent of diseases. The bioactivity of natural product is commonly from secondary metabolites. According to [29], secondary metabolites are metabolites which are not required in growth or maintaining function of the cells while primary metabolites necessary for "primary" function of plant growth, photosynthesis and reproduction. Secondary metabolism may be play in defend and survival mechanism to environmental stresses under attack of pathogen, predator or even other plant (allelochemic).

Primary metabolites are produced by all plants hence can be found in all plant (species, genera and family). The plant will synthesize the primary metabolites in their normal metabolic activities (e.g. carbohydrates, protein, amino acids and lipids) while the secondary metabolites are synthesized in such specialized cell at the various life stages. Secondary metabolites sometimes can be used as taxonomic characters [29]. A simple classification of secondary metabolites according to [29] including three main groups:

- 1. Alkaloids (nitrogen-containing compound)
- 2. Phenolics (constructed from simple carbohydrates contained benzene rings, oxygen and hydrogen)
- 3. Terpenoids (synthesized via mevalonate pathway, composed of hydrocarbon chain)

2.4.1. Alkaloids

Alkaloid is one of the largest secondary and more than 10000 type of alkaloids have been identified from more than 300 families. Alkaloids is a nitrogenous molecule with conform complex ring structure which usually are derived from amino acids. Naturally, alkaloids can be found in all plant organ. Most of them have a bitter taste [30].

Generally, alkaloids contain one nitrogen atom which may exist as a primary amine (RNH_2), secondary amine (R_2NH) and tertiary amine (R_3N). The nitrogen atom contains an unshared pair of electrons. The compound is basic in nature and possess chemical properties of ammonia. Free amine will be free when hydroxide ion reacted with salts of alkaloids[31].

Based on biological pathway and their precursor, alkaloid can be divided into these following groups: true alkaloids, proto-alkaloids and pseudo-alkaloids. Pseudoalkaloids are not derived from amino acid but from precursors or post-cursors (derivatives and degradation process) of amino acids while the others are derived from amino acids. On other hand, protoalkaloids do not have nitrogen atom incorporated within the ring structure while the true alkaloids have. Cocaine, dopamine, quinine and morphine are examples of true alkaloids while mescaline, hordenine and yohimbine are protoalkaloids. Coniine, capsaicin, ephendrine, solanidine, caffeine and theobromine are such examples of pseudoalkaloids[30]. According to [29], alkaloids also can be classified based on the precursor of amino acids:

Table 1. Alkaloids classes	

No	Alkaloids	Description	Examples and structures
	Class		
1	Pyridine and	This group is representing a	Piperine, conine, pilocarpine,
	piperidine	class of compound which have	trigonelline, nicotine,
		effect to CNS, decrease	sparteine
		appetite and have other	
		properties such like diuretic.	Nicotine
2	Tropine	This group is characterized by	Atropine, pelletierine,

-	1		
		containing the tropine nucleus	cocaine
			Cocaine
3	Quinoline	This group is derived from	Quinine, strychnine, brucine,
		tryptophan and strychnos which	cevadine, dopamine,
		developed in nucleus	veratrine
			HO HO NH ₂ Dopamine
4	Isoquinoline	This group are derived from	Opium alkaloids:
		tyrosine and phenylalanine	papaverine, morphine,
			codeine, thebaine
			HO v Morphine ,
5	Indole-	This group are synthesized	Tryptamine, reserpine,
	alkaloids	from tryptophan. This part of	serotonin
		group known to have	NH ₂
	จุหา	hallucinogenic effect on CNS,	N H Tryptamine
	CHULA	cytostatic and antileukemic.	

Alkaloids commonly found in the plant family such as Chenopodiaceae, Lauraceae, Menispermaceae, Berberidaceae, Leguminosae, Ranunculaceae, Papaveraceae, Papilionaceae, Fumariaceae, Apocynaceae, Rutaceae, Loganiaceae, Rubiaceae, Convolvulaceae, Boraginaceae, Campanulaceae, Solanaceae, Compositae, etc. [30].

Before doing test for the alkaloids, care must be taken because the reagent also may give precipitation reaction with the proteins. Hence, the extraction should be taken before doing the alkaloids test. Extraction will make the solution became protein free [4].

2.4.1.1. Extraction of Alkaloid

Extraction of alkaloids were performed based on their basic character and solubility profiles. Based on [30], alkaloids can be extracted with these two following method:

a. Method A:

Plant powder which containing alkaloid salts is moistened with alkaline substance (e.g. sodium bicarbonate, ammonia, calcium hydroxide, etc.) in combination with acids or tannin. During the extraction, alkaloid bases will be free then extracted with organic solvent. When the concentrate is shaken with diluted acid, the alkaloid salts will be extracted into the aqueous liquid.

GHULALONGKORN UNIVERSIT

b. Method B:

Extraction is done by adding the plant powder with alcohol containing diluted acid followed by adding the organic solvent or chloroform to remove the pigments and other unwanted material. Addition of alkali will precipitate the alkaloid and alkaloid can be further separated by extraction or filtration.

Extraction of volatile liquid alkaloids can be done by distillation. Plant powder that contains alkaloids is extracted using water followed by adding sodium carbonate or ammonia to make them alkali. The alkaloid is distilled off in the steam.

2.4.1.2. Chemical Test for Alkaloid Detection

Generally, most alkaloids are precipitated with solution containing metal or acid. Amorphous or crystalline precipitate may have various color depend on the reagent given[4]. There are several chemical tests to screening the presence of alkaloid based on [30]:

1. Dragendorff's reagent test

Addition of dragendorff's reagent which contain potassium bismuth iodide will make alkaloids are precipitated to orange-reddish color

2. Mayer's reagent test

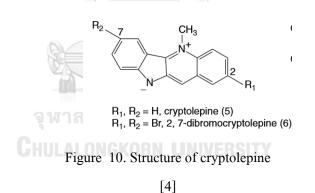
Addition of mayer's reagent which contain potassium mercuric iodide will make creamy-white precipitation of alkaloids.

3. Hager's reagent test

Addition of Hager's reagent which contain saturated aqueous solution of picric acid will produce crystalline yellow precipitate of alkaloid.

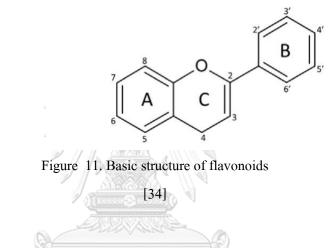
4. Wagner's reagent test

Addition of wagner's reagent which contain dilute iodine solution will produce reddish-brown precipitate of alkaloids.


5. Tannic acid test

Addition of tannic acid solution will form buff colored precipitated.

Yellow color will be shown when cochicine is treated with mineral acids, or bluish-violet will be turn into red if indole alkaloid is treated by sulphuric acid or *p*-dimethylamino-benzaldehyde [4].


2.4.1.3. Antimalarial Activity of Alkaloid

Beside of Quinine, there is an alkaloid compound named cryptolepine which was reported to has antimalarial activity. Starting from traditional knowledge in the usage of root's decoction of a climbing plant *Cryptolepis sanguinolenta* (Asclepiadaceae) as herbal treatment for malaria and other infectious disease in West Africa, the indol-quinoline alkaloid named cryptolepine which is the major alkaloid was isolated and showed potent against *P. falciparum* but unfortunately showed toxicity. Cytotoxicity of this compound may be occurred because of this compound can intercalate into DNA, inhibit DNA synthesis and topoisomerase II. Toxicity in mice was shown during intraperitonial injection however not showed by oral administration. Less activity also was shown when doing the in vivo study. This may be happened because of this compound will be turn into inactive compound during metabolism and is absorbed slowly. The study showed that this compound will be metabolized in the liver and turn into inactive form, cryptolepine 11-one. Derivatization has been done to increase the activity and able to make the compound have no interaction with DNA. The 2,7-dibromocryptolepine is one product of derivatization process which is active by intrapertonial injection in mice without causing toxicity. Cryptolepine and its derivatives are known to have ability to inhibit β -haematin formation [4].

2.4.2. Phenolic Compounds

Phenolic compounds are aromatic compound which have one or more hydroxyl group (-OH) connected to the aromatic ring. Phenols are crystalline solid molecule which have a scent, water soluble and have low melting temperature whereas the boiling point is high [32]. These compounds are secondary metabolites which derived from shikimate/phenylpropanoid pathway. Naturally, phenols play a role in defense mechanism from environmental pressure such as drought, cold, microbial infection, predator, deficiency of nutrient. This condition can lead production of free radical [33]. Phenolics compounds are ubiquitous compound and can easily found in all organ of the plant. Generally, phenols are classified to flavonoids compound and nonflavonoids compound hence the flavonoids are the most bioactive and abundant rather than other groups. Flavonoids composed by phenyl benzopyran skeleton with two phenyl rings (A&B) joined through a heterocyclic pyran ring (ring C) [34].

2.4.2.1. Main Type of Phenolic Compounds and Detection

Phenolic compound can be divided into several group based on the properties and complexity of the structure. These are the main type of phenolic compound:

Ghulalongkorn University

A. Coumarin

Coumarin will give blue, blue-green, or violet fluorescence in ammonia solution

[4]. These are several tests which commonly used for coumarin detection according to [30]:

Ferric chloride reagent test

Addition with FeCl₃ solution followed by adding the conc. HNO₃ will form green color turn to turned yellow color.

Fluorescence test

Addition with 1 ml of 1 N NaOH solution will form blue green fluorescence.

B. Anthraquinones

Usually these compounds are orange-red color and sometimes may observed direct in situ (*e.g.* in the cascara or modullary rays of rhubarb). This molecule can be dissolved in hot water or alcohol. Anthraquinones composed by free carboxylic acid group which can be breakdown by addition of mixture of organic solution and sodium bicarbonate [4]. According to [30], anthraquinone can be detected using these tests:

Borntrager's test

1 gram of plant material is added with dilute HCl followed by boiling and filtration. Filtrate extraction is done using organic solvent with addition of ammonia. After shaking, pink or red color will be present in ammonical layer.

Modified borntrager's test

1 gram of plant material is added with dilute HCl and 5% ferric chloride and boil. Filtrate is extracted with organic solvent and followed by adding ammonia solution. Pink to red color will be presence if there is C-type of anthraquinone.

C. Flavonoids

Flavonoids is known to be the largest groups of phenolic compounds which are over than 2000 compounds have been discovered with approximately 500 are the free compounds. Flavonoids can be dissolved in alkalis and when treating with alkali will turn into yellow color [4]. According to [30] flavonoids can be detected using these various methods of chemical test:

Ammonia test

When dipping filter paper in the sample solution is treated with ammonia vapor, yellow spot will show up.

Shinoda test

Addition of magnesium and diluted HCl will produce red color formation.

Vanillin HCl test

Addition of Vanilin HCl will form pink color.

D. Tannin

Tannins are complex phenol which non-nitrogenous, and usually have astringent property. The term 'tannin" was first used in 1796 by Seguin because of its ability to react with animal hide to produce leather. This phenomenon became the basic of chemical reaction in detection using Goldbeater's test. This test able to detect a true tannin while pseudo-tannin could not be detected. Tannin can be classified according to the hydrolysis capability [30].

Tannins are known to be rich in Geraniaceae, Combretaceae, Theaceae, Rubiaceae, Rosaceae, Polygonaceae, Leguminosae, etc. On the other hand, Papaveraceae and Cruciferae are totally devoid of tannins [30]. Tannin are oligomeric compound which have high molecular weight 500 - > 2000, crystalline, have characteristics like colloidal solution with water, not able to dissolved in alcohol and organic solvent except acetone, disolved in glycerin, alkali, water (except high molecular tannin), sparingly soluble in ethyl acetate, and have ability to bind with protein [30].

Tannin is derived from shikimic acid pathway (phenylpropanoid pathway) like other phenolics such as isoflavone, coumarine, lignins, and aromatic amino acid [30]. Tannins widely occurred in plants, commonly found in dead and dying cells. They have ability to inhibit various enzymes due to the precipitation reaction with protein hence became the protection properties of heartwood and bark. Tannin have ability to precipitate the alkaloid hence make the extraction is complicated and may produce the incompatibility. It had been known as antidotes by alkaloids heavy metals and glycosides poisoning [4].

Hydrolysable tannin

Hydrolysable tannins are composed by phenolic acids such like hexahydroxydiphenic acids and gallic acid which connected by ester linkages to the glucose chain [4]. This compound can be hydrolyzed by *tannase* or mineral acids. Based on hydrolysis of phenolic acids, hydrolysable tannin can be divided into gallotannin (composed of gallic acid) and ellagitannin (composed of hexahydrodiphenic acid). They are soluble in water and while treated with ferric chloride will form blue color [30].

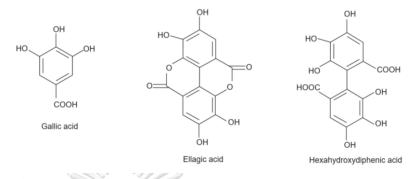


Figure 12. Structure of gallic acid, ellagic acid and hexahydroxydiphenic acid

[30]

Nonhydrolysable or Condensed Tannins or Proanthocyanidins

Nonhydrolyzable tannins are molecules which could not be readily hydrolyzed by enzyme or mineral acids. Condensed tannin does not contain a sugar moiety [4] [30]. When condensed tannin is treated with acid, they turn into phlobaphenes, the red insoluble compound. Many drugs give red color by phlobaphenes (e.g. cinchona bark) [4].

จุหาลงกรณํมหาวิทยาลัย

Complex tannins

The complex tannins are derived from condensed tannin and hydrolysable tannin. However, this compound, is known to has less attention in pharmacognosy [4].

Chemical Test for Tannins

Tannin solution are precipitated when react with alkaloid, gelatin, heavy metals, and glycosides. Ellagitannins and gallitannins will show blue-black precipitates when treated with ferric salts whereas the condensed tannins give brownish-green color [4]. According to [30], these are several methods to detect the presence of tannins:

Goldbeater's skin test

Goldbeater's skin has properties like untanned animal hide which is produced from Ox's intestine. The sample solution is placed into the washed piece of goldbeater's skin which already soaked in 2% HCl. After washing, the piece of skin the dipped into solution of 1% ferrous sulphate. Tannin is detected when the color change to black or brown. This test may be worked in hydrolysable and condensed tannins while pseudo-tannins usually give negative or less color.

Phenazone Test

Addition of 0.5 g of sodium acid phosphate followed by warming, filtration, and addition with 2 % phenazone into the filtrate will make tannin precipitate as bulky color.

Gelatin Test

1% of gelatin solution is added with a few of 10% sodium chloride. Tannin will cause precipitation of gelatin.

Vanillin-hydrochloric acid test

Plant material will show pink or red color by addition of the mixture of 1:10:10 vanillin: alcohol: dilute HCl because of the production of phloroglucinol.

2.4.2.2. Antimalarial Activity of Phenolic Compounds

Phenolic compounds also have been known to has antimalarial activity (e.g. phloridzin, exiguaflavones, artemetin, casticin). Phloridzin, a flavonoid glycoside which has bitter taste like quinine is active inhibit malarial parasite. The compound able to inhibit the permeability of the membrane of infected red blood cell which lead deficiency of nutrient sources. Unfortunately, this compound is not suitable for application in clinical used because of it also have capacity to blocks the glucose reabsorption in the kidney. Additionally, exiguaflavone, a flavonoid which was isolated from *Artemisia indica* (Asteraceae) has been reported to active against *P. falciparum* while the artemetin and casticin, which were isolated from *Artemisia annua* also showed to act synergistically with artemisinin [4].

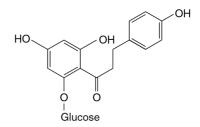


Figure 13. Structure of flavonoid glycoside (phloridzin)

[4]

2.4.3. Terpenes

Terpenoids are volatile compound which attribute to give the plant scent composed by hydrocarbons with the general formula $(C_5H_8)_n$. The compound may be hydrogenated, dehydrogenated or oxygenated. Isoprene is known to be basic unit of the terpenoid [30]. Based on [30], classification of terpenoids can be done based on the number of atom carbon:

Table	2.	Terpenoid	classes
-------	----	-----------	---------

Carbon atoms	n	Molecular formula	Terpenoids Class
number			
10	² ลงกรณ์มา	C ₁₀ H ₁₆	Monoterpenoids
15 CH		C ₁₅ H ₂₄	Sesquiterpenoids
20	4	$C_{20}H_{32}$	Diterpenoids
25	5	$C_{25}H_{40}$	Sesterpenoids
30	6	$C_{30}H_{40}$	Triterpenoids
40	8	$C_{40}H_{64}$	Tetraterpenoids
>40	>8	$(C_5H_8)_n$	Polyterpenoids

2.4.3.1. Chemical Test for Terpenes Detection

These are several tests for detecting the terpenes according to [30]:

Libermann burchard test

Chloroform is used for terpenoid extraction. Addition of acetic anhydride followed by conc. H_2SO_4 will form violet to blue colored ring at the interphase of the two liquid. This indicate the presence of steroid moiety.

Salkowaski test

Chloroform is used for extraction. Addition of conc. H_2SO_4 will form yellow colored ring at the interphase of two liquid, which will be changed to red after 2 min. This indicate the

presence of steroid moiety.

Antimony trichloride test

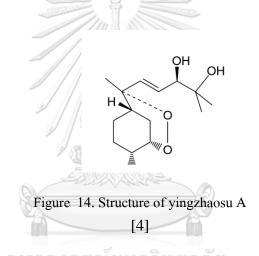
Chloroform is used for extraction. Addition of saturated solution of $SbCl_3$ in chloroform which contain 20% acetic anhydride will be produce pink color during the heating. This indicate the presence of triterpenoids and steroid moiety.

Trichloro acetic acid test

Addition of saturated trichloro acetic acid solution will form colored precipitation.

Tetranitro methane test

Addition of tetranitromethane will form yellow color in indication of unsaturated steroids and triterpenes.


Zimmermann test

Addition of meta-dinitrobenzene solution into extract in alkali followed by heating will form violet color in the keto steroid presence.

Terpenes (especially mono-, sesqui- and their oxygenated derivatives) are commonly found in volatile oils which are odorous and can easily to evaporate in room temperature. Volatile oils also known as essential oils because they represent essence of active constituent of the plant. Volatile oils usually produced in secretory cells but in few case, volatile oils are not preexisted and will be presented after glycosidae degradation (e.g. black mustard seed). Essential oils are insoluble water, soluble in non-polar solvent and fairly soluble in alcohol [30].

2.4.3.2. Antimalarial Activity from Terpenes

There are several compounds from terpenes group despite of artemisinin which had been studied in its antimalarial activity such as Yingzhaosu A and Brusatol. Yingzhaosu A is a sesquiterpenes which containing endoperoxide which is isolated from Chinese species Ying Zhao, *Artrobotrys unciatus* (family Annonaceae). This compound was known to be active against *P. berghei* in mice but less active than artemisinin. In order to improve the activity, its derivative Arteflene, has been developed and has evaluated in clinical trials but then abandoned because of the occurrence of recrudescence is high [4].

าหาลงกรณมหาวทยาลย

In other hand, brusatol is quassinoids which are derived biosynthetically from triterpenoid precusors. Brusatol was isolated from of *Brucea javanica* have been very active against *P. falciparum*. However, this compound is very toxic and the effort to improve its selectivity was not successful because both activities, the antiprotozoal and cytotoxic activities have acted in similar way which were inhibit the protein synthesis [4].

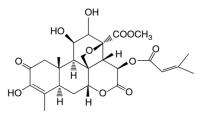


Figure 15. Structure of Brusatol

[4]

2.5. SESQUITERPENE LACTONES

Sesquiterpene lactones (SLs) are terpenoids compound composed by three isoprene unites connected to the cyclic esters, lactone group. The \mathcal{X} -lactone ring may contain hydroxyls, esterified hydroxyls or epoxide groups [15, 35]. The classification of SLs is based on their carbocyclic skeleton hence can be divide to germacranolides which have ten rings, eudesmanolides, eremophinalolides and guaianolides, pseudoguainolides and hypocretenolides. Many members of these group bear open ring structure [36].

Sesquesterpene lactones is secondary metabollite which is typically located in laticifers (secretary cell in most Asteraceae) but can be found in vacuoles of other cell types especially during the respons to biotic stress [37]. Sesquesterpene lactone (SLs) is characterized by its bitter, colourless substance, and liphophilic. They commonly found in Asteraceae family plant [15] but can also found in Magnoliacea, Lauraceae and Apiaceae [38]. These compounds play role as antifeedants, deterrents, attractants, communication between plants and others organism. Each species usually produces one specific type of SLs [35].

SLs can be extracted by liphopilic solvent or liquid (supercritical) carbondioxide. It can be isolated from all plant organs but commonly in leaves and glandular trichome of the leaves [38]. Solvent commonly used for extraction this compound including petroleum ether, n-hexane, acetonitril, chloroform, methanol, toluene and their combination [15].

Based on the research, several sesquesterpene lactones from *Distepanus* angulifolius show antimalarial activity against *P. falciparum* [38, 39]. 2 sesquesterpene

lactones from *Cyperus articulatus* have significant antiplasmodial properties [40]. Pseudoguainolide sesquesterpene lactones have high activity againsnt *Plasmodium falciparum* [41].

2.6. NATURAL PRODUCT EXTRACTION

Extraction method can be chosen according to the character of the plant material and the compound which will be extracted. Extraction target can be a known or unknown bioactive compound, structurally related group of compounds, specific secondary metabolites or all present secondary metabolites [42]. Extraction step is performed after selecting, collecting and authenticating the plant. Selection of interested plant can be conducted based on history of traditional use, random selection, toxicity, chemical content, or combination of them. Plant collection should be involved a botanist whose have ability to identify specimen correctly. Herbarium specimen should be prepared with the record of the place and collection date [43].

After plant collection, the next step is stabilization. Drying is one of the most usual method to stabilize the material and can be done under ambient temperature or using heating oven. Other stabilization method can be conducted such like lyophilization, freezing, alcohol vapour, etc [43].

Based on [42], dry condition is essential to prevent microbial and degradation of the metabolites (e.g. for the thermolabile and light-sensitive compound, protection from high temperature and direct sunlight should be performed to minimize chemical reaction). Recommended temperature for drying is under 30 °C. However, for the country with high humidity, oven can be used to accelerate the drying process. The remaining moisture and water in plant due to the long-time drying process may stimulate the enzymatic reaction (e.g. hydrolysis of glycosides). Based on [44], drying temperatures in between 50 °C to 60°C is apparently feasible for applying in mostly plants.

Drying method may affect the composition of chemical compounds. Comparation in chemical composition of essential oil of basil (*Ocimum basilicum* L.) submitted to drying with air heated to 45°C and with those obtained from fresh plant (control). The composition of essential oil of dried basil showed a chromatographic standard very different from that obtained in control. The contents of methyl chavicol and eugenol decreased during drying, however, the levels of trans-bergamotene, linalool and 1,8-cineole significantly increased. The effect of sun-drying, shade-drying and ovendrying at 45°C in chemical composition of *Juniperus phoenicea* L. essential oils also have been studied. The authors concluded that drying of berries of *J. phoenicea* in ovendrying was more suitable and was recommended for obtaining higher yield of essential oils (for higher percentages of some special components). However, such as α -pinene and δ -3-carene, the result showed that shade-drying was more suitable [44].

After drying, dried material can be stored in dry condition up to 6 months. Dried powder can be obtained through grinding process. Grinding is functioned to improve the wide of contact surface area between solvent and plant material. Based on [45], generally, finer particles will accelerate the extraction efficiency which can enhance the penetration of extraction solvents. If the targeted compound is known, the extraction method can be directed targeting the compounds. On other hand, if the compound is unknown, the extraction procedure can be done due to the traditional uses or using several solvents with different polarity [43].

2.6.1. Solvent Selection

The selection of the solvent should be considered in case of the solubility, selectivity, safety and the cost. Principle of extraction is "like dissolve like" which mean that polar solvent will extract the quite polar molecule while non-polar solvent will extract the nonpolar molecule. Polarity of the common solvent can be shown in this following table:

Table	3. Po	larity i	ndex	of the	solvents	[46]

Solvent	Polarity Index	Boiling points (⁰ C)	Density (25 [°] C g/mL)
Extraction			
Water	10.2	100.0	1.000
Ethanol	5.2	78.0	0.789
Acetone	5.1	56.0	0.791

Methanol	5.1	64.7	0.792
Chloroform	4.1	60.5-61.5	1.492
Isopropanol	3.9	82.0	0.785
Dichloromethane	3.1	39.8-40	1.325
Diethyl ether	2.8	34.6	0.706
Benzene	2.7	80.0	0.874
Toluene	2.4	110.0-111.0	0.865
Isooctane	0.4	99.2	0.690
Cyclohexane	0.2	80.7	0.779
Petroleum ether	0.1	25.0-60.0	0.640
Hexane	0.1	69.0	0.659

Table 4. Solvent for phytochemicals extraction [47]

Water	Ethanol	Methanol	Ether	Acetone	Chloroform
Anthocyanins	Alkaloids	Anthocyanins	Alkaloids	Flavonols	Flavonoids
Lectins	Flavonols	Flavones	Coumarins	Phenol	Terpenoids
Polypeptides	Polyacetylenes	Lactones	Fatty acids		
Saponins	Polyphenols	Phenones	Terpenoids		
Starches	Sterols	Polyphenols	0-		
Tannins	Tannins ANAS	Quassinoids	າລັຍ		
Terpenoids	Terpenoids	Saponins	RSITY		
		Tannins			
		Terpenoids			
		Totarol			
		Xanthoxyllines			

The solvent will selectively extract some compounds based on the polarity. However, some solvent used as universal solvent for "total extraction" due to the structure of the molecule which may bearing both hydrophilic and lipophilic (amphiphilic property) hence may extract the compounds which have low polarity until high polarity (e.g. ethanol, methanol and water) [42].

During manufacturing the drug, the solvent which cannot been removed completely from the drug defined as residual solvent. Because these residual solvents are having no therapeutic benefit and most of them have toxicity and should be limited in the intake, so the residual solvent must be removed. Based on ICH (International Council on Harmonization of Technical Requirement for Registration of Pharmaceutical for Human Use) guideline 2016, the residual solvent can be classified into 3 group class based on the safety and toxicity.

Residual Solvent	Attention
1 st Class	Should be avoided, carcinogen to human, enviromental hazard
2 nd Class	Should be limited, nongenotoxic animal carcinogens, cause reversible or irreversible toxicity (e.g. as neurotoxic or tetragonicity)
3 rd Class	low toxicity, there is no health-based limit is needed (PDEs of 50 mg or more per day)

Table 5. Residual solvent class classification [48]

Table	6.	1st	class	sol	vents	[48]	
-------	----	-----	-------	-----	-------	------	--

Type of solvent	Limit (ppm)	Attention
1,1,1-trichloroethane	1500	Environmental hazard
1,1-dichloroethene	8	Toxic
1,2-dichloroethane	5	Toxic
Carbon tetrachloride	4	Toxic and environmental hazard
Benzene	2	Carcinogen

Table 7. 2nd class solvent [48]

Type of solvent	PDE (mg/day)	Limit (ppm)
Methylisobutylketone	45	4500
Cyclohexane	38.8	3880
Methanol	30.0	3000
Xylene*	21.7	2170
1,2-Dichloroethene	18.7	1870
Methylcyclohexane	11.8	1180
N,N-dimethylacetamide	10.9	1090
Toluene	8.9	890
N,N-dimethylformamide	8.8	880
Tetrahydrofurane	7.2	720
Ethyleneglycol	6.2	620
Dichloromethane	6.0	600
N-methylpyrrolidone	5.3	530
Acetonitrile	4.1	410
1,4-dioxane	3.8	380
Chlorobenzene	3.6	360
Hexane	2.9	290
Formamide	2.2	220
Pyridine	2.0	200
2-ethoxethanol	1.6	160
Sulfolane	1.6 NIVERSITY	160
1,2-dimethoxyethane	1.0	100
Tetralin	1.0	100
1,1,2-trichloroethene	0.8	80
Cumene	0.7	70
Chloroform	0.6	60
2-methoxyethanol	0.5	50
Methylbutyl ketone	0.5	50
Nitromethane	0.5	50

Table 8. 3rd class solvent (less toxicity) [48]

Tert-butylmethyl ether	2-methyl-1-propanol
Formic acid	Triethylamine
Ethyl formate	Propyl acetate
Ethyl ether	2-propanol
Ethyl acetate	1-propanol
Ethanol	1-pentanol
Dimethyl sulfoxide	Pentane
Butyl acetate	Methylethyl ketone
Anisole	Isopropyl acetate
Acetone	Isobutyl acetate
Acetic acid	Heptane
2-butanol	3-methyl-1-butanol
1-butanol	Methyl acetate

2.6.2. Extraction Techniques

There are several methods of extraction for plant natural product commonly used:

2.6.2.1. Maceration

Maceration is one of the most common method in the extraction technique. The technique is quite easy, convenience, no need much equipment and skill. The principle is the plant material is keep soaked into solvent for a period of the time. This method is suitable for a thermosensitive substance. However, large volume of solvent is needed, can be time consuming and has a low extraction efficiency [45, 49]

2.6.2.2. Soxhlet extraction

Soxhlet extraction is continuous hot extraction which can be applied in initial or large extraction. The powdered plant is put into thimble of soxhlet which is connected to the flask containing solvent. The solvent is continuously heat up under reflux and will begin to be evaporated, cooled with the condenser then extract the plant material [42]. This technique is required when targeted compound is less or limited soluble in the solvent to enhance the extraction rate. This method only require a small volume of the solvent because the solvent is being recycle and reused again but this method isn't suitable to be used for thermolabile/heat sensitive compound which may lead degradation of compound during the heat [47]. This degradation is reported when extracted catechins in the tea. There is other report which demonstrated that total polyphenols and alkaloids during soxhlet extraction at 70 °C is decreased compared to maceration at 40 °C [45].

2.6.2.3. Decoction

Decoction method have same principle as maceration but using boiled water to extract the plant material [47]. Decoction is not suitable for extracting the heat-sensitive compound, this method is usually suitable for extraction of hard plants parts like roots and bark. Usually, extraction product is more oil soluble compared to infusion and maceration [45].

2.6.2.4. Infusion

This method also has same principle as maceration but using hot or cold water as a solvent. The period of infusion also shorter than maceration.

2.6.2.5. Digestion

The principle is maceration with applying warm temperature (40-60 $^{\circ}$ C) during extraction process [50].

2.6.2.6. Percolation

This method is the most common procedure to extract the active ingredient from fluid extracts by using percolator to extract the compounds [50]. Powdered plant is place in the percolator followed by pouring the solvent on the top material and keep allowed to extract slowly. Additional filtration is not needed because the filter already set in in the percolator. This technique is suitable for small and large extraction and can be performed exhaustively [42]. However, the material which easily swelling such like mucilages or resins could clog the percolator. Furthermore, material which not distributed homogenously will make the extraction may not completely done. Higher temperature will enhance the rate of extraction but may lead the degradation of thermolabile compound. This process required a large volume of solvent and can be time consuming [42].

2.6.2.7. Ultrasound assisted solvent extraction/ sonication

This technique is maceration which enhanced by ultrasound with high frequency. Plant material is soaked into the chamber which already fill in with the solvent followed by placing the chamber in ultrasonic bath. The pulse of ultrasound frequency (20-2000 kHz) will induce the cavitation and mechanical disruption of the cells which can enhance the solubilization of the solvent to extract the metabolites. Frequency, length of extraction and temperature will affect the extraction efficiency. This extraction is rarely used in bulk extraction but mostly used in small amount material for initial extraction [42] [47]. However, ultrasound energy which more than 20 kHz will induce production of free radicals and unwanted changes of metabolites [47]. The strength of this technique is convenience to extract the thermolabile compound, less time and solvent consuming [45].

2.6.2.8. Pressurized solvent extraction (accelerated solvent extraction)

This method used higher temperature than other method and need maintain that liquid state of solvent in high temperature using the pressure. This temperature and pressure will increase the rate of extraction. Rapid and reproducible extraction can be obtained using this method. Materials is placed into the extraction cell in the oven. The cell is filled with the solvent which is heat up and pressurized for period of the time. Nitrogen gases will be flushed into the cell to concentrate the extract and filtrate will be collected automatically. The remaining extract can be collected by rinsing the cell with new solvent. This method is not solvent consuming and reproducible. However, optimization in the temperature, time, kind of solvent should be done first to obtain the good yield in the faster period [42].

2.6.2.9. Reflux and steam distillation

Plant material which is soaked in the round bottle which already fill in with the solvent is connected to a condenser. The solvent will be heat until obtain its boiling point. Solvent will be evaporated and condensed and recycle to the system. This method is commonly used for to essential oils extraction. During this process, the oils will be collected when aqueous solution is recirculated into system. This method is suitable for thermo-stable compound [42].

2.6.2.10. Microwave Assisted Extraction (MAE)

This technique is called a "green extraction" because the method uses the less energy and solvent. The electromagnetic waves from the microwave will selectively vapour and heat the polar molecules. This method can be solvent free or not. Additionally, this method can be applied for extraction such a heat-labile compound using an appropriate solvent. However, MAE may limit only to small molecule which stable under microwave (e.g. gallic acid, ellagic acid, isoflavin, quercertin, and trans-resveratrol). The study reported that additional cycles from 2×10 s into 3×10 s was decreasing the phenolics content. It may be happened because of oxidation. Tannins or anthocyanins also mentioned to be not suitable to apply by this method because of the possibility of degradation [45].

2.7. ANTIMALARIAL SCREENING ASSAY

There are several assays to screening the antimalarial activity such as schizont maturation inhibition assay, the titrated [³H]-hypoxanthine incorporation, lactate dehydrogenase (LDH) assay and SYBR green assay [4, 51]. The strain *P. falciparum* which have been commonly uses are chloroquine-sensitive (CQS) (e.g., NF54, 3D7, D10, D6, RKL2, TM4) and chloroquine-resistant (CQR) (e.g. FCR3, INDO, FcM29, FCB, W2, K1, K1CB1 and multi drug-resistant parasites strain [51]. Based on [7], these are the several test for antimalarial activity screening:

2.7.1. Microtest

Microtest has developed by Rieckmann et al (1978) and this technique then adopted under the sponsorship of WHO to design a field study. This technique is designed for laboratory tools to do the surveillance in the part of global monitoring program Microtest is defined as counting the schizont using simple microscopy. Thick blood smear is prepared then the total number of schizonts are counted against 500 leukocytes. *In vitro* activity is determined by calculate the percentage of counted schizonts in the treatment compared to control.

2.7.2. Radioisotopes based assay

This technique using radioisotopes such as [³H]-hypoxanthine, [³H]ethanolamine radioisotopes to measure the parasites. This radioisotope is widely used by people this compound is main purine which is needed by the parasites. Radioisotope incorporated is define as parasites count. This technique needs the parasitemia between 0,1% and 1% at 1,5% haematocrit during 42h of incubation. Whereas [³H]- ethanolamine is known to be more incorporated with the infected erythrocytes compared to [³H]-hypoxanthine.

2.7.3. Enzyme based assay

This technique is to check the parasite viability by measuring the parasite lactate dehydrogenase (pLDH) which have vital role in glycolytic in anaerobic metabolism. This assay is functioned to monitor the ability of LDH enzyme using APAD (NAD analog) which able to convert lactate into pyruvate. Reducing APAD will be measured represent correlation between pLDH activity and parasitemia. Because of the measurement need high parasite density (1-2) it was difficult to apply in the field examination. Hence to overcome those problem, DELI assay was developed. This technique based on monoclonal antibody specific for pLDH. This technique able to detect very low level of parasitemia (< 0.005).

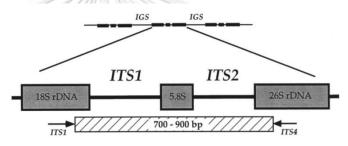
2.7.4. Flowcytometry Assay

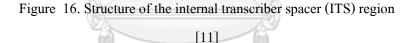
Basic principle of this technique is human erythrocytes lack DNA so the stain can special detect the parasite DNA. The whole parasite will be stained hydroethidine or fluorescence DAPI. This technique able to differentiate different blood stage of parasites hence the schizont maturation enable to determine while also counting the nuclei parasite so the exact number of parasites can be obtained. Strengthness of this technique is its ability to count the level of parasitemia accurately and also can differentiate the developmental stage of the parasites.

2.7.5. Fluorescence Based Assay

This technique uses DNA binding dye (e.g. ethidium bromide) or DNA intercalating dye (e.g. SYBR Green I, Pico Green and YOYO-I). DNA and RNA are not present in the erythrocytes so the dye will specifically bind to DNA of the parasite. The DNA intercalating dye is safer than ethidium bromide because have less mutagenicity. The advantage of this assay is less time consumption, both of unsynchronized and synchronized parasites can be measure with no significance difference, faster (only take time 48 -72 h) and no need special skill.

2.7.6. In vitro beta-hematin Formation Assay


Hemozoin or beta-hematin is non-toxic metabolic product which released during heme metabolism. Principle of this method is to measure the hemozoin formation to indicate the living parasite in the RBCs. Measurement can be done by various technique such as spectrophotometric, radioisotopic, fluorometric, HPLC, FT-IR spectroscopy and the result can be interpreted after 12-24 h of incubation with treatment.


2.7.7. In vitro Assay Targeting Liver Stages

HepG2/primary hepatocytes incubate for about 24h followed by inoculation of the sporozoites. After incubation for 48h quantification can be done using combination of infrared imaging system and colony counter.

2.8. GENETIC DIVERSITY

DNA barcoding can be done using various technique including use of the sequences of internal transcribed spacer (ITS). Despite ITS, there are common nuclear sequences which being used for plant DNA barcoding such as intergenic spacer (IGS) and plastid genes (*rbcL, matK, psbA-trnH,* intron, *trnL*, etc). The ribosomal DNA (rDNA) ITS region shows relatively high authentication of efficiency, mutation and evolution rates regarding to the length and sequence [12]. Its high resolution of inter- and intraspecific relationships made this region widely used for plant molecular systematics at the generic and species levels [13]. This region can be amplified universally using the primer in the conserved region of the rDNA repeat (18S and 26S genes) [14].

จหาลงกรณ์มหาวิทยาลัย

Ribosomal DNA genes occur as arrays of tandem repeats which dispersed in various location in the genome. This repeating units include 26S rDNA, ITS2, 5,8S, ITS1 and 18S rDNA gene which are separated by non-transcribed intergenic spacers (IGS) [11].

Phylogenic tree represent relationship between species which is showed in the diagram called cladogram. In the phylogenetic tree, we can know the clade of mono-phyletic, para-phyletic and poly-phyletic. Monophyletic group is defined as the all group of species are shared and derived from the common ancestor. Paraphyletic group is defined as the group of species share common ancestor but there are species which isn't derived from that common ancestor. On other hand, polyphyletic group is mean that the

group of species aren't shared common ancestor [52]. Phylogenetic tree can be constructed using free website.

Method	Distance	Phylogeny	Available free	Note
	elimination	method	software	
UPGMA (Unweighted	Yes	Clustering	MEGA, Phylip	Follow
pair-group method				molecular
using arithmetic				clock
averages)	1.11 marsh	1122		hypothesis
NJ (Neighbor Joining)	Yes	Clustering	MEGA, Phylip	Minimum
te.				evolution
Fitch-Margoliash	Yes	Clustering	MEGA, Phylip	Minimum
				evolution
ME (Minimum	Yes	Clustering	MEGA, Phylip	Minimum
Evolution)				evolution
Maximum parsimony	No	Multiple trees	MEGA, Phylip	Parsimony
	200053			hypothesis
Maximum likelihood	No	Multiple tree	MEGA, Phylip,	Likelihood
			PAML, HyPhy,	method
ລາຍາະ	งกรณ์แห	ะาวิทยาลัย	PhyML, PUZZLE	
Bayesian	No	Multiple tree	MrBayes,	Likelihood
GHULA	ONGKORN	UNIVERS	BAMBEE	hypothesis and
				is extension to
				the ML

Table 9 Different method for phylogenetic analysis [52]

2.9. DESCRIPTION SELECTED ASTERACEAE MEDICINAL PLANTS

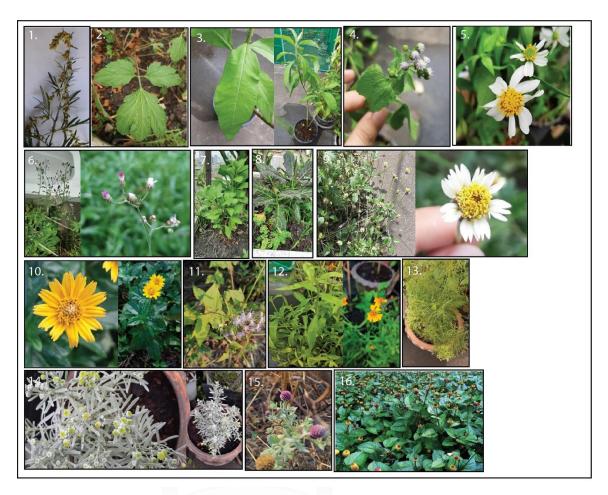


Figure 17. Selected Asteraceae medicinal plants.

1. Artemisia vulgaris, 2. Artemisia lactiflora, 3. Blumea balsamifera, 4. Ageratum conyzoides, 5. Bidens pilosa, 6. Vernonia cinereal, 7. Gynura divaricata, 8. Gynura pseudochina, 9. Tridax procumbens, 10. Wedelia trilobata, 11. Eupatorium odoratum, 12. Artemisia dracunculus, 13. Eupatorium capillifolium, 14. Artemisia chinensis, 15. Sphaeranthus indicus, 16. Acmella oleracea

2.9.1. Artemisia vulgaris

Vernacular name:

Common name	Mugwort
Local name	โกฐจุฬาลัมพาไทย Khot Chulalampua Thai
Synonym	Absinthium spicatum, Artemisia affinis, Artemisia apetala,

	Artemisia cannabifolia, Artemisia coarctata, Artemisia
	discolor, Artemisia dubia, Artemisia eriophora, Artemisia
	flodmanii, Artemisia glabrata, Artemisia heribaudii, Artemisia
	heyneana, Artemisia hispanica, Artemisia indica, Artemisia
	javanica, Artemisia leptophylla, Artemisia leucophylla,
	Artemisia longiflora, Artemisia ludoviciana, Artemisia
	michauxii, Artemisia officinalis, Artemisia opulenta, Artemisia
	paniculiformis, Artemisia parviflora, Artemisia princeps,
	Artemisia quadripedalis, Artemisia rubriflora, Artemisia
	ruderalis, Artemsiia samamisica, Artemisia selengensis,
	Artemisia superba, Artemisia violacea, Artemisia virens,
	Artemisia wallichiana
1	

Distribution:

This plant can be found in agriculture landscape, waste areas and on the road-side[53].

Morphology:

Rhizomatous perennial weed, erect stem, branched or unbranched, short or tall, can reach up to 2 m, striated or grooved deeply. Stems have based with green into brown colour while the upper is purplish and sometimes hairy. The stem can reach up to 0.4-1.5 m in height spreads rapidly, rooting by rhizome system, long stemmed 70-150 cm. The leaves are pinatissect or bi-pinatissetic, segment is oblong or lanceolate, soft and the colour in the dorsal part is white silver. Light brown rhizome which can reach up to 1 cm in diameter and able to reach in the depth in soil for 7–18 cm. Leaves are sessile, pinnate, dark green, 5–20 cm in long, there are white tomentose hairs on the leaves underside [53, 54].

Mugwort's flowers almost glabrous, red brown or yellowish color, ovoid flower head with 3–4 mm in long and 2 mm in wide. Inflorescence type clusters are discoid, pendulums numerous and small. Arrangement in racemes panicles with involucral oval bracts, obtuse, hairy receptacle, with hyaline edges, hermaphrodite, corolla tubularfiliform, the hermaphrodite disc with tubuler corolla with five lacinios, fruit achene type, cylindrical or flattened, usually glabrous without papus or occasionally pubescent, fruit has indistinct margin [53]. Mugwort fruit has an indistinct margin [53].

Traditional Uses:

Roots, aerial part and stems has been used for various treatments [53]. In northern America latin, the juice of flowers, flower buds and leaves are being use for malaria treatment [55]. Based on [54], the infusion of the leaves is used to treat fever.

Antimalarial Activity:

The methanolic extract using reflux extraction of leaves of this plant can inhibit *P. falciparum* FCR-3. After treatment of methanolic extract of leaves at the concentration 6.5 µg/ml showed aparasites growth at 73% while the water extract at 7 µg/mL showed 78% parasites growth [56]. In other hand, ethanolic extract of aerial part of Iran herbs using lactate dehydrogenase assay method had shown the IC₅₀ > 200 µg/mL against both of *P. falciparum* strain K1 and CY27 which can be categorized inactive [57, 58].

Phytochemical compound list:

The plant known to contained artemisinin but lower concentration than other *Artemisia* hence this plant has not been used for artemisinin source for commercial ways. However, this plant has been applied in various fields such as cosmetic, pharmacy and food. The major **flavonoid** content is eriodictyol and luteolin while also contain others flavonoids such as flavone glycosides (luteolin 7-glucoside and vitexin), flavones (tricine, chrysoeriol, jaceosidine, diosmetin, apigenin, eupafolin), flavonol glycosides (kaempferol 7-glucoside, kaempferol 3-glucoside, kaempferol 3-rutinoside, quercetin 3-glucoside, quercetin 3-galactoside, quercetrin and rutin) and flavonols (isorhamnetin), flavanones (homoeriodictyol and eriodictyol). The whole plant's **volatile oils** contain α -thujone, camphor, α -pinen, 1,8-cineole, camphene, germacrene D, β -caryophyllene. Leaves contain kaempferol-3-rhamnoside, kaempferol-3-glucoside, apigenin, luteolin rutinoside, quercetin, quercetin 3,7-dimethyl ether,

quercetin 3,3'-dimethyl ether, quercetin 3-galactoside, quercetin-3-malonylglucoside, rutin, phenolic acid such as 5-O-feruloylquinic acid, 1,5-O-dicaffeoylquinic acid, organic acid such as quinic acid, malic acid, trihydroxy-octadecenoic acid, acid glucoside and tuberonic, **sesquesterpene** such as artemisinic acid glucoside, artemisinin, artemisinic acid, yomogin and 1,2,3,4-diepoxy-11(13) eudesmen-12,8-olide, lignan such as trachelosidea and **monoterpene** such as dehydrovomofoliol [53]. [59] report that this plant contains eudesmane-type sesquiterpene, morin, luteolin, **triterpenes**, coumarin, flavonoids, eriodictyol. According to the research report which has been conducted by [60], the amount of artemisinin in the leaves was the same while compared to the flowers. The concentration of artemisinin is lower than *A. dracunculus* and *A. annua*. Report from [61] showed that this herb contained camphor, borneol, p-cymene, fenchone, α -thujone, β - thujone, cineole, geraniol, β -pinene, 4-terpinenol, α -terpineol, sterol, caffeoylquinic acids, caryophyllene and coumarin.

Pharmacological activities:

This herb has various activities including larvicidal, antifungal, antibacterial, antioxidant, antitumor, antimicrobial, preservatives in cosmetics and pharmaceutical, antispasmodic, antiseptic, antimalarial, hepatoprotective and antirheumatic qualities [53] [62].

ุหาลงกรณ์มหาวิทยาลัย

2.9.2. Artemisia lactiflora

Vernaculare name:

Common name	White mugwort
Thailand local name	จิงจูฉ่าย Jing ju chai
Synonym	Artemisia septemlobata

Morphology:

This herb is large clump forming non-invasive perennial plant, can reach up to 6 feet and width of 3-4 feet. Sterile flowers are white to creamy white. Leaves is toothed, deep green with silver undersides. This herb is slightly aromatic [63].

Distribution:

This herbs mainly distributed in Southeast Asia [64].

Traditional uses:

In Chaosan China, whole plant of this herbs is being used to heat clearing [65].

Antimalarial Activity:

There is no scientific research report about antimalarial activity.

Phytochemical list:

This herb contains 7-hydorxycoumarin, aurantiamide acetate, aurantiamide, caffeic acid, balanophonin, 7-methoxycoumarin, methyl 3,5-di-O-caffeoyl quinate, isovitexin, kaempferol-3-O-beta-D-rutinoside, quercetin and rutin. The leaves contain beta carotene, lactone, ascorbic acid, bitter absinthin, anabsinthin and riboflavin [66]. Aerial part contained polyacetylene, artemisidiyne [64].

Pharmacological activities:

Antioxidant, anti-cancer, controlling blood circulation, chronic hepatitis, dysmenorrhea, vaginal discharge and cirrhosis [66].

2.9.3. Blumea balsamifera

Verniculare name

Common name	Blumea champor
Local name	หนาดใหญ่ Nad yai
Synonym	Baccharis balsamifera, Baccharis salvia, Baccharis gratissima,
	Blumea appendiculate, Blumea grandis, Blumea zolligeriana,
	Conyza appendiculate, Conyza balsamifera, Conyza saxatilis,
	Pluchea appendiculate, Pluchea balsamifera

Distribution:

This herb is distributed in India to Sourthern China and throughout Southeast Asia [67].

Morphology:

Subshrub, perennial herb, can grow up to 1-3 m in tall. Strong, erect and taupe, stem which have longitudinal edge. Dense non glandular hair has covered their upper internodes. The leaves are oblong, lanceolate, ovoid, 22–25 cm in length and 8–10 cm, attenuated petiole in the base of the leaves, linear appendant is narrow (3–5 pairs in each side, pubescence, lateral vein 10–15 pair. The color is slightly brown or may silky-villous yellowish white. The flowers are yellow, have numerous female parts, receptacle honeycomb, corolla tubular and thin [68].

Traditional uses:

Malaysian used this herb to malaria treatment. The whole plant, leaves or the roots is used as anti-plasmodial. Leaves decoction is used for fever, influensa and coughs [69]. Vietnamese people also use this herb to treat malaria and fever [70].

GHULALONGKORN UNIVERSITY

Antimalarial Activity:

Ethanolic extract from root and stem from Malaysian herbs can inhibit *P*. *falciparum* sensitive strain D10 using LDH assay which showed IC₅₀ root 26.25 \pm 2,47 µg/ml; stem 7,75 \pm 0,35 µg/ml and do not have cytotoxicity at MDBK cell [69]. Whereas report from Indonesia show that methanolic extract of *B. balsamifera* leaves show IC₅₀ 8,7500 \pm 1,21 µg/ml against *P. falciparum* 3D7 using schizonticidal/giemsa blood smear assay [71].

Phytochemicals list:

Based on [68], the herbs contain monoterpene such as L-borneol, isoborneol, limonene, ocimene, α -terpineol, β -ocimene, β -myrcene, α -thujene, champene, β pinene, α -pinene, terpinen-4-ol, chrysanthenone, perillyl alcohol, bornyl acetate, sabinene, linalool oxide and 1,8-cineole; sesquesterpene: α -gurjune, alloaromadendren, (+)-aromadendrene, aromadendrene, aromadendrene oxide, aromadendrene, dehydro, longifolene, α -caryophyllene, caryophyllene oxide, β -caryophyllene, guaia-3,9-diene, δ -cadinene, γ -cadinene, β -selinene, γ -gurjunene, β -gurjunene, thujopsene-13, β elemene, 10-epi- γ -eudesmol, globulol, (-)guaiol, ledol, γ -muurolene, elemol, α eudesmol, β -eudesmol, γ -eudesmol, cubenol and carotol; diterpenes: cryptomeridiol, 16-kaurene, 1-ang-4,7-dihydroxyeudesmane, phytol, blumeaene; fatty acid: trans-2undecenoic acid, 9-hexadecenoic acid, capric acid, palmitic acid, (11 Z)-11-hexadecenoic acid; phenol: xanthoxylin, eugenol, dimethoxydurene; flavone: luteolin, luteolin-7methyl-ether, diosmetin, chrysoeriol and 4',5-dihydroxy-7-methyletherflavanone ; flavonols: 3,5,3',4'-tetrahydroxy-7-methoxyflavone, quercetin, 3,5,3'-trihydroxy-7,4dimethoxyflavone, rhamnetin (7-methoxyquercetin), tamarixetin, chrysosplenol C, ayanin, hyperoside, ombuine, isoquercitrin; flavanones: blumeatin (5,3',5'-trihydroxymethoxydihydroflavone), eriodictyol, 5,7,3',5'-tetrahydroxyflavanone, 3',4',5-trihydroxy-7-metoxyflavanone; flavanols : catechin, (2R,3R)-(+)-7-O-methyldihydroquercetin; coumarin: dydranngetin, umberlliferone (7-hydroxycoumarin); sesquesterpene lactone: blumealactone.

Pharmacological Activities:

Hepatoprotective, antioxidant, anti-tumor, anti-microbial and anti-inflammation, anti-obesity, anti-tyrosinase, anti-plasmodial, platelet aggregation, wound healing, enhancing percutaneous penetration [68].

2.9.4. Ageratum conyzoides

Vernacular name:

Common name	Goat weed, billygoat weed, chicken weed
Local name	หญ้าสาบแร้ง Ya sap raeng/ ya sap haeng/ tap suea lek
Synonym	Ageratum album, Ageratum arsenei, Ageratum
	brachystephanum, Ageratum ciliare, Ageratum coeruleum,
	Ageratum hirsutum, Ageratum hirtum, Ageratum humile,
	Ageratum iltisii, Ageratum latifolium, Ageratum microcarpym,
	Ageratum muticum, Ageratum nanum, Ageratum obtusifolium,
	Ageratum odoratum, Ageratum suffruticosum, Alomia
-	microcarpa, Cacalia mentrasto, Caelestina latifolia, Caelestina
	microcarpa, Carelia brachystephana, Carelia conyzoides,
	Carelia mutica, Eupatorium coyzoides, Eupatorium palaeceum,
	Sparganophorus obtusifolius

Morphology:

Annual, branched herb, fine white hair covered the entire stems and leaves, can grow up to 1 m in height. Leaves are ovate 7.5 cm in length. Terminal inflorescence, white or purple. Fruits are easily dispersed and achene. The odor is specific like male goat [72]

Traditional uses:

This herb has been used to treat fever in Asia, South America, Africa [73][55].

Antimalarial Activity:

The study report from S. Tome and Principle Island, Gul Guin has been shown that the ethanolic extract of aerial part of this herbs can inhibition the *P. falciparum* Dd2 with the giemsa blood smear schizonticidal assay with the IC50 median result 150 μ g/ml [74]. Whereas report from Nepal, the ethanolic extract using soxhlet extraction was shown inhibition against *P. falciparum* CQ resistant 2/K1 using nitro blue tetrazolium assay with IC₅₀ 72.4 ±28.3 μ g/ml and the cytotoxicity of 62.7± 3.3 μ g/ml [73].

Phytochemical list:

The oil content are **monoterpenes**: limonene, β -pinene, sabinene, β -phellandrene, 1,8-cineole, terpen-4-ol, α -terpineol; sesquesterpene: β -caryophyllene, δ -cadinene ; coumarin, chromenen, chromone, benzofuran; sterol: beta sitosterol, stigmasterol; alkaloid: lycopsamine, echinatine, sesamin, fumaric acid, caffeic acid, phyto, aurantiamide asetate. Whereas the leaves contain sesquesterpene: sesquiphellandrene, caryophyllene epoxide. Stem contained isoflavon glycosides [72].

54

The report study from [75] this herb contains flavonoid and chromene which have antiprotozoal activity. The flavonoids are ageconyflavone, eupalestin, 5'- methoxynobiletine, 5,6,7,3',4'5'-hexamethoxyflavone, kaempferol and catechin whereas the chromenes are precocene I, encecalol angelate.

Pharmalocogical Activities:

Vernaculare name:

Anti-microbial, anti-consvultan, neuromuscular blocking activity, analgesic activity, anti-inflammatory, anti-cancer, anti-depressant, insecticidal activity [72].

2.9.5. Bidens pilosa

Common name	Black-jack, beggar-ticks, cobbler's pegs
Local name	ป็นนกใส้ Puen noksai
Synonym	Bidens abadiae, Bidens adhaerescens, Bidens africana,
	Bidens alausensis, Bidens alba, Bidens arenaria, Bidens
	arenicola, Bidens aurantiaca, Bidens barrancae, Bidens
	bimucronata, Bidens bonplandii, Bidens brachycarpa, Bidens
	bullata, Bidens calcicole, Bidens californica, Bidens
	cannabina, Bidens caracasana, Bidens caucalidea, Bidens
	cernua, Bidens chilensis, Bidens daucifolica, Bidens deamii,
	Bidens decussata, Bidens dichotoma, Bidens effuse, Bides
	exaristata, Bidens fastigiate, Bidens heterodoxa, Bidens

hirsuta, Bidens hirta, Bidens hispida, Bidens hybrida, Bidens
inermis, Bidens leucantha, Bidens leucanthemus, Bidens
minor, Bidens minuscula, Bidens montaubani, Bidens
odorata, Bidens orendainae, Bidens orientalis, Bidens
paleacea, Bidens pinnata, Bidens pumila, Bidens
ramosissima, Bidens reflexa, Bidens rosea, Bidens
scandicina, Bidens striata, Bidens sundaica, Bidens taquetii,
Bidens trifoliata, Bidens tripartite, Bidens valparadisiaca,
Bidens viciosoi, Bidens wallichii, Ceratocephalus pilosis,
Coreopsis alba, Coreposis corymbifolia, Coreopsis
leucantha, Coreopsis leucorrhiza, Coreopsis multifida,
Coreopsis odorata, Glossogyne chinensis, Kerneria dubia,
Kerneria pilosa, Kerneria tetragona
Kerneria pilosa, Kerneria tetragona

Morphology:

This annual herb is invasive plants, therophyte herbs, flower head is discoid or radiate, yellow, white or salmon sterile ray floret, can reach up to 0.3 to 1.0 m in height. Green colour, dorsal decumbent or erect, stems is square shape [76]

จุหาลงกรณ์มหาวิทยาลัย

Distribution:

This herb is distributed in tropical and subtropical area, easily found in agricultural area on the roadsides.

Traditional uses:

In Africa and China: Juice from Root and whole plant have been used to treat malaria [77]. In northern America latin the leaves infusion is drunk for malaria treatment [55].

Antimalarial Activity:

This plant is reported have antimalarial activity and its activity attributed to flavonoid compound and acetylenes. Based on *in vitro* root ethanolic extract against *P*. *falciparum*, wild type plant has shown the higher activity than cultivated plant with IC₅₀ 10.4-17.0 μ g/ml. Result showed that cultivated plant is less active because they are younger [78]. Flavonoid is found to be the active compounds [79].

Phytochemical list:

Palmitic acid, myristic acid, stearic acid, behenic acid, arachidic acid, oleic acid, elaidic acid, ethyl linoleate, linoleic acid, methyl linoleate, pilosol A, ethyl linoleate, sulfuretin, aurone, butein, okanin, luteolin, apigenin, axillaroside, centaureidin, centaurein, eupatorin, luteoside, quercetin, bicyclogermacrene, germacrene D, Ecaryophyllene, Z- γ -bisabolene, β -gurjunene, α -humulene, δ -muurolene, selina-3,7(11)-diene, α -caryophyllene, phytol, phytanic acid, campestrol, phytosterin-B, β sitosterol, stigmasterol, lupeol, β -amyrin, friedelan-3 β -ol, squalene, eugenol, β carotene, p-coumaric acid, caffeic acid, ferulic acid, chlorogenic acid, pyrocatechin, pyrocatechol, p-vinylguaiacol, vanillin, protocatechuic acid, vanillic acid, gallic acid, aristophyll C, bidenphytin, pheophytin A [77].

หาลงกรณ์มหาวิทยาลัย

Pharmacological Activities:

Anti-inflammatory, immunological disorders, digestive disorder, immunological disorders, digestive disorder, infectious disease, cancer, metabolic syndrome, wound healing [77].

2.9.6. Vernonia cinerea (Cyanthillium cinereum)

Vernicular name:

Common name	Iron weed
Thailand local name	หญ้าดอกขาว Ya dhak khaw
Synonym	Cacalia cinerea, Conyza cinerea, Cyanopis erigeroides,
	Eupatorium mysotifolium, Seneciodes cinereum, Serratula

cinerea, Vernonia cyanonioides, Vernonia dendigulensis,
Vernonia diffusa, Vernonia erigeroides, Vernonia lentii,
Vernonia leptophylla, Vernonia montana, Vernonia
parviflora, Vernonia physalifolia, Vernonia rhomboides,
Vernonia villosa

Morphology:

Herbaceous plant, slender, slightly branched, grooved and ribbed stem. The stems also glaburous, hairy, 10-17 cm in tall and 1-8 mm thick. Greenish brown basal branches with dark green apical. Pinkish or purple flowers, fracture, rounded at the heads and flat-topped corymbs. Leaves may be broadly elliptic or lanceolate, coriaceous or membranous, obtuse or may acutely toothed, dark green, alternate, extipulate, smooth, opposite, the size is 2.5-5 cm in long and 1,8-3,6 cm in wide, have an odor [80, 81].

Distribution:

This herb has a wide range of geographical distribution [82] commonly found in South-East Asia and others tropical regions [83].

Traditional uses

In Cambodia, this herb is widely used to treat fever [83]. Ayuverdic medicine use the whole plant to treat fever [82]. In Chinese medicine, the decoction of whole plant is prepared for treating the fever. Report said that by using alone, it is lack of antiperiodic properties but when combine with quinine in small amounts of doses, it showed helpful to prevent malarial fever [84].

Antimalarial Activity:

Vernolides, a sesquiterpene lactone was reported active against W2 *P*. *falciparum* with the IC₅₀ ranging from 3.5-3.9 μ M [83]. Whole plant of this herbs has been tested also in 3D7 and K1 strain of *P. falciparum*. The result show that dichloromethane extract showed IC₅₀ 8,42 μ g/ml (3D7) and 5.85 μ g/ml (K1) [85].

Phytochemicals list:

This herb contains sesquiterpene lactones vernolide-A, vernolide-B, β sitosterol, lupeol, α -spinasterol, β -amyrin, stigmasterol and phenolic resin in the whole plant. The roots contain α -amyrin, α -amyrin acetate, δ -amyrin acetate, β -amyrin acetate and β -amyrin. The leaveas contain urticifolene, carotenoid lutein, sitosterol [86]. The major constituent of the seed contains fats and saponin: α -spinasterol, arachidic, β amyrn, β -amyrin acetate, linoleic acid, β -sitosterol, palmitic acid and lupeol. This herbs also contain apigenin, luteolin, quercetin, lupeol acetate [81].

Pharmacological activities:

This herb poses anti-tumor, anti-arthritis, anti-hyperglycemic, antioxidant, antimicrobial [86].

2.9.7. Gynura divaricata

Vernaculare name:

Common name	Chinese gynura
Local name	แป๊ะตำปึง Pae-tum-pong
Synonym จุฬาลงก	Cacalia albicans, Cacalia hieracioides, Cacalia incana,
CHULALON	Cacalia ovalis, Gynura auriculata, Gynura glabrata,
	Gynura hemsleyana, Gynura incana, Gynura ovalis,
	Senecio divaricatus

Morphology:

Perennial, herbaceous, woody erect procumbent base, fleshy top, can reach up to 50-120 cm. The stems are ribbed [87] sparsely pubescent to glabrescent. The leaves are sessile, dentate margin, may entire or distantly, obtuse or acute, cordate or truncate, auricles. pubescent,1 to 15 cm in long peduncles, 1 to 5 per corymb in capitula, 5-7,5 mm in diameter, 4-5 mm long calycular bracts, phyllaries, sparsely pubescent. Orange to yellow floret, 9-11 mm in long, exserted part is 2-3 mm in long [88]. Fibrous root, scapose ascending or dried stem are purple tinged [89].

Distribution:

This herb can be found in Africa, Asia and Australia [90].

Traditional Uses:

This herb is being used by traditional Chinese medicine for thousand years because it has pharmacological activities, few or no side effect and low toxicity and well known to being used in fever treatment [91]. Study reveal that this herb contains pyrolizidine alkaloid (integerrimine and urasamine) which must be limited in the usage. WHO regulate that limit doses for these alkaloid 15 lg/kg body weight in per day. Additionally, many of *Gynura* members are consumed as a salads or tempura because they are edible and rich in nutrition [90].

Antimalarial Activity Previous Report:

There is no scientific research report about antimalarial activity.

Phytochemical list:

This herb contains alkaloids, flavonoids phenolic acids, terpenoids, polysaccharides, etc. Pyrolizine alkaloids which have been discovered are integerrimine and urasamine. *G. divaricata* also contain niacin, stigmasterol, daucosterol, flavonoid (quercetin, kaempferol, rutinoside), phenolic acids (chlorogenic acid, coumaroylquinic acid, feruloylquinic acid). The major component of volatile oil is cubenol, sphatulenol, $^{\delta}$ -cadinene, cedrene, β -caryophyllene, γ -elemene, phytol, α -caryophyllene, β -farnesene, ledol, n-hexadecanoic acid, copaene [91]. The major volatile oil of this herbs is sesquiterpene β -caryophyllene. The others compound such like o-cymene, limonene, and α -copaene also detected in this plant [92].

Pharmacological Activities:

This herb posses hypoglycaemic activity, anti-hypertension, hypolipidaemic effect, antiploriferation, antioxidant, and anti-tumor [91].

2.9.8. Gynura pseudochina

Vernaculare name:

Common name	-	
Local name	ว่านมหากาฬ Waan mahaakaan	
Synonym	Cacalia bulbosa, Cacalia maculate, Cacalia purpurascens,	
	Crassocephalum miniatum, Gynura annamenis, Gynura	
	biflora, Gynura bodinieri, Gynura bulbosa, Gynura eximia,	
	Gynura inegrifolia, Gynura miniate, Gynura nudicaulis,	
	Gynura purpurascens, Gynura rusisiensis, Gynura sagittaria,	
	Gynura sinuata, Gynyra somalensis, Gynura variifolia,	
	Senecio biflorus, Senecia crassipes, Senecio miniatus, Senecio	
	pseudochina, Senecio somalensis	

Morphology:

Short herbs can reach up to 10-50 cm in high, erect stem is arising from wide subglobose tubers. Arrangement of the leaves at the base is rosette, sparsely pubescent or may be glabrescent., truncate or cuneate base, ocute or obtuse apex, exauriculate, the margin is shallowly lobed, coarsely dentate or sinuate, upper most leaves is pinnasetic, upper leaves more dissected than lower leaves. The corolla is red with 20 to 30 number of florets which have orange to yellow colour [89].

Distribution:

Distributed in India, Myanmar, Thailand, China, Bhutan, Nepal, Tropical Africa eastward to Srilanka, and Indonesia [89].

Traditional uses:

The root of this herbs has been used traditionally to treat the fever [93, 94]. In Indonesia this herb is used for treatment dengue fever [95].

Antimalarial Activity:

There is no scientific research report about antimalarial activity.

Phytochemicals list:

The leaves contain **flavonoid**, **saponin**, **tannins**, **triterpenoids**, **steroids**, chlorogenic acid, caffeic acid, para fumaric acid, vanilic acid and p-hydroxy benzoic acid [95]. This herb contains active chemical such as 3,5-di-caffeoylquinic acid, quercetin 3-rutinoside, 5-mono-caffeoylquinic acid and 4,5-di-caffeoylquinic acid [93].

Pharmacological activities:

Anti-coagulant, anti-pyretic, diuretic [95]

2.9.9. Tridax procumbens

Vernacular name:

Common name gwaana	Mexican daisy
Local name	ตื่นตุ๊กแก Tin tukkae
Synonym	Amellus pedunculatus, Balbisia canescens, Balbisia
	divaricate, Balbisia elongata, Balbisia pedunculata,
	Chrysanthemum procumbens

Morphology:

Procumbent, woody, can reach up to 60 cm in height. The leaves are ovate lanceolate (2-7 cm), pinnatisect (3 lobes). The flower is small, peduncled head is long, ascending persistent achenes, pubescent, 1,5 to 2,5 long and 9,5 to 1 mm in wide [96].

Distribution:

This herb is naturalized in Asia, Australia and tropical Africa but native in tropical America [97].

Traditional uses:

People in Ghana using this herb to treat malaria [98]. The traditional uses of this herbs for malaria also reported from Guatemala [99]. Leaf juice or paste also being used in India to treat the fever [100].

Antimalarial Activity Previous Report:

Antimalarial assay has been done using SYBR green I method, it showed that methanolic extract from leaves showed inhibition in *P. falciparum* 3D7 with IC₅₀ 62 µg/ml [101]. The ethanolic leaves extract from Ghana herbs has been reported give inhibition against *P. falciparum* CQ resistant Dd2 using 3h-hypoxanthine uptake assay with median EC₅₀ 121,3 µg/ml [98]. Methanolic extract from whole plant also has been investigated and showed that had inhibition against W2 *P. falciparum* with IC₅₀ 15.4 µg/mL [102].

Phytochemicals list:

The previous research reported that glucotureolin, dexamethasone, luteoline, flavone, β -sitosterol, quercetin and glycoside are presented in this herb [103].

Pharmacological activities:

Anti-hyperglicemic, anti-leshmanial, hepatoprotective, antioxidant, anti-fungal, anti-hepertic, anti-inflammatory, anti-bacterial and anticyclooxygenase [104].

2.9.10. Wedelia trilobata / Sphagneticola trilobata

Vernacular name:

Common name	Singapore daisy, creeping oxeye
Local name	กระคุมทองเลื้อย Kradum thong lueai

Synonym	Sphagneticola trilobata
---------	-------------------------

Morphology:

This plant are perennial creeping herbs, invasive, form "dense mats", can up to 70 cm in tall. Leaves are green glossy, the underside is paler green, hairy white, serrated margins, may have lateral lobes. Rounded stem and root are arising from the node. Vegetative reproduction with stolon may up to 2 m in length. The flower is solitary, inflorenscences are branched, yellow ray florets, 8 to 13 per head, yellow and tubular central disk. This herb is flowering throughout the year [105],

Distribution:

This plant is native to South America [105] and has distributed in many tropical areas like Burma, China, Ceylon, Florida and West Indies especially at low elevation [106].

Traditional uses:

In Vietnam, aerial part or leaves is being used traditionally to treat fever and malaria [106]. This herbs also is being used in Indonesia to treat malaria[107].

Antimalarial Activity:

Bioassay guide fractionation was used to isolate the sesquiterpenes lactones, Wedelolides A and B from ethanolic extract of the leaves and was reported able to inhibit *P*. *falciparum* using hypoxanthine-³H assay with IC_{50} 1.9 µg/mL and 4.1 µg/mL, respectively [108].

Phytochemical list:

This herb contains **flavonoid**, **triterpenes**, eudesmane **sesquiterpene lactones** and entkaurane **diterpenes**. Flower contain sesquiterpene lactones wedetrilides, ent-kaurane diterpenoid, and cinnamic acid derivatives [106]. Wedelolides sesquiterpene lactones is known to be active compoundfor anti-malarial activity from Vietnamese herbs [108].

Pharmacological activities:

Wound healing, anti-microbial, anti-inflammatory, antioxidant, anticancer and antihelmintic [105].

2.9.11. Eupatorium odoratum / Chromolaena odorata

Common name	Siam weed, devil weed, christmas bush	
Local name	สาบเสือ Sap saea	
Synonym	 Chromolaena odorata, Chrysocoma maculate, Chrysocoma volubilis, Eupatorium affine, Eupatorium atriplicifolium, Eupatorium brachiatum, Eupatorium clematitis, Eupatorium conyzoides, Eupatorium dichotomum, Eupatorium divergens, Eupatorium floribundum, Eupatorium graciliflorum, Eupatorium klattii, Eupatorium sabeanum, Eupatorium stigmatosum, Osmia atriplicifolia, Osmia clematitis, Osmia conyzoides, Osmia divergens, Osmia floribunda, Osmia graciliflora, Osmia graciliflora, Osmia 	

Vernacular name:

Distribution:

This herb can be found in Asia, Australia and West Africa but know to be native to Texas, Mexico, the Caribbean and Florida [109].

Morphology:

Climbing herbaceous perennial weed which can reach up to 6 m. Browny-woody stem at the base while soft and green at the top, fibrous root. The flower is white or pale bluish lilac. Leaves are arrowhead-shaped, opposite (length: 50-120 mm, wide: 30-70 mm). The odor is pungent [109].

Traditional uses:

The root and leaves of this herb are used to treat malaria by people in South western Nigeria [110]. The traditional uses for malaria treatment also reported from southeastern Nigeria [111].

Phytochemical screening:

The leaves, stem bark and root has contained phytochemical such as tannins, alkaloids, flavonoids, terpenoids, saponins and phenolic acids [110].

Antimalarial Activity:

13 dichloromethane fractions from methanolic leaves extract were tested to *P. falciparum* chloroquine sensitive (HB3) and chloroquine resistant (FcM29) by using SYBR Green I method. The result showed that the IC₅₀ ranging from 4.8 μ g/ml - > 50 μ g/ml. The further research showed that the active compound quercetin-5 methyl ether identified show potential for further development against malaria [111].

Pharmacological activity:

Antioxidant, anti-fungal, anti-microbial, insecticide, larvicidal, ovicidal [112].

งหาลงกรณ์มหาวิทยาลัย

2.9.12. Artemisia dracunculus

Vernacular name:

Common name	Tarragon, pinon wormwood
Local name	ทาร์รากอน Tarragon
Synonym	Achiella dracunculus, Artemisia aromatica, Artemisia cernua,
	Artemisia changaica, Artemisia desertorum, Artemisia
	dracunculoides, Artemisia glauca, Artemisia inodora, Artemisia
	nutans, Artemisia nuttalliana, Artemisia redowskyi, Draconia
	dracunculus, Dracunculus esculentus, Oligosporus
	dracunculiformis, Oligosporus dracunculus, Oligosporus
	glaucus

Distribution:

Originate from Afghanistan, southeastern Russia, western North America, Pakistan, Turkey and Mongolia and introduced to many countries later [113].

Morphology:

Aromatic or may be non-odourous perennial herbs, shruby, rhizomatus, can reach up to 60 to 120 cm in height. Leaves are dark gray to green, shiny, alternate, narrow, linear or lanceolate oblong. Ascending or erect stems, woody, may glabrous or sparsely hairy. Fibrous root, brownish and gnarled. The florets are bisexual and sterile, white to reddish with mostly green sepals, oblong to eliptic while the inner is broad edge ovate. Receptacle is glabrous with yellow corolla [113].

Traditional uses:

There is no report about traditional uses for malaria treatment. But this herb has been used traditionally in India to treat various fevers [114]. This herbs commonly used for flavoring food or aromatherapy [115].

Phytochemical screening:

The main component of oils is ocimene, methyl ethers, myrcene, limonene, α - and β pinene, linalool and camphene. Flavonoids content are patulin glycosides, quercetin, hydroxycoumarins (scopoletin and herniarin) and isocoumarin (polyenes and artemidin) [113]. Whereas report from [116] showed that major constituent of essential oils from aerial part was terpinolene, methyl chavicol and methyl eugenol. Whereas [61] mentioned that essential oils from this herb contained anethole, menthol, anisol, estragole, anisic acid, limonene, d-sabinene, myrcene, α -phellandrene, ocimene, anisaldehyde, coumarin and β -pinene. Based on the research which has been conducted by [60], leaves of this herb contained artemisinin 0.27 ± 0% with higher content in the leaves.

Antimalarial Activity:

Based on [57], the aerial ethanolic extract using percolation extraction is shown inactive against *P. falciparum* CY27 and K1. The IC_{50} is above 200 µg/ml.

Pharmacological activity:

Carminative, digestive, anti-pyretic, anti-inflammatory, anti-septic, anti-parasitic, antimircrobial, anti-pasmodic, anti-helmintic and anti-fungal [113]. Anti-platelet, hepatoprotective, anti-hyperglicemic, hypolipidaemic action, neurotropic activity, antioxidant activity, anti-hypoxic, analgesic, anti-convulsant [114].

2.9.13. Eupatorium capillifolium

Common name	Dog fennel
Local name	โกฐจุฬา Kod chulaa
Synonym	Artemisia capillifolia, Artemisia tenuifolia, Chrysocoma capilacea, Eupatorium foeniculaceum, Eupatorium foeniculoides, Mikania artemisioides, Traganthes tenuifolia
25	j, initiation, ini

Vernacular name:

Distribution:

This herb is native to North America and found primarily in the southeastern United States also can be found in temperate North America, Europe and eastern Asia [117].

Morphology:

Annual or perennial, have a short life, 7- 2 m in tall, stem is clustered and branched, scabrous-hirsute to glabrate basally. The leaves once or twice pinnately divided, leaves division filiform less than 0.5 mm wide, inflorescences racemose, apiculate, enclosing 2- 5 flowers, green or less commonly reddish, corolla 2.0-2.5 mm in long white or less commonly reddish, achenes [118]. The leaves are fine-textured, narrow segment and very odorous [117].

Traditional uses:

The infusion of this herbs is widely used by Native Americans to treat the fevers [117].

Antimalarial Activity:

Phytochemical list:

Essential oils of this herbs contained camphene, β -phellandrene, α -pinene, δ -4-carene, myrcene, α -phellandrene, β -pinene, limonene, β -ocimene, terpinolene, p-cimene, bornyl acetate, lavandulol, thymol, methyl ether, germacrene D, α -humulene, γ eudesmol and β -eudesmol. This herbs also contained alkaloid, flavonoids, triterpenes sesquiterpene lactones and acetylenic compounds [117].

Pharmacological activity:

Anti-microbial, anti-tumor, antioxidant and anti-inflammatory [117]

2.9.14. Artemisia chinensis/ Crossotephium chinense

Vernacular name:

Common name พาลงก	Chinese wormwood/ Anjenjo	
Local name CHULALON	แอหนัง เบญจมาศเงิน ae nang	
Synonym	Chrysanthemum artemisioides, Crossotephium	
	artemisioides, Tanacetum chinense	

Distribution:

This plant has distributed in Asia [119] but is a native of China [120].

Morphology:

Sub-shrub growing in crevices in the rock in Japan and cultivated in Asia as ornamental plant. Glaucous plant, fleshy leaves [121]. The leaves are tomentose, about a finger

breadth in length, the lower leaves are wedge-shaped and trilobed, while the upper is lanceolate and obtuse. Flower ovate, simple racemes [120].

Traditional uses:

No reported data has been mentioned this plant has been used for malaria or fever treatment. This herbs usually is used for joint pain, windpipe infection, antitoxic, bone arthritis and flu and cough [122].

Antimalarial Activity:

Phytochemical list:

The ethanolic extract of the whole plant contained sesquiterpene crossostephin, coumarin biscopoletin, artesin, tanacetin scopoletin and scopolin [123]. Flavonoid aglycone, luteolin, apigenin, hispidulin, chrysoeriol, cilsimaritin, jaceosidin, quercetin 3-methyl ether, chrysosplenol-D, axillarin, cirsiliol, cirsilineol, apometzgerin, nepetin, eupatilin were found in the leaves [119, 124].

Pharmacological activity:

Antioxidant, anti-proliferative, hepatoprotective [125].

2.9.15. Sphaeranthus indicus

Vernacular name:

Common name	
Local name	หญ้าขี้กวาย
Synonym	Sphaeranthus hirtus, Sphaeranthus mollis

Distribution:

This plant is distributed in tropical area such as Srilanka, India, Australia, Africa and commonly grow well in the dry waste or agricultural area [126].

Morphology:

This herb is aromatic strongly scented, hairy multibranched which can reach up to 1-2 feet in height, annual erect, branched tapering roots tap roots. Leaves are greenish brown hairy, sessile, sphatulate, obovate, deccurent, sub-acute or rounded, oblong, dentate or spinous serrate margin, and the base is narrow. Leaves size is 2-7 cm in length and 1-1.5 cm in wide. Flowers are soliter pinkish purple, terminal born, globose with clustering heads. Outer flowers are female, while inner flowers are bisexual fertile or sterile. The receptacle is small and naked with the purple, slender corolla. The leaves show a trichome with uni-multicelullar, club and clavate [127, 128].

Traditional uses:

Ayuverdic medicine use this herb to treat fever [128].

Antimalarial Activity:

Previous study by using Thai herbs showed that the hexane and ethyl acetate extract of aerial part exhibited $IC_{50} > 90 \ \mu g/ml$ which was mean no activity against K1 *P*. *falciparum*. However, isolated eudesmanolides sesquiterpene lactones showed active inhibit *P. falciparum* with the $IC_{50} 2.32$ - 6.47 $\mu g/ml$ [129].

Phytochemical list:

This herbs contain citral, estragole, β -sitosterol, δ -cadinene, methyl chavicol, α -ionione, α -terpinene, β -ionone, geranyl acteate, n-pentacosane, oscimene, eugenol, sphaeranthene, geraniol, sphaeranthol, indicusene, n-triacontanol, paramethoxycinnamaldehyde phenylurethane, sesquiterpene lactone 7α -hydroxyeudesm-4en-6, 12-olide, sesquiterpene glycoside sphaeranthanolide, flavone 7-O- β -D-diglucoside, flavon glycoside 7-hydroxy-3',4',5,6-tetramethoxy neral, geraniol, geranial, maaliene, linalool, camphor, borneol, indipone, cubenol, α - eudesmol, valianol [127].

Pharmacological activity:

Antifeedant, antihelmintic, analgesic, antipyretic, anti-diabetic, antihyperlipidemic, antioxidant, antimicrobial, antiviral, macrofilaricidal, larvicidal, antioxidant, anxiolytic, central nervous system depressant, anticonsvulsant, mast cell stabilizing activity, anti-arthritic, anti-inflammatory, anti-migratory, anti-proliferative, hypolipidemic activity, nephroprotective, antiprotozoal [127]

2.9.16. Acmella oleracea

Vernacular name

Common name	Toothache plant
Local name	
Synonym	Anacylus pyrethraria, Bidens fervida, Bidens fixa, Bidens oleracea, Cotula pyrethraria, Pyrethrum spilanthus, Spilanthes
(Here)	acmella, Spilanthes fusca, Spilanthes radicans

Distribution:

This plant is distributed in the tropical and subtropical regions [130].

Morphology:

Stems are erect or decumbent, hairless, reddish. Leaves are simple, opposite, broadly ovate to triangular, the size is 5-11 cm in length and 4-8 cm in wide, margin dentate, base truncate or attenuate, the apex is acute or acuminate. The disk flowers are 400-620 while corolla is yellow and up to 3.5 mm in length. Inflorescence is discoid head, apex acute [131].

Traditional uses:

In Africa and India, people use this plant to treat malaria [132].

Antimalarial Activity Previous Report:

Isolated compounds from this plant including undeca-2E-ene-8,10-diynoic acid isobutylamide and spilanthol were reported have inhibition against *P. falciparum* PFB with IC₅₀ 41.4 μ g/mL and 16.5 μ g/mL while on K1 strain were 16.3 μ g/mL and 5.8 μ g/mL, respectively [132].

Phytochemicals list:

This herb was reported contain alkaloids, flavonoids, saponins, steroid glycosides and tannins in leaves, stems and flower [133].

Pharmacological activity:

This plant posses a various activity including anaesthetic, analgesic, antipyretic, antiinflammatory, antifungal, diuretic, vasorelaxant, antioxidant, antimalarial, larvicidal, aphrodisiac, antinociceptive, immunomodulatory, convulsant and bioinsecticidal [130].

CHAPTER III METHODOLOGY

3.1. PHYLOGENETIC MAPPING OF ETHNOMEDICINAL PLANT USED FOR MALARIA AND ITS ASSOCIATED SYMPTOMS

3.1.1. Data collection

A number ethnomedicinal plants list which were used to treat malaria and its associated symptoms such as fever and diarrhea were created through literature search. Plants used for tuberculosis were added to increase the number of data in order to analyze the possible chance of cluster pattern mapping alteration because of the addition of a samples number with the different disease's indication. PubMed, Science direct, Google scholar and Scopus were used as a literature databases source. Published articles in ethnobotanical surveys on relevant disease conducted in various cultures (including Indomalaya and Africa) which presented the usage of plants for treatment were used to create the plant working list database.

Inclusion and exclusion criteria which was adapted and modified from [134] were applied to extract the data: 1). Medicinal plants remedies were excluded, 2). Taxa under same genera was only presented once to avoid visually bias (e.g. *Artemisia* spp represented *A. afra, A. annua, A. gmelini,* and *A. brevifolia*).

ุหาลงกรณ์มหาวิทยาลัย

3.1.2. Phylogenetic Tree Construction

Phylogenetic tree was constructed using ITS region. The ITS sequences of each medicinal plant were obtained from GenBank in NCBI (National Center for Biotechnology Information). Analysis of the sequences was performed using MEGA X freeware (https://www.megasoftware.net/). Obtained sequences were aligned using MUSCLE multiple sequences alignment while Maximum Likelihood Phylogenetic Test was used to construct the phylogenetic tree by bootstrapping 100 times.

ITOL (Interactive Tree of Life, <u>https://itol.embl.de/</u>) and Adobe Illustrator 2020 were used to create the datasets and annotations of interactive phylogenetic tree. Heatmap datasets was used to obtain the clustered pattern of medicinal plants by applying coding system for each medical used condition (0: no usage, 1: present usage).

3.2. PLANT COLLECTION AND EXTRACTION

Plants were collected from various source area in Thailand from November 2019 – January 2020. Identification was done by comparing the morphological characters with the reference. All plant samples were identified by botanist and voucher specimens will be deposited at College of Public Health Sciences, Chulalongkorn University. Selected part of the plant (based on ethnomedicinal data for treating malaria and fever) was collected and then rinsed using flowing tap water followed by oven drying at 50 $^{\circ}$ C air dying oven. Dried herbs then grinded into the fine powder.

Extraction was done by exhaustive maceration method using ethanol. The plant powder was soaked in the ethanol and filter using Whatman filter paper No.1. Solution of extract then evaporated to obtain concentrated crude extract. Crude extract was stored in -20 ^oC until use.

I	A Streement in provide the	1	1
Species	Local name	Part used	Note
Artemisia vulgaris	โกฐจุฬาลัมพา	Aerial part	Flower, leaves, stem
	Khot chulaa luampuaa		
Artemisia lactiflora	จิงจูฉ่าย	Aerial part	Leaves, stem
Сни л	Jing ju chai	RCITV	
Artemisia chinensis/	แอหนัง เบญจมาศเงิน	Aerial part	Flower, leaves, stem
Crossotephium	ae nang		
chinense			
Artemisia dracunculus	ทาร์รากอน	Aerial part	Flower, leaves, stem
	Tarragon		
Tridax procumbens	ดีนตุ๊กแก	Aerial part	Flower, leaves, stem
	Tin tukkae		
Bidens pilosa	ป็นนกใส้	Aerial part	Flower, leaves, stem
	Puen noksai		
Wedelia trilobata	กระคุมทองเถื้อย	Aerial part	Flower, leaves, stem

Table 10. Part used of selected medicinal plants.

	Kradum thong luaoi		
Ageratum conyzoides	หญ้าสาบแร้ง	Aerial part	Flower, leaves, stem
	Ya sap raeng		
Eupatorium odoratum	สาบเสือ	Leaves	Mature leaves
	Sap saea		
Vernonia cinerea	หญ้ำคอกขาว	Aerial part	Flower, leaves, stem
	Ya dok khaw		
Gynura divaricata	แป๊ะตำปึง	Aerial part	Leaves, stem
	Pae- tom -pung		
Gynura pseudochina	ว่านมหากาฬ	Leaves	Mature leaves
4	Waan mahaakaan	2	
Blumea balsamifera 🥖	หนาดใหญ่	Leaves	Mature leaves
	Nadyai		
Eupatorium 🖉	โกฐจุฬา	Aerial part	leaves, stem
capillifolium	Kod chulaa		
Sphaeranthus indicus	หญ้าขี้ควาย	Aerial part	Flower, leaves, stem
Acmella oleracea	- www.	Aerial part	Flower, leaves, stem

3.3. PHYTOCHEMICAL SCREENING

The phytochemical screening was done by qualitative standard method based on [135]:

3.3.1. Phenolics compound test (Ferric chloride test)

1 mL of 5 mg/mL ethanolic extract was added with few drops of 5% ferric chloride solution (**Appendix IV**). The color changing into brown - black indicated the presence of phenolic compounds.

3.3.2. Flavonoid test (Alkaline test)

1 mL of 5 mg/mL ethanolic extract was added with 10% NaOH solution followed with 2M HCL. The intense yellow turned into yellow colorless indicated the presence of flavonoid.

3.3.3. Alkaloid test

a. Alkaloid extraction

10 mg/mL extract solution in chloroform was mixed with 1 ml of 25% NH₃ solution. Vortex mixture, and chloroform layer was obtained from the lower phase of the solution. Chloroform layer then extracted with 2 mL of 1% HCl to get alkaloidal layer (upper phase).

b. Dragendorff's test

1 mL of dragendorff's reagent (Appendix IV) was added into alkaloidal solution. Yellow-orange-red precipitation occurred was indicated to be alkaloids.

c. Wagner's test

1 mL of Wagner's reagent (Appendix IV) was added into the alkaloidal solution. The presence of brown-red precipitate indicated the alkaloids.

3.3.4. Steroid and triterpenes test (Salkowski's test)

1 ml of 2.5 mg/mL extract solution in chloroform was added with few drops of concentrated sulphuric acid (H_2SO_4). The reddish-brown ring which was appeared at the interface of the solution was present if the presence of steroid moiety while the yellow color at the lower phase indicated the presence of triterpenes.

3.3.5. Saponin test (foam test)

Saponin test was performed by using foam test. A tiny amount of crude ethanolic extract was shake vigorously with 5 mL of water. The presence of foam on the top of solution which was stood for at least 30 minutes was indicated the presence of saponins. 3.3.7. Diterpenes test (Copper acetate test)

A 1 mL solution of 5 mg/mL ethanolic extract was added with few drops of 1% copper acetate solution (Appendix IV). The color changing to green emerald indicated the presence of diterpenes.

3.3.8. Lactones (Baljet test)

Lactone moiety was detected using Baljet test refers to [136]. A 5 mg/mL extract solution in ethanol was added with Baljet reagent (Appendix IV) which was prepared freshly. Color shift to red or orange indicated the presence of lactone moiety.

3.4. ANTIMALARIA ACTIVITY ASSAY

Antimalarial testing method was performed based on [74] and [58] with modifications. Antimalarial activity assay was done at Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University.

3.4.1. Parasite Culture

In vitro antimalaria activity was evaluated against laboratory-adapted *P*. *falciparum* 3D7 (chloroquine resistant strain) which was obtained from Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University. Preparation of parasites culture was performed by aseptic technique in Biological Safety Cabinet Class II (NUAIRE). Parasites was cultured at 37 0 C, 5% CO₂, 5% O₂, 90% N₂ in media contained human erytrocytes suspended in RPMI 1640 suplemented with 10 % Albumax, 4 mM hypoxanthine and 1 M HEPES with the final pH 7.4-7.2. Parasitemia was mantained between 1-2%. The ring stage synchronized parasites was obtained after treating with 5% D-sorbitol solution. Giemsa staining was used to observe the ring stage of parasites by using optical microscope (AXIO) with 100x1.25 magnification.

3.4.2. Assessment of in vitro antimalarial activity assay

Antimalarial activity testing was done using DNA fluorescence based assay. Assay was performed automatically by using Eppendorf epMotion 5075. The 96-well drug plates were dosed with this following serial concentration 100 μ g/mL, 25 μ g/mL, 6.25 μ g/mL, 1.5625 μ g/mL and 0.390625 μ g/mL of ethanolic extract. After that, an aliquot of parasite inoculum (50 μ l) with 2% parasitaemia and 1% haematocrit was added into each well of a 96-well microplate. The 96-well drug plates were incubated at 37 °C under a gas mixture of 5% CO₂, 5% O₂, 90% N₂ for 48 h. 10 nM artemisinin were used as positive control.

After incubation, a 100 μ L of fluorescent hemolysis reagent was added to each well and incubated the plates in the dark for 1 hour. Fluorescence intensity was determined at the excitation and emission wavelengths of 485 and 530 nm, respectively. Potency of antimalarial was determined by the calculation of IC₅₀. Antimalarial activity was classified into six class based on [58]:

Potency of antimalarial	IC ₅₀ (μg/mL)
Very good	<0,1
Good	0.1 -1
Good- moderate	>1-10
Weak	>10-25
Very weak	25-50
Innactive	>100

3.5. GENETIC DIVERSITY OF ITS REGION

3.5.1. Plant Genomic DNA Extraction

DNA extraction was done using CTAB method and Plant DNA extraction Kit. For CTAB method, young tissue of leaves was grinded to powder using liquid nitrogen. A sufficient amount of powder was put into sterile 1.5 mL tube by addition of 500 μ L of 2xCTAB buffer and incubated in water bath for 1 hour at 65 ^oC. Centrifugation was done at 10.000 rpm for 10 min to obtain supernatant (Spectrafuge 16M Labnet Internationals). Supernatant was transferred to sterile 1.5 mL tube followed by adding 500 μ L of chloroform. Vortex the solution, milky green solution was appeared and then centrifuged the solution at 10.000 rpm for 10 min to obtain the aqueous phase in the upper layer. The aqueous phase then transferred into new sterile 1.5 mL tube followed by addition of 500 μ L mixture of chloroform: isoamyl acetate (24:1), then vortex the solution. After that, centrifuged with the same protocol and collect the aqueous phase (upper layer) into1.5 mL sterile tube. Into the aqueous phase, 3M sodium acetate pH 5.0 was added in the ratio 1:10 volume then invert the tube. Ice cold absolute ethanol (-20 °C) was added in 2 times of volume then invert the tube, after that, incubated in -20 °C for 1 hour. After incubation, centrifuge at the same procedure to obtain the pellet of the DNA. DNA pellet was washed using cold 70% ethanol (4 °C) in two times repeated. After washing, the ethanol was discarded and dried the DNA pellet in room temperature, dissolved DNA in 100 μ L TE buffer and store at -20 °C for further used.

3.5.2. DNA Concentration and Purity Measurement

Concentration and purity of extracted DNA was measured by using NanoDrop (Thermo ScientificTM). Agarose gel electrophoresis was run for checking of genomic DNA, checked the possibly contamination and checked for DNA shearing.

3.5.3. Measurement genomic DNA concentration and Purity using NanoDrop

DNA quantity $(ng/\mu L)$ and purity (A260/280 & A260/230) was checked using Nano Drop machine (Thermo ScientificTM). TE buffer was used as blank.

3.5.4. Agarose gel electrophoresis

1.5 % agarose in 1X TBE buffer solution was prepared for making the gel. After the gel was set, transferred the gel into the electrophoresis machine which already filled with 1X TBE buffer. One μ L of loading dye was mixed well by up and down pipetting with 5 μ L of DNA sample. Carefully loaded the mixed sample into the well of the gel. 1 kb DNA Ladder (Thermo ScientificTM) was used to check the molecular weight of genomic DNA. Set the voltage in 100 V and run the machine.

After running was completed, the gel was stained using ethidium bromide for about 5-10 minutes in dark container and followed by washing the excessive stain with tap water. GenSys software system (InGenius³ SynGene) was used for imaging the gel in UV chamber.

3.5.5. Amplification of ITS Region

PCR components were list in this following table:

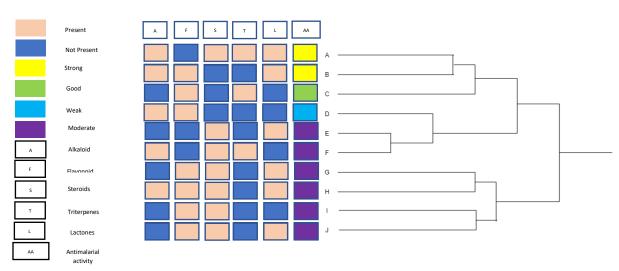
Components	Stock solution	Final concentration
PCR Buffer	10 X	1 X
MgCl ₂	25 mM	2.5 mM
dNTPs	10 Mm	0.2;0.4 mM
ITS5 Forward Primer	10 mM	0.2;0.4 mM
ITS4 Reverse Primer	10 mM	0.2;0.4 mM
Taq polymerase	5 unit/µL	1 unit/µL

Sequence of ITS Primer used:

Primer	Sequence (5'-3')	$Tm(^{0}C)$
ITS5 Forward	GGAAGTAAAAGTCGTAACAACAAGG	55
ITS4 Reverse	TCCTCCGCTTATTGAGC	56

Premix solution was prepared by mixing all above PCR components without DNA template. *Taq* polymerase (Thermo Fisher Scientific) was added on the last step in cold condition. 19 μ L of premix solution was added into PCR tube and followed by addition of 1 μ L of DNA sample. Solution was mixed by pipetting up and down. PCR reaction was amplified (Proflex PCR System Applied Biosystems by Life Technologies) using this following protocol:

Amplification Step	Temperature	Time	Cycle	
Pre-denaturation	95 °C	5	1 x	
Denaturation	95 °C	30 s		
Annealing	50/55 [°] C	30 s	35 x	
Extension	72 [°] C	30 s		
Post extension	72 [°] C	5 min	1 x	


The 1.5% agarose gel electrophoresis was used for checking the PCR products. The product was kept at -4° C before used.

3.5.6. ITS region sequencing and Phylogenetic Tree Analyses of selected medicinal plants

The amplified PCR products of selected medicinal plants were sequenced in Apical Scientific Sdn Bhd, Selangor-Malaysia. *Cannabis sativa* was used as an outgroup plant for phylogenetic tree construction. Obtained sequences were aligned with MAFFT (Multiple Alignment using Fast Fourier Transform) by CIPRES portal (www.phylo.org) followed by phylogenetic tree construction using RAxML (Randomized Axelerated Maximum Likelihood) and visualized by using FigTree v.4.0. Sequences alignment was visualized using Jalview 2.10.5. Creating datasets, annotation and make up of interactive phylogenetic tree was performed by ITOL and Adobe Illustrator 2020.

3.6. DATA ANALYSIS

Determination of antimalarial activity of plant extract was categorized as very good, good-moderate, weak and very weak based on their IC_{50} . The relation between phylogeny of the species and their activity or phytochemical diversity was performed by descriptive analysis which was shown in this following example diagram:

Chulalongkorn University

3.7. EXPECTED BENEFITS

- 3.7.1. This research will provide scientific data about antimalarial activities from Thai herbs which have been used traditionally by people in various region of the world hence will promote to use the herbs which are proven to have activity.
- 3.7.2. This research will provide insight to use phylogeny as predictive tools to "hit" the group of plant for further bioactivity investigation hence can help to cut the time for selecting the target plants and explore new medicinal plants.

No	Budgets	Amount	Expenses	Total Expenses		
1	Consumables Laboratory Tools and Supplie	es	-			
	Pippetes, microtubes, tips	N/D	6000	6000		
	PCR Kits	N/D	2900	2900		
	Whatmann No. 1 Filter Paper	N/D	2000	200		
	Evaporating Bowl	N/D	2000	200		
	Disposable pipettes volumetric (2 ml, 5 ml,	ลัย				
	10 ml) CHULALONGKORN UNIVER	N/D	3000	300		
	Disposable Culture Flask	20 EA	2000	200		
	96 well-plate	100 EA	3800	380		
	Glass slide	1 pack	200	20		
	Mask	2 pack	250	25		
	Gloves	2 pack				
2	Phytochemical Screening Reagents					
	Pottasium Iodide	100 g	5700	570		
	Bishmuth (III) subnitrate	5 g	2500	250		
	Ammonia Solution	100 ml	3500	350		

	Conc. HCl	100 ml	3000	3000				
	Conc. H2SO4	100 ml	4200	4200				
	Chloroform	1 L	4000	4000				
	Ethanol	15 L	1000	1000				
	Picric acid	1 GAL	8600	8600				
3	Standard Compounds							
	Artemisinin	100 mg	3710	3710				
	Asiaticoside	1 mg	1500	1500				
	Quercetin	10 g	2200	2200				
	Quinine Q	5 g	3100	3100				
	Chloroquine	25 g	3300	3300				
4	Antimalarial Assay Parasites culture, Medi	a and Reage	nts					
	RPMI 1640	10 L	2200	2200				
	HEPES Buffer	25 g	2200	2200				
	Albumax	5 g	3300	3300				
	Human Erythrocytes	N/D	4500	4500				
	Strain 3D7 P. falciparum	N/D	1000	1000				
	Strain K1 P. falciparum	N/D	1000	1000				
	D-Sorbitol จุฬาลงกรณ์มหาวิทยาส	100 g	1000	1000				
	Giemsa CHULALONGKORN UNIVER	500 ml	3900	3900				
	Fluorescence DNA binding dye	500 µ1	5300	5300				
	Lysis Buffer	100 ml	2000	2000				
5	Plant Molecular Analysis							
	Liquid Nitrogen	N/D	500	500				
	DNA Extraction Reagent	N/D	6300	6300				
	PCR component reagent	1 vial	2300	2300				
	Primer	2 vial	5000	5000				
	Taq Polymerase enzyme	250 unit	7000	7000				
	Agarose Gel	25 g	12500	12500				

TOTAL 1					
	Sequencing facilities	N/D	10000	10000	
	DNA ladder	1 vial	6700	6700	
	Loading dye	2 ml	1200	1200	
	Ethidium bromide	10 ml	3200	3200	

3.9. TIME SCHEDULE

Activities	1 st :	year	2^{nd}	year
	Semester 1	Semester 2	Semester 1	Semester 2
Literature	1			
Review				
Proposal		62		
Writing			•	
And exam				
Lab work				•
Data analysis	8	(S)	•	
Thesis Writing		10	•	
MS preparation	จุฬาลงกรถ	เ ้มหาวิทยาส์	ខ	←→
Thesis	HULALONGK	orn Univers	SITY	
examination				

CHAPTER IV RESULT

4.1. Combinatorial approach using phylogeny and ethnobotanical data for selecting antimalarial plants target.

A number of 733 medicinal plants list which were used by various culture including Africa (Zimbabwe, West Bengal, Uganda, Nigeria, Senegal, Congo, Ghana, Ivory Coast, Kenya, Limpopo, Madagascar, and Bizana) and Indomalaya (India, Iran, Nepal, Indonesia, Malaysia, Thailand, Bangladesh and Pakistan) were obtained from literature search however only 340 medicinal plants were met the inclusion and exclusion criteria as well as their ITS sequences were available in GenBank NCBI (62 plants for malaria, 65 plants for fever, 56 plants for diarrhea, 44 plants for tuberculosis and 113 plants for multipurpose). Furthermore, this plants list was processed for further analysis.

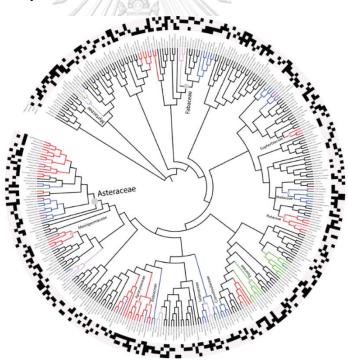


Figure 18. phylogenetic mapping of medicinal plants used for malaria (red), fever (blue), diarrhea (purple) and tuberculosis (green) generated by Maximum Likelihood Test and MUSCLE sequences alignment.

Based on analysis of phylogenetic tree constructed using data of medicinal plants used for treatment of malaria, fever, diarrhea and tuberculosis, the result showed that the medicinal plants used for malaria mostly clumped in Asteraceae family followed by Rutaceae, Apocynaceae, Rubiaceae and Euphorbiaceae as shown in **Fig 18**. In other hand, plants for fever were shown to be clustered in Asteraceae, Meliaceae, Solanaceae, Convolvulceae and Fabaceae. The clustered pattern for diarrhea treatment showed on the clade of Myrtaceae and Fabaceae. The last, for tuberculosis treatment, the clumping pattern were shown in the Poaceae clade.

After extracting data to only used the malaria and its associated symptoms (fever and diarrhea), clustered pattern of malaria showed to be similar with the pattern showed in the previous analysis before extracting the data as shown in **Fig 19**. The antimalarial plants mostly clumped in Asteraceae along with fever and followed by clumping occurrence in Apocynaceae, Rubiacaeae, Euphorbiaceae, and Rutacaeae. In other hand, clustered pattern medicinal plants for fever were quite different which was not only shown in the clade of Myrtaceae and Fabaceae. In addition, plants for diarrhea treatment were showed different result after data extraction which was shown to be clustered in Rutaceae instead of Myrtaceae and Fabaceae.

Some clustered pattern result after data extraction was shown to be different especially for fever and diarrhea, hence in this study further data extraction for analyzing the clumping pattern using malaria, fever and tuberculosis was performed to observe the consistency result using this approach as shown in **Fig 20**. The plants for malaria treatment was remain the same which was greatly clustered in Asteraceae family, followed by Apocynaceae, Rubiaceae and Euphorbiaceae. In other hand, plants for fever treatment were clumped in Asteraceae and Cucurbitaceae. For tuberculosis treatment, the plants were majorly clumped in Apiaceae clade.

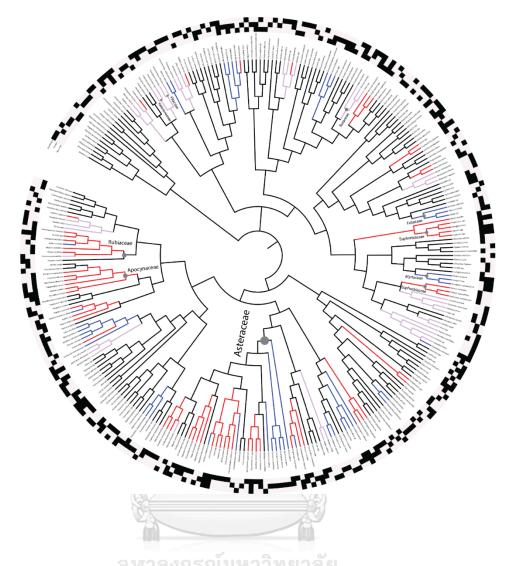


Figure 19. phylogenetic mapping of medicinal plants used for malaria and its associated symptoms (fever and diarrhea) generated by Maximum Likelihood Test and MUSCLE sequences alignment. Plants used for malaria was represented with red color, fever was represented with blue color while diarrhea was represented with purple color.

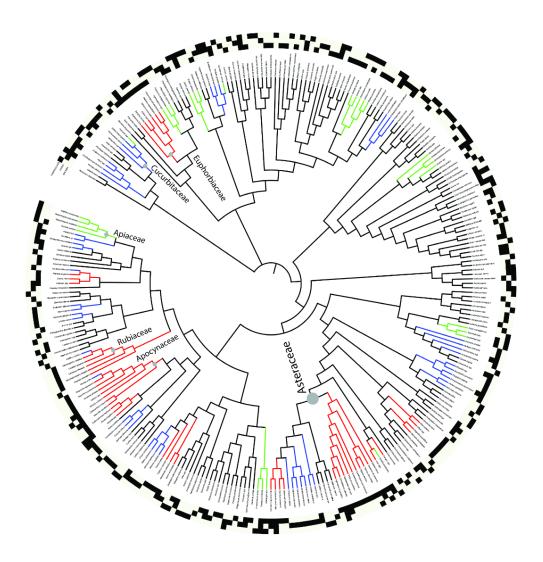
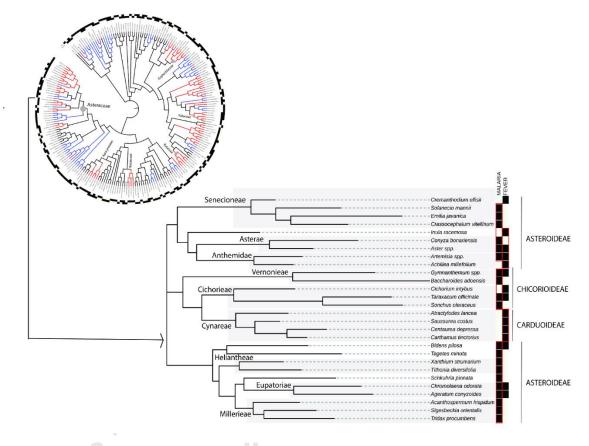



Figure 20 phylogenetic mapping of medicinal plants used for malaria (red), fever (blue) and tuberculosis (green) generated by Maximum Likelihood Test and MUSCLE sequences alignment.

Based on these comparison of phylogenetic tree generated after data extraction, the result revealed that there was a strong clustered pattern signal and consistency for malaria and fever treatment which was shown in Asteraceae family. Accordingly, these data was further analyzed Besides, the other medical category such as diarrhea and tuberculosis were shown to be inconsistent as shown in Fig 21. The plants used for malaria treatment were majorly clustered in Asteroideae.

Chulalongkorn University

Figure 21. phylogenetic mapping of plants used for malaria (red color) and fever (blue color) generated by Maximum Likelihood Test and MUSCLE sequences alignment.

4.2. Preliminary phytochemical screening of 16 selected Asteraceae medicinal plants

Phytochemical screening was performed to determine the presences of phenolic compounds, flavonoids, alkaloids, lactones, diterpenes, triterpenes, steroids and saponins. Table 11. Preliminary phytochemical screening result of 16 selected Asteraceae medicinal plants

					ALKAI	OIDS	×				
No.	SPECIES	SOURCE OF	PHENOLICS	FLAVONOIDS	Drag.	Wag.	TRITERPENES	STEROIDS	LACTONES	DITERPENES	SAPONINS
1.	A. vulgaris	Tak Province 🚽	+			A +	+	+	+	+	-
2.	A. lactiflora	Bangkok	+	+	+	+	+	+	+	+	-
3	A. dracunculus	Nakhon Pathom	+4	Ì	-	+	+	-	+	+	-
4.	A. chinensis	Northaburi	/++/	t t	8 <u>+</u> ///	-	+	+	+	+	-
5.	A. conyzoides	Nakhon Pathom	/+/>	14	+	+	+	+	+	+	+
6.	E. odoratum	Chiang Mai	tt.	⊙ //+/.<		+	+	+	+	+	-
7.	V. cinerea	Chiang Mai	++	+	+	2 t	+	+	+	+	-
8.	W. trilobata	Bangkok	++	+	-	+	+	+	+	+	+
9.	T. procumbens	Chiang Mai	ลงกร	ณ์มห	าวิทย	าสัย	+	+	+	+	-
10.	B. balsamifera	Chiang Mai	otto	KUPN		EBGIT	+	+	+	+	+
11.	G. divaricata	Bangkok	++	+	-	+	-	+	-	-	+
12.	G. pseudochina	Bangkok	++	+	+	+	-	-	-	+	-
13.	B. pilosa	Chiang Mai	++	++	+	+	+	+	+	+	+
14.	E. capilifolium	Northaburi	+	+	+	+	+	+	+	+	-
15.	S. indicus	Mukdahan	++	++	+	+	+	-	+	+	-
		Nakhon									
16.	A. oleracea	Sithumarat	++	+	+	+	+	+	-	+	-

Note: +: presence (additional + sign was showed more intense color); -: not present; Drag.: Dragendorff's test; Wag.: Wagner's test The result showed that in certain concentration, all plant tested contained phenolics and flavonoids compound, while the others compound was shown to be vary depend on the species.

Alkaloids screening test was performed using Dragendorff's and Wagner's test. Based on the Dragendorff's test result, most of species tested was containing alkaloid including *A. lactiflora, A. conyzoides, E.odoratum, V. cinerea, T. procumbens, B. balsamifera, G. pseudochina, B. pilosa, E. capilifolium, S. indicus*, and *A. oleracea*. All positive result generated from Dragendorff's test showed similar result when tested with the Wagner's test. However, some species which were shown negative with Dragendorff's test were shown to be positive after testing with Wagner's test including A. vulgalis, A. dracunculus, W. trilobata and G. divaricate

Salkowski's test was used to determine the presence of triterpenes and steroid moiety. Result indicated that almost all tested plants showed the presence of triterpenes excluding *G*. *divaricata* and *G. pseudochina*. In other hand, for *A. dracunculus, G. divaricata* and *S. indicus* showed no presences of steroid moiety while the other species indicating the presence of them.

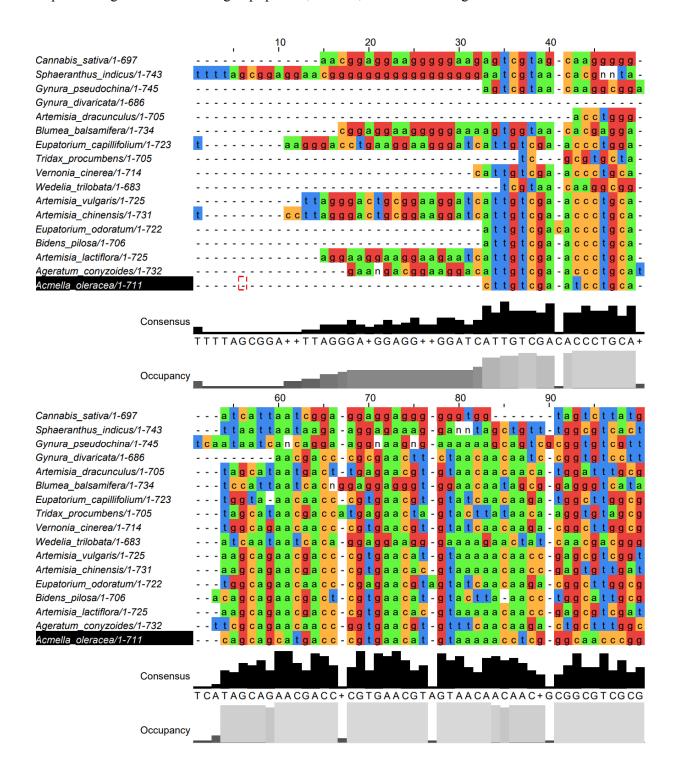
Saponin was determined using foam test by observing the production of persistent foam after shaking vigorously. Based on the result, only several species which was showed the presence of saponin while most species weren't showed indication the presence of this compound. *A. conyzoides, W. trilobata, B. balsamifera, G, divaricata*, and *B. pilosa* showed the presences of saponin while the others were not.

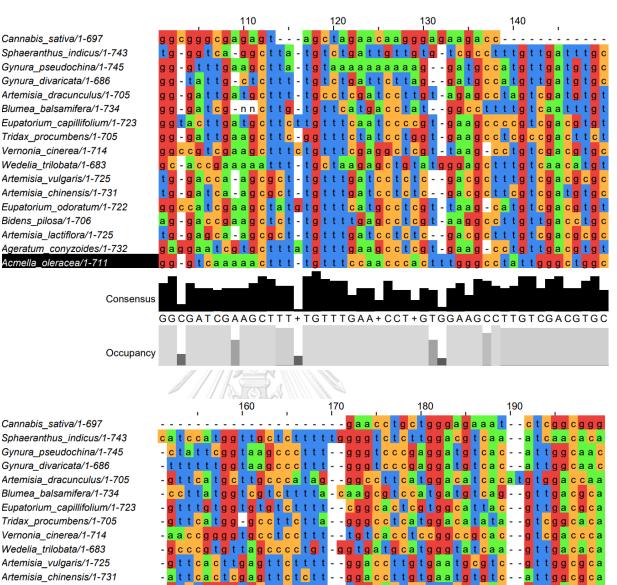
Diterpenes was determined using copper acetate test and positive result showed color changing into green emerald. Based on the test result, all tested species showed positive result for this test except *G. divaricata*.

Lactones was detected using Baljet's test which is containing picric acid in alkaline solution. The changing of the solution into orange to red color was indicated the presences of the lactonic compound. Cardiac glycosides and sesquiterpene lactones might give the positive result by containing the lactone moiety in their structures. Hence, this result merely gave the guide for further phytochemical investigation. In certain concentration tested, almost all species was showed positive result for lactones test except *A. oleracea*.

4.3. Internal Transcribed Spacer (ITS) region of 16 selected Asteraceae medicinal plants

ITS region was successfully amplified using ITS4 and ITS5 forward and reverse universal primers as shown in **Fig 23**. Amplified ITS region of tested plants then were sequenced followed by phylogenetic analyses.


Μ 2 3 4 5 7 8 9 10 11 12 13 14 15 16 1 6 M 1. Artemisia vulgaris 2. Artemisia lactifora 3. Artemisia dracunculus 4. Artemisia chinensis 5. Ageratum conyzoides 6. Blumea balsamifera 7. Bidens pilosa 8. Cyanthillium cinereum 9. Eupatorium capilllifolium 10. Eupatorium odoratum 11. Gynura divaricata 12. Gynura pseudochina 13. Tridax procumbens 14. Sphaeranthus indicus 15. Wedelia trilobata 16. Acmella oleracea Figure 22. Genomic DNA of 16 plants on 1.5% agarose gel (M=1 kb marker) Μ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 M 1. Artemisia vulgaris 2. Artemisia lactifora 3. Artemisia dracunculus 4. Artemisia chinensis 5. Ageratum conyzoides 6. Blumea balsamifera 1000 900 800 700 7. Bidens pilosa 8. Cyanthillium cinereum 9. Eupatorium capilllifolium 600 10. Eupatorium odoratum 500 11. Gynura divaricata 400 12. Gynura pseudochina 13. Tridax procumbens 300 14. Sphaeranthus indicus 15. Wedelia trilobata 200 16. Acmella oleracea 100


Figure 23. ITS region PCR products of 16 tested plants on 1.5% agarose gel (M=100 bp

marker)

All obtained ITS sequences data with the size of 683-745 bp were aligned using MAFFT then visualized using Jalview v2.10.5 to observe the base similarity and differences. The sequences alignment with the outgroup species (*C. sativa*) were shown in figure below:

94

tgacgca

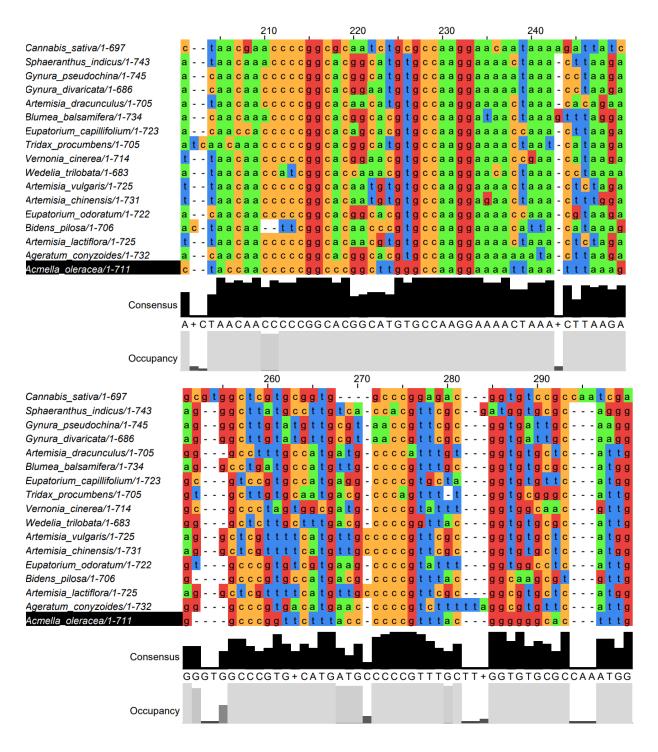
cgacaca

gttggcgca

gttgacgca

Sphaeranthus indicus/1-743 Gynura_pseudochina/1-745 Gynura_divaricata/1-686 Artemisia dracunculus/1-705 Blumea_balsamifera/1-734 Eupatorium_capillifolium/1-723 Tridax procumbens/1-705 Vernonia_cinerea/1-714 Wedelia_trilobata/1-683 Artemisia_vulgaris/1-725 Artemisia chinensis/1-731 Eupatorium_odoratum/1-722 Bidens_pilosa/1-706 Artemisia lactiflora/1-725 Ageratum_conyzoides/1-732 Acmella_oleracea/1-711

c c a a a a t <mark>g g c</mark> t t c t a t - <mark>g g g g c</mark> t t <mark>c t g g g a t g t c</mark> t t t caa cccc Consensus CGTTCATGGT+GCTCTTTTTGGGGCCTC+TGGATGTCACATGTTGACGCA Occupancy

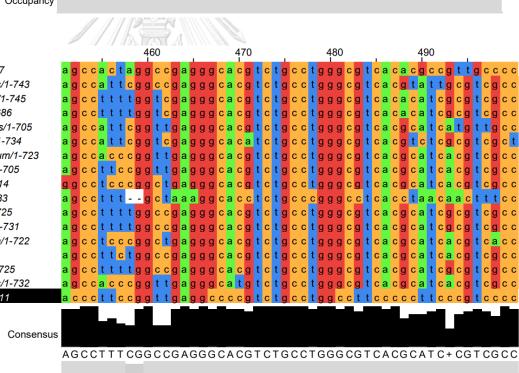

t<mark>ctggggtgc</mark>ttcttt<u>t</u>--<mark>tggcactcctttcg</mark>t<mark>ca</mark>c

tttagggccgtcccttg--gggcgtcccggatgt-ag

tttaggtgtctcttct-_tggcgcttagtgcattac

attcgctcgagttctttc--ggaccttgcgagtgcgtc

	310	320	330	340
Cannabis_sativa/1-697	gatgcgtgt t tat	c d a a a t d t c t	aaacdactctc	g g c a a c g g a t a t c
Sphaeranthus indicus/1-743				ggcaacggatatc
Gynura pseudochina/1-745	tacgtggct tctt			ggcaacggatatc
Gynura_divaricata/1-686	tatgtggct tctt			ggcaacggatatc
Artemisia_dracunculus/1-705	tatgtggcc t t t t	· - t t t a a t <mark>c</mark> a t	aaacgactctc	ggcaacggatatc
Blumea_balsamifera/1-734	gatttggcttctt	· a t a t a a <mark>c</mark> a a g	aaacgactctc	g g c a a c g g a t a t c
Eupatorium_capillifolium/1-723	t <mark>atgcggc</mark> ttctt	·- <mark>attaattc</mark> t	a a a <mark>c g</mark> a c t c t c	g g c a a c g g a t a t c
Tridax_procumbens/1-705	tacgtggct tctt	·- <mark>tataat</mark> cta	a a a <mark>c g</mark> a c t c t c	<mark>g g c a a c g g a t a t c</mark>
Vernonia_cinerea/1-714	<mark>cgtgcggccgc</mark> tttt	· - <mark>a t</mark> aaa t <mark>c</mark> a t	a a a <mark>c g</mark> a <mark>c t c t c</mark>	<mark>ggcaacggatat</mark> c
Wedelia_trilobata/1-683	<mark>c t c g t g g c c</mark> t c t t	·-t <mark>g</mark> taaa <mark>cc</mark> t	a a a <mark>c g</mark> a c t c t c	<mark>ggcaacggatat</mark> c
Artemisia_vulgaris/1-725	g <mark>acgcggc</mark> t tctt	· - <mark>ta ta a t</mark> ca c	a a a <mark>c g</mark> a c t c t c	<mark>ggcaacggatatc</mark>
Artemisia_chinensis/1-731	<mark>g a t g t g g c t t c</mark> t t	· - <mark>t</mark> a ta a t <mark>ca c</mark>	a a a c <mark>g</mark> a c t c t c	<mark>ggcaacggatatc</mark>
Eupatorium_odoratum/1-722	<mark>catgtggctg-c</mark> ttt			<mark>ggcaacggatatc</mark>
Bidens_pilosa/1-706	<mark>cacgtggcc</mark> tc t t			<mark>ggcaacggatat</mark> c
Artemisia_lactiflora/1-725	<mark>g a c g c g g c</mark> t t c t t			<mark>ggcaacggatat</mark> c
Ageratum_conyzoides/1-732	tacgtggct tctt			<mark>ggcaacggatat</mark> c
Acmella_oleracea/1-711	ggcggggtt tctt	tt <mark>g</mark> taaattta	aaacaactctc	<mark>ggca</mark> ccggatttc
Consensus	+ ATGTGGCTGCTCTT	+ TATAATCAT	AAACGACTCTC	GGCAACGGATATC
Occupancy				
	360	370	380	390
Cannabis sativa/1-607		370		390
Cannabis_sativa/1-697 Sobaeranthus indicus/1-743	t c g g c t c t c g c a t c g a	t <mark>g</mark> aa <mark>g</mark> aa <mark>cg</mark> t	a <mark>g cg</mark> aaa t <mark>g cg</mark>	ata <mark>c</mark> tt <mark>gg</mark> t <mark>g</mark> tga
Sphaeranthus_indicus/1-743	t c g g c t c t c g c a t c g a t c g g c t c a c g c a t c g a	tgaagaacgt tgaagaacgt	a <mark>g c g</mark> a a a t g c g a g c a a a a t g c g	a ta c t t <mark>g g</mark> t <mark>g t g</mark> a a t a c t t <mark>g g</mark> t <mark>g t g</mark> a
Sphaeranthus_indicus/1-743 Gynura_pseudochina/1-745	t c g g c t c t c g c a t c g a t c g g c t c a c g c a t c g a t t g g c t c a c g c a t c g a	tgaagaacgt tgaagaacgt tgaagaacgt	a g c g a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a t g c g	a ta <mark>c</mark> t t <mark>g g t g t g a</mark> a t a c t t g g t g t g a a t a c t t g g t g t g a
Sphaeranthus_indicus/1-743 Gynura_pseudochina/1-745 Gynura_divaricata/1-686	t cgg c t ct cg ca t cg t cgg c t ca cg ca t cg t tgg c t ca cg ca t cg t tgg c t ca cg ca t cg t cgg c t ca cg ca t cg	tgaagaacgt tgaagaacgt tgaagaacgt tgaagaacgt	a g c g a a a t g c g a g c a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g	a tacttggtgtgtga a tacttggtgtgtga a tacttggtgtga a tacttggtgtga a tacttggtgtg
Sphaeranthus_indicus/1-743 Gynura_pseudochina/1-745 Gynura_divaricata/1-686 Artemisia_dracunculus/1-705	t c g g c t c t c g c a t c g a t c g g c t c a c g c a t c g a t t g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a	t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t	a g c g a a a t g c g a g c a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g	a tacttggtgtgtga a tacttggtgtgtga a tacttggtgtga a tacttggtgtga a tacttggtgtga a tacttggtgtga
Sphaeranthus_indicus/1-743 Gynura_pseudochina/1-745 Gynura_divaricata/1-686 Artemisia_dracunculus/1-705 Blumea_balsamifera/1-734	t c g g c t c t c g c a t c g a t c g g c t c a c g c a t c g a t t g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a	t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t	a g c g a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g	a tacttggtgtgtga a tacttggtgtgtga a tacttggtgtgtga a tacttggtgtgtga a tacttggtgtgtga a tacttggtgtgtga a tacttggtgtgtg
Sphaeranthus_indicus/1-743 Gynura_pseudochina/1-745 Gynura_divaricata/1-686 Artemisia_dracunculus/1-705 Blumea_balsamifera/1-734 Eupatorium_capillifolium/1-723	t c g g c t c t c g c a t c g a t c g g c t c a c g c a t c g a t t g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a	t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t	a g c g a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g	a tacttggtgtgtga a tacttggtgtgtga a tacttggtgtgtga a tacttggtgtgtga a tacttggtgtgtga a tacttggtgtgtga a tacttggtgtgtg
Sphaeranthus_indicus/1-743 Gynura_pseudochina/1-745 Gynura_divaricata/1-686 Artemisia_dracunculus/1-705 Blumea_balsamifera/1-734 Eupatorium_capillifolium/1-723 Tridax_procumbens/1-705	t c g g c t c t c g c a t c g a t c g g c t c a c g c a t c g a t t g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a	t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t	a g c g a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g	a t a c t t g g t g t g a a t a c t t g g t g t g a a t a c t t g g t g t g a a t a c t t g g t g t g a a t a c t t g g t g t g a a t a c t t g g t g t g a a t a c t t g g t g t g a a t a c t t g g t g t g a a t a c t t g g t g t g a a t a c t t g g t g t g a a t a c t t g g t g t g a
Sphaeranthus_indicus/1-743 Gynura_pseudochina/1-745 Gynura_divaricata/1-686 Artemisia_dracunculus/1-705 Blumea_balsamifera/1-734 Eupatorium_capillifolium/1-723	t c g g c t c t c t c g c a t c g a t c g g c t c a c g c a t c g a t t g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a	t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t	a g c g a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g	a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a
Sphaeranthus_indicus/1-743 Gynura_pseudochina/1-745 Gynura_divaricata/1-686 Artemisia_dracunculus/1-705 Blumea_balsamifera/1-734 Eupatorium_capillifolium/1-723 Tridax_procumbens/1-705 Vernonia_cinerea/1-714	t c g g c t c t c t c g c a t c g a t c g g c t c a c g c a t c g a t t g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a	t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t	a g c g a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a t g c g	a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g a a t a c t t g g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a a t a c t t g g t g t g t g a
Sphaeranthus_indicus/1-743 Gynura_pseudochina/1-745 Gynura_divaricata/1-686 Artemisia_dracunculus/1-705 Blumea_balsamifera/1-734 Eupatorium_capillifolium/1-723 Tridax_procumbens/1-705 Vernonia_cinerea/1-714 Wedelia_trilobata/1-683	t c g g c t t c t c g c a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g a t c g g c t c a c g c a t c g	t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t	a g c g a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g a g c a a a a a t g c g	a t a
Sphaeranthus_indicus/1-743 Gynura_pseudochina/1-745 Gynura_divaricata/1-686 Artemisia_dracunculus/1-705 Blumea_balsamifera/1-734 Eupatorium_capillifolium/1-723 Tridax_procumbens/1-705 Vernonia_cinerea/1-714 Wedelia_trilobata/1-683 Artemisia_vulgaris/1-725	t c g g c t t c t c g c a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g a t c g a t c g g c t c a c g c a t c g	t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t	a g c g a a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a a a a t g c g a g c a a a a t g c g	a t a
Sphaeranthus_indicus/1-743 Gynura_pseudochina/1-745 Gynura_divaricata/1-686 Artemisia_dracunculus/1-705 Blumea_balsamifera/1-734 Eupatorium_capillifolium/1-723 Tridax_procumbens/1-705 Vernonia_cinerea/1-714 Wedelia_trilobata/1-683 Artemisia_vulgaris/1-725 Artemisia_chinensis/1-731	t c g g c t t c t c g c a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g a t c g a t c g g c t c a c g c a t c g	t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t	a g c g a a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a t g c g a g c a a a a t g c g	a t a
Sphaeranthus_indicus/1-743 Gynura_pseudochina/1-745 Gynura_divaricata/1-686 Artemisia_dracunculus/1-705 Blumea_balsamifera/1-734 Eupatorium_capillifolium/1-723 Tridax_procumbens/1-705 Vernonia_cinerea/1-714 Wedelia_trilobata/1-683 Artemisia_vulgaris/1-725 Artemisia_chinensis/1-731 Eupatorium_odoratum/1-722	t c g g c t t c t c g c a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g a t c g a t c g g c t c a c g c a t c g a t c g a t c g a t c g a t c g a t c g a c t c a c g c a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g a t c g g c t c a c g c a t c g	t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t t g a a g a a c g t	a g c g a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g	a t a
Sphaeranthus_indicus/1-743 Gynura_pseudochina/1-745 Gynura_divaricata/1-686 Artemisia_dracunculus/1-705 Blumea_balsamifera/1-734 Eupatorium_capillifolium/1-723 Tridax_procumbens/1-705 Vernonia_cinerea/1-714 Wedelia_trilobata/1-683 Artemisia_vulgaris/1-725 Artemisia_chinensis/1-731 Eupatorium_odoratum/1-722 Bidens_pilosa/1-706 Artemisia_lactiflora/1-725 Ageratum_conyzoides/1-732	t c g g c t t c t c g c a t c g a t c	t g a a g a a c g t t g a a g a a c g t	a g c g a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g	a t a
Sphaeranthus_indicus/1-743 Gynura_pseudochina/1-745 Gynura_divaricata/1-686 Artemisia_dracunculus/1-705 Blumea_balsamifera/1-734 Eupatorium_capillifolium/1-723 Tridax_procumbens/1-705 Vernonia_cinerea/1-714 Wedelia_trilobata/1-683 Artemisia_vulgaris/1-725 Artemisia_chinensis/1-731 Eupatorium_odoratum/1-722 Bidens_pilosa/1-706 Artemisia_lactiflora/1-725	t c g g c t t c t c g c a t c g a t c	t g a a g a a c g t t g a a g a a c g t	a g c g a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g	a t a
Sphaeranthus_indicus/1-743 Gynura_pseudochina/1-745 Gynura_divaricata/1-686 Artemisia_dracunculus/1-705 Blumea_balsamifera/1-734 Eupatorium_capillifolium/1-723 Tridax_procumbens/1-705 Vernonia_cinerea/1-714 Wedelia_trilobata/1-683 Artemisia_vulgaris/1-725 Artemisia_chinensis/1-731 Eupatorium_odoratum/1-722 Bidens_pilosa/1-706 Artemisia_lactiflora/1-725 Ageratum_conyzoides/1-732	t c g g c t t c t c g c a t c g a at c g a at <td< td=""><td>t g a a g a a c g t t g a a g a a c g t</td><td>a g c g a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g</td><td>a t a</td></td<>	t g a a g a a c g t t g a a g a a c g t	a g c g a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g	a t a
Sphaeranthus_indicus/1-743 Gynura_pseudochina/1-745 Gynura_divaricata/1-686 Artemisia_dracunculus/1-705 Blumea_balsamifera/1-734 Eupatorium_capillifolium/1-723 Tridax_procumbens/1-705 Vernonia_cinerea/1-714 Wedelia_trilobata/1-683 Artemisia_vulgaris/1-725 Artemisia_chinensis/1-731 Eupatorium_odoratum/1-722 Bidens_pilosa/1-706 Artemisia_lactiflora/1-725 Ageratum_conyzoides/1-732 Acmella_oleracea/1-711	t c g g c t t c t c g c a t c g a at c g a at <td< td=""><td>t g a a g a a c g t t g a a g a a c g t</td><td>a g c g a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g</td><td>a t a</td></td<>	t g a a g a a c g t t g a a g a a c g t	a g c g a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g	a t a
Sphaeranthus_indicus/1-743 Gynura_pseudochina/1-745 Gynura_divaricata/1-686 Artemisia_dracunculus/1-705 Blumea_balsamifera/1-734 Eupatorium_capillifolium/1-723 Tridax_procumbens/1-705 Vernonia_cinerea/1-714 Wedelia_trilobata/1-683 Artemisia_vulgaris/1-725 Artemisia_chinensis/1-731 Eupatorium_odoratum/1-722 Bidens_pilosa/1-706 Artemisia_lactiflora/1-725 Ageratum_conyzoides/1-732			a g c g a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g	a t t a t a t a t a t a t a t t t
Sphaeranthus_indicus/1-743 Gynura_pseudochina/1-745 Gynura_divaricata/1-686 Artemisia_dracunculus/1-705 Blumea_balsamifera/1-734 Eupatorium_capillifolium/1-723 Tridax_procumbens/1-705 Vernonia_cinerea/1-714 Wedelia_trilobata/1-683 Artemisia_vulgaris/1-725 Artemisia_chinensis/1-731 Eupatorium_odoratum/1-722 Bidens_pilosa/1-706 Artemisia_lactiflora/1-725 Ageratum_conyzoides/1-732 Acmella_oleracea/1-711	t c g g c t t c t c g c a t c g a at c g a at <td< td=""><td></td><td>a g c g a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g</td><td>a t t a t a t a t a t a t a t t t</td></td<>		a g c g a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g a g c a a t g c g	a t t a t a t a t a t a t a t t t

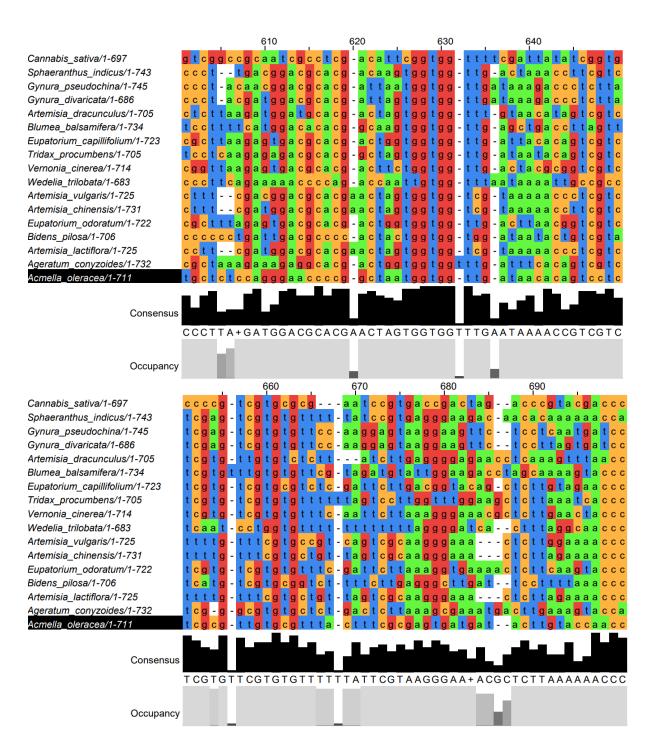

Occupancy

		410	420	430	440
Cannabis_sativa/1-697	att <mark>g</mark> ca	g a a t c c c g t	g a a c c a t c g a g	t c t t t g a a c g c	a a g t t g c g c c c g a
Sphaeranthus_indicus/1-743	att <mark>gc</mark> a	g <mark>aatcccg</mark> t	g a a c c a t c g a g	<mark>, t t t t t g</mark> aacgc	a a g t t g c g c c c g a
Gynura_pseudochina/1-745	att <mark>gc</mark> a	g <mark>aatcccg</mark> t	g a a c c a t c g a g	<mark>, t t t t t g</mark> aa <mark>cgc</mark>	a a g t t g c g c c c g a
Gynura_divaricata/1-686	att <mark>gc</mark> a	g <mark>aatcccg</mark> t	g a a c c a t c g a g	<mark>, t t t t t g</mark> aac <mark>g</mark> c	a a g t t g c g c c c g a
Artemisia_dracunculus/1-705	att <mark>gc</mark> a	g <mark>aatcccg</mark> t	g a a c c a t c g a g	<mark>, t t t t t g</mark> aac <mark>g</mark> c	a a g t t g c g c c c g a
Blumea_balsamifera/1-734	att <mark>gc</mark> a	g <mark>aatcccg</mark> t	g a a c c a t c g a g	<mark>, t t t t t g</mark> aac <mark>g</mark> c	a a <mark>g t t g c g</mark> c c c g a
Eupatorium_capillifolium/1-723	att <mark>gc</mark> a	g <mark>aatcccg</mark> t	g a a c c a t c g a g	<mark>, t t t t t g</mark> aac <mark>g</mark> c	a a g t t g c g c c c g a
Tridax_procumbens/1-705	att <mark>gc</mark> a	g a a t c c c g t	g a a c c a t c g a g	<mark>, t t t t t g</mark> aac <mark>g</mark> c	a a <mark>g t t g c g</mark> c c c g a
Vernonia_cinerea/1-714	att <mark>gc</mark> a	g <mark>aatcccg</mark> t	g a a c c a t c g a g	<mark>, t t t t t g</mark> aac <mark>g</mark> c	a a g t t g c g c c t g a
Wedelia_trilobata/1-683	att <mark>gc</mark> a	g <mark>aatcccg</mark> t	g a a c c a t c g a g	<mark>, t t t t t g</mark> aac <mark>g</mark> c	a a <mark>g t t g c g</mark> c c c g a
Artemisia_vulgaris/1-725	att <mark>gc</mark> a	g <mark>aatcccg</mark> t	g a a c c a t c g a g	<mark>, t t t t t g</mark> aac <mark>g</mark> c	a a <mark>g t t g c g</mark> c c c g a
Artemisia_chinensis/1-731	att <mark>gc</mark> a	g <mark>aatcccg</mark> t	g a a c c a t c g a g	<mark>, t t t t t g</mark> aac <mark>g</mark> c	a a <mark>g t t g c g</mark> c c c g a
Eupatorium_odoratum/1-722	att <mark>gc</mark> a	g <mark>aatcccg</mark> t	g a a c c a t c g a g	<mark>, t t t t t g</mark> aacgc	a a g t t g c g c c t g a
Bidens_pilosa/1-706	att <mark>gc</mark> a	g <mark>aatcccg</mark> t	g a a c c a t c g a g	<mark>, t t t t t g</mark> aac <mark>g</mark> c	a a <mark>g t t g c g c c c g</mark> a
Artemisia_lactiflora/1-725	att <mark>gc</mark> a	g <mark>aatcccg</mark> t	g a a c c a t c g a g	<mark>, t t t t t g</mark> aac <mark>g</mark> c	a a <mark>g t t g c g</mark> c c c g a
Ageratum_conyzoides/1-732	att <mark>gc</mark> a	g a a t c c c g t	g a a c c a t c g a g	<mark>, t t t t t g</mark> aac <mark>g</mark> c	a a g t t g c g c c t g a
Acmella_oleracea/1-711	ttt <mark>gc</mark> a	aa <mark>ttcccgg</mark>	g a a c c t t c a a g	<mark>tttttg</mark> aaccc	a a <mark>g t t g</mark> c c c c c a a
Consensu	6				

ATTGCAGAATCCCGTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGA

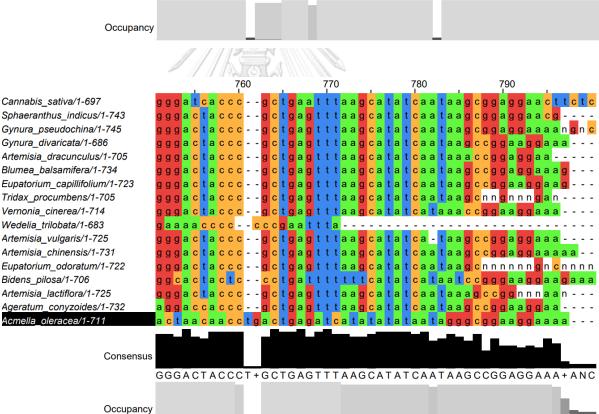
Occupancy

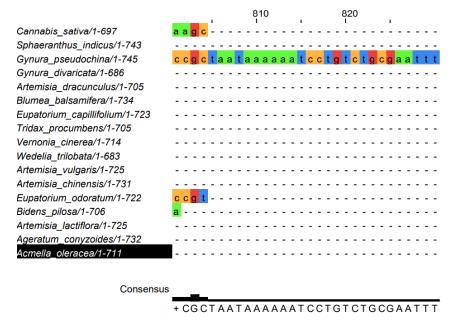
Cannabis_sativa/1-697 Sphaeranthus_indicus/1-743 Gynura_pseudochina/1-745 Gynura_divaricata/1-686 Artemisia_dracunculus/1-705 Blumea_balsamifera/1-734 Eupatorium_capillifolium/1-723 Tridax_procumbens/1-705 Vernonia_cinerea/1-714 Wedelia_trilobata/1-683 Artemisia_vulgaris/1-725 Artemisia chinensis/1-731 Eupatorium_odoratum/1-722 Bidens_pilosa/1-706 Artemisia_lactiflora/1-725 Ageratum_conyzoides/1-732 Acmella oleracea/1-711



Occupancy

	510	520	530	540
Cannabis_sativa/1-697	catg	to ca cto cca	aaadcotot	t c a g g a g g g g c g g a g
Sphaeranthus_indicus/1-743	ccctcattqtq			g g t g g t g g g g c g g a c
Gynura_pseudochina/1-745	ccccttaac			gtaatgggggcggag
Gynura_divaricata/1-686		a c c t c t t g a c g		gtaatggggggcggag
Artemisia dracunculus/1-705		atcatatattat		tg t tg t tg g g c g g a t
Blumea_balsamifera/1-734	cctaaaccatg -	t c t c c t c a a a a		
Eupatorium_capillifolium/1-723		catcc		
Tridax_procumbens/1-705	ccca ccaca	catccattct		
Vernonia_cinerea/1-714	toca a caaa		ggattgtga	
Wedelia_trilobata/1-683	cccc aaaa cc -			t t t q c t q q q c c q a a
Artemisia_vulgaris/1-725	cccc a caat			g t t t t g g g g g c g g a t
Artemisia_chinensis/1-731	cccc a caat		ggaactagt	
Eupatorium_odoratum/1-722	caca t caaa			
Bidens_pilosa/1-706	ccca ccatc	<mark>catccctt</mark> caa		
Artemisia_lactiflora/1-725	ccccacaat	· t c t c c g c a a a g		
Ageratum_conyzoides/1-732	cgcg tcaca	<mark>catcctttc</mark> tt		
Acmella_oleracea/1-711	<u>cc</u> <mark>accaaa</mark>	<mark>tttcccttc</mark> aa	ggaatctg -	gg t tggggcggaa
Consensus				
	CCCA+ATCAAACC	CATCCTCCTTT+AG	GGAATGTGT	+ T T A T G G G G G G G A G
Occupancy	,			
	560	570	580	590
Cannabis_sativa/1-697	a <mark>c t g g c t t c c c a</mark> t	g a g c a t t <mark>g c c t t g</mark> t	<mark>ggttggcc</mark> -	- taaat - t <mark>cg</mark> agtc
Sphaeranthus_indicus/1-743	att <mark>gg</mark> tctcccgt	t	c <mark>ggatggcc</mark> -	- a a a a t - a <mark>g g</mark> a <mark>g t c</mark>
Gynura_pseudochina/1-745	att <mark>gg</mark> tctcctgt	t	<mark>. g g t t g g c t</mark> -	- a a a a <mark>t</mark> - a a <mark>g</mark> a <mark>g t c</mark>
Gynura_divaricata/1-686	a t t <mark>g g</mark> t <mark>c t c c c g</mark> t	t	e <mark>gg</mark> tt <mark>ggcta</mark> a	a a a a a t - a a <mark>g</mark> a <mark>g t c</mark>
Artemisia_dracunculus/1-705	a t t g g t c t c c t g t	g c - <mark>c a t t g</mark> t g g t g t	a <mark>gttggcc</mark> -	- <mark>t</mark> aaat - a <mark>gg</mark> a <mark>gtc</mark>
Blumea_balsamifera/1-734	actggtctcccgt	g c <mark>c t a t g g t g t</mark>	<mark>ggttggcc</mark> -	- <mark>g</mark> aaa t t <mark>a c g</mark> a g t c
Eupatorium_capillifolium/1-723	a	g	c <mark>ggttggcc</mark> -	- <mark>c</mark> aaat - atgagtc
Tridax_procumbens/1-705				
	attggtctcccat	g		- taaat - <mark>cgg</mark> agcc
Vernonia_cinerea/1-714	a tigg to to coat a cigg to to cog t			
Vernonia_cinerea/1-714 Wedelia_trilobata/1-683			tggatggcc- cggc <mark>tg</mark> gcc-	
	a c t g g t c t c c c g t	g	g g a t g g c c - c g g c t g g c c - g g g t t g c c -	- taaat-acgagtc
Wedelia_trilobata/1-683	a	g	: g g a t g g c c - ; g g c t g g c c - ; g g g t t g c c - ; g g t t g g c c -	- taaat - acgagtc - <mark>c</mark> aaat - taaaatt
Wedelia_trilobata/1-683 Artemisia_vulgaris/1-725	a c t g g t c t c c c g t a t t g g t c t c c c c t a t t g g t c t c c c c t a t t g g t c t c c c g t	g	g g a t g g c c - g g g t t g g c c - g g g t t g g c c - g g t t g g c c - g g t t g g c c -	- <mark>taaat-acgagtc</mark> - <mark>caaat-taaaatt</mark> - <mark>g</mark> aaat-a <mark>gg</mark> agtc
Wedelia_trilobata/1-683 Artemisia_vulgaris/1-725 Artemisia_chinensis/1-731	a c t g g t c t c c c g t a t t g g t c t c c c c t a t t g g t c t c c c c t a t t g g t c t c c c g t a t t g g t c t c c t g t	g	g g a t g g c c - g g c t g g c c - g g g t t g c c - g g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c -	- taaat - acgagtc - caaat - taaaatt - gaaat - aggagtc - gaaat - aggagtc - gaaat - aggagtc
Wedelia_trilobata/1-683 Artemisia_vulgaris/1-725 Artemisia_chinensis/1-731 Eupatorium_odoratum/1-722	a c t g g t c t c c c g t a t t g g t c t c c c c t a t t g g t c t c c c c t a t t g g t c t c c c g t a t t g g t c t c c t g t a c t g g t c t c c t g t	g c c c a t g g c g c t c c c c a c g t g g g c t c a t g g c g f g c t c a t g g c g f g c c c a t g g t g c g g c g t g g c g c	g g a t g g c c - g g c t g g c c - g g g t t g c c - g g t t g c c - g g t t g c c - g g t t g c c - g g t t g c c - g g t t g c c - g g t t g c c - g g t t g c c - g g t t g c c - g g t t g c c - g g t t g c c - g g t t g c c - g g t t g c c - g g t t g c c - g g t t g g t c -	- t a a a t - a c g a g t c - c a a a t - t a a a a t t - g a a a t - a g g a g t c - g a a a t - a g g a g t c - g a a a t - a g g a g t c - c a a a t - a t g a g t c
Wedelia_trilobata/1-683 Artemisia_vulgaris/1-725 Artemisia_chinensis/1-731 Eupatorium_odoratum/1-722 Bidens_pilosa/1-706 Artemisia_lactiflora/1-725	a c t g g t c t c c c g t a t t g g t c t c c c c t a t t g g t c t c c c c t a t t g g t c t c c c g t a t t g g t c t c c t g t a c t g g t c t c c t g t a a t g t t c t c c t g t a t t g g t c t c c c g t	g c c c a t g g c g c t c c c c a c g t g g g c t c a t g g c g f g c t c a t g g c g f g c c c a t g g t g c g g c g t g g c g f g c t c a t g g c g f	g g a t g g c c - g g c t g g c c - g g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c -	- t a a a t - a c g a g t c - c a a a t - t a a a a t t - g a a a t - ag g a g t c - g a a a t - ag g a g t c - c a a a t - a t g a g t c - t a c a a - a a a a g t c
Wedelia_trilobata/1-683 Artemisia_vulgaris/1-725 Artemisia_chinensis/1-731 Eupatorium_odoratum/1-722 Bidens_pilosa/1-706 Artemisia_lactiflora/1-725	a c t g g t c t c c c g t a t t g g t c t c c c c t a t t g g t c t c c c c t a t t g g t c t c c c g t a t t g g t c t c c t g t a c t g g t c t c c t g t a t t g g t c t c c c g t a t t g g t c t c c c g t a t t g g t c t c c c g t	g c c c a t g g c g g t c c c c a c g t g g g c t c a t g g c g f g c t c a t g g c g f g c c c a t g g t g g g c g c g t g g c g f g c t c a t g g c g f g c c c a t g g c g f	g g a t g g c c - g g c t g g c c - g g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c - g g t t g g c c -	- t a a a t - a c g a g t c - c a a a t - t a a a a t t - g a a a t - a g g a g t c - g a a a t - a g g a g t c - g a a a t - a g g a g t c - c a a a t - a t g a g t c - t a c a a - a a a a g t c - g a a a t - a g g a g t c
Wedelia_trilobata/1-683 Artemisia_vulgaris/1-725 Artemisia_chinensis/1-731 Eupatorium_odoratum/1-722 Bidens_pilosa/1-706 Artemisia_lactiflora/1-725 Ageratum_conyzoides/1-732	a c t g g t c t c c c c g t a t t g g t c t c c c c t a t t g g t c t c c c c t a t t g g t c t c c c g t a t t g g t c t c c t g t a c t g g t c t c c t g t a t t g g t c t c c c g t a t t g g t c t c c c g t a t t g g t c t c c c g t a t t g g g c t c c c c g	g c c c a t g g c g g t c c c c a c g t g g g c t c a t g g c g f g c t c a t g g c g f g c c c a t g g t g g g c g c g t g g c g f g c t c a t g g c g f g c c c a t g g t g f g c c c a t g g t g f g c c c a t g g t g f	g g a t g g c c - g g g t t g g c c - g g t t g g c c -	- taaat - acgagt c - caaat - taaaatt gaaat - aggagt c gaaat - aggagt c - caaat - aggagt c - caaat - atgagt c - tacaa - aaaagt c - caaat - aggagt c - caaac - aggagt c - taaat - aagaat c
Wedelia_trilobata/1-683 Artemisia_vulgaris/1-725 Artemisia_chinensis/1-731 Eupatorium_odoratum/1-722 Bidens_pilosa/1-706 Artemisia_lactiflora/1-725 Ageratum_conyzoides/1-732 Acmelia_oleracea/1-711	a c t g g t c t c c c c g t a t t g g t c t c c c c t a t t g g t c t c c c c t a t t g g t c t c c c g t a t t g g t c t c c t g t a c t g g t c t c c t g t a t t g g t c t c c c g t a t t g g t c t c c c g t a t t g g t c t c c c g t a t t g g g c t c c c c g	g c c c a t g g c g g t c c c c a c g t g g g c t c a t g g c g f g c t c a t g g c g f g c c c a t g g t g g g c g c g t g g c g f g c t c a t g g c g f g c c c a t g g t g f g c c c a t g g t g f g c c c a t g g t g f	g g a t g g c c - g g g t t g g c c - g g t t g g c c -	- t a a a t - a c g a g t c - c a a a t - t a a a a t t - g a a a t - a g g a g t c - g a a a t - a g g a g t c - g a a a t - a g g a g t c - c a a a t - a t g a g t c - t a c a a - a a a a g t c - g a a a t - a g g a g t c - c a a a c - a g g a g t c


Occupancy


98

		710	720	730	740	
Cannabis_sativa/1-697	caatg t	g c t g c g a	a a c g c a g t g c d	cttcaa - cg	cgaccccaggt	c <mark>a</mark> ggc
	cag tg t	tatcg-tc-t	g t g a c g a t g c	ttcgac-cg	cgaccccagg t	c a g g c
Gynura_pseudochina/1-745	tatt <mark>g</mark> t	t <mark>gtcg</mark> -t <mark>c</mark> tt	gt-acgatgc	ttt <mark>g</mark> ac-cg	cgaccccaggt	c <mark>a</mark> ggc
Gynura_divaricata/1-686	tattgt	t <mark>gtcg-tc</mark> tt	gt-acgatgc	ttt <mark>g</mark> ac-cg	cgaccccagg t	c <mark>a</mark> ggc
Artemisia_dracunculus/1-705	c <mark>gttg</mark> d	<mark>attg-cc</mark> tt	ttgacaatgc	tt <mark>cg</mark> at-tg	cgaccccagg t	<mark>ca</mark> gg t
Blumea_balsamifera/1-734	ta <mark>g</mark> tgo	<mark>cgtcg-tct</mark> t	g c g g c g g <mark>t g</mark> c	ttcgac-cg	cgaccccagg t	<mark>caggt</mark>
Eupatorium_capillifolium/1-723	t <mark>a</mark> at <mark>g</mark> o	c <mark>gtcg</mark> -tcct	g tg a tg g c t c	tt <mark>cg</mark> at-cg	cgaccccagg t	c <mark>a</mark> ggc
Tridax_procumbens/1-705	t <mark>g</mark> at <u>c</u> o	<mark>bgttg</mark> -t <mark>c</mark> tt	t <mark>gg</mark> at <mark>gacg</mark> a	tt <mark>cg</mark> at-cg	cgaccccagg t	c <mark>a</mark> ggc
Vernonia_cinerea/1-714	t <mark>gatg</mark> o	<mark>cgccg</mark> -tctt	gt <mark>gacgg</mark> ccc	tt <mark>caat-c</mark> g	c <mark>g</mark> acccc <mark>aggt</mark>	c <mark>a</mark> ggc
Wedelia_trilobata/1-683	c <mark>gtt</mark> c	<mark>gacc-cctt</mark>	tt <u>ttaaa<mark>gtg</mark></u>	tt <mark>cgtt-g</mark> c	c <mark>a</mark> ccccc <mark>ggt</mark> c	ggggg
Artemisia_vulgaris/1-725	caacg t	t <mark>gtcg-tctc</mark>	ttgacgacgc	ttc <mark>g</mark> ac-cg	cgaccccagg t	c <mark>a</mark> ggc
Artemisia_chinensis/1-731	c <mark>aacg</mark> t	t <mark>g t c g</mark> - t c t t	tt <mark>gatggcgc</mark>	ttc <mark>ga</mark> c-cg	cgaccccagg t	c <mark>a</mark> ggc
Eupatorium_odoratum/1-722	t <mark>g</mark> atgo	<mark>cgctg</mark> -tctt	g t a a c g g c t c	tt <mark>cg</mark> at-cg	cgaccccagg t	c <mark>a</mark> ggc
Bidens_pilosa/1-706	<mark>ccttg</mark> t	t <mark>g t tg</mark> - t <mark>c c</mark> t	g t g g c g a t g c	tt <mark>ct</mark> at-cg	c <mark>c a c c a c c c g t</mark>	c <mark>gt</mark> gc
Artemisia_lactiflora/1-725	caacg t	t <mark>g t c g - t c t c</mark>	ttgacgacgc	ttc <mark>ga</mark> c-cg	cgaccccagg t	c <mark>a</mark> ggc
Ageratum_conyzoides/1-732	t <mark>g</mark> atgt	t <mark>g t tg t t c t t</mark>	g t <mark>a a c g g c c t</mark>	tt <mark>cgat-cg</mark>	cgaccccaggt	c <mark>a</mark> ggc
Acmella_oleracea/1-711	tacgtg	<mark>ttcg</mark> -tcct	ttgacgatgc	tt <mark>cg</mark> atnnn	c <mark>g a</mark> c c c c <mark>a</mark> g g g	c <mark>a</mark> ggc
Consensu						

TAATGTGTCGTTCTTGTGACGA+GCTTCGATNCGCGACCCCAGGTCAGGC


```
Occupancy
```

Figure 24. Sequence alignment of ITS region of selected Asteraceae medicinal plants

4.4. Antimalarial activity of 16 selected Asteraceae medicinal plants

16 ethanolic extract of selected species from Asteraceae family were tested against 3D7 *P. falciparum* using DNA fluorescence-based assay and showed the activity by the table below:

ุหาลงกรณ์มหาวิทยาลัย

Table 12. IC ₅₀ (μ g/mL) ethanolic extract of 16 selected Asteraceae plants.	Table 12. IC_{50}	(µg/mL) ethanolic extract	of 16 selected	Asteraceae plants.
--	---------------------	--------	---------------------	----------------	--------------------

No	Species	Traditional	Indigenous	Tested part used	IC ₅₀ against 3D7	Category
		uses	culture		P. falciparum	
					(µg/mL)	
1.	Artemisia vulgaris	Malaria and	Northern	Aerial part (flower,	13.37	Weak
		fever	America Latin	leaves, stem)		
2.	Artemisia lactiflora	Heat clearing	Chaosan	Aerial part (leaves,	6938	Inactive
			China	stem)		
3.	Artemisia dracunculus	Fever	India	Aerial part (flower,	437.30	Inactive
				leaves, stem)		
4.	Artemisia chinensis	None	None	Aerial part (flower,	18.30	Weak
				leaves, stem)		
5.	Ageratum conyzoides	Fever	Asia, South	Aerial part (flower,	377023	Inactive
			America and	leaves, stem)		

			Africa			
6.	Blumea balsamifera	Malaria and	Malaysia,	Leaves	19.19	Weak
		fever	Vietnam			
7.	Bidens pilosa	Malaria	Africa, China,	Aerial part (flower,	7033	Inactive
			Northern	leaves, stem)		
			America Latin			
8.	Vernonia cinerea	Malaria and	Cambodia,	Aerial part (flower,	29.17	Very
		fever	Ayuverda,	leaves, stem)		weak
			China			
9.	Eupatorium	Fever	Native	Aerial part (leaves,	31.30	Very
	capillifolium		american	stem)		weak
10.	Eupatorium odoratum	Malaria	South western	Leaves	150.40	Inactive
			and eastern	/		
		toronolas	Nigeria			
11.	Gynura divaricata	Fever	China	Aerial part (leaves,	8194	Inactive
				stem)		
12.	Gynura pseudochina	Fever	Indonesia	Leaves	1965	Inactive
13.	Tridax procumbens	Malaria and	Ghana,	Aerial part (flower,	14.93	Weak
		fever	Guatemala,	leaves, stem)		
		- AN	India			
14.	Sphaeranthus indicus	Fever	Ayuverda	Aerial part (flower,	6.586	Good-
		C Lali	and the second s	leaves, stem)		moderate
15.	Wedelia trilobata	Malaria and	Vietnam,	Aerial part (flower,	29.12	Very
		fever	Indonesia	leaves, stem)		weak
16.	Acmella oleracea	Malaria	India, Africa	Aerial part (flower,	N/D	Unstable
	1	A 101 / 11 9 P		leaves, stem)		

According to the result, among all 16 tested plants, only one plant showed goodmoderate activity which was *S. indicus* with the IC_{50} 6.586 µg/mL. This plant is notably as herbal treatment for fever in some cultures. In other hand, our result revealed that all species tested which are used as the herbal medicine for treating malaria showed to exhibit weak-very weak activity against 3D7 *P. falciparum* even inactive which were shown by *B. pilosa* and *E. odoratum*. By using this approach, the new medicinal property has discovered from *A. chinensis* which is not used as malaria or fever treatment traditionally and has exhibited weak activity with the IC₅₀ 18.30. This species was chosen because it is closed related (under the same genera) with the artemisinin producing species, *A. annua*.

4.5. Clustered pattern on phylogeny of 16 selected Asteraceae medicinal plants with traditional uses, phytochemical and antimalarial activity against 3D7 *P. falciparum*

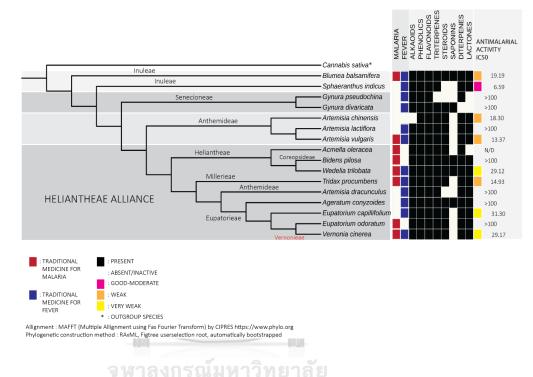


Figure 25. phylogeny, phytochemicals and antimalarial activities of 16 ethanolic extracts of medicinal plants generated from combinatorial phylogeny based on ITS sequences data and ethnobotanical bioprospecting.

Constructed phylogenetic tree by using ITS region showed to be able to separate the species into their clade tribe based on current classification described in Appendix I. However, some contradictive result has occurred in species of *Vernonia cinerea*, *Bidens pilosa and Artemisia dracunculus*. In the classification of Asteraceae, *V. cinerea* is grouped in tribe Vernonieae-subfamily Chicorioideae while by using ITS region this species was grouped in the tribe of Eupatorieae which is belong to subfamily Asteroideae. *Artemisia dracunculus* which is supposed to be in the clade of Anthemideae along with other *Artemisia* species showed to be in grouped in other clade in Heliantheae alliance. In other hand, *Bidens pilosa* which is belong to Coreopsideae tribe was in clade in the group of Heliantheae tribe.

In this study, we tried to investigate the clustered signal of antimalarial activity and phytochemicals in the phylogeny of tested plants as shown in **Fig 25**. Bioactivity scattered pattern was shown to be occurred. However, according to the result, plants belong to Heliantheae alliance tribe showed to have very weak-inactive antimalarial activity.

CHAPTER V DISCUSSION

The phylogeny may become promising tools to hit the hot nodes which showed the significantly over-represented clustered clade compared to the rest of the clade in the phylogenetic tree. Previous conducted study aimed to discover the promising candidate plants for screening the antibacterial properties using phylogeny bioprospecting has revealed that similar mechanism of action was shown on all *Berberis* species caused by the alkaloid berberine bearing in the species. Several plant families including Fabaceae, Lauraceae, Combretaceae, Lamiaceae, Cupressaceae, Zingiberaceae and Myrtaceae were highlighted in the phylogenetic tree. Prediction of the promising phytochemical then was performed by investigating the typical chemicals in each family highlighted in the tree and showed that some highlighted family (e.g. Cupressaceae, Myrtaceae and Combretaceae) mostly associated with the inhibition of quorum sensing or biofilm inhibition [137].

Based on the mentioned various research which have supported that close related species may shared similar bioactivity and phytochemical, hence we investigated the clustering pattern in malarial and its associated symptoms disease including fever and diarrhea by retrieving ITS sequence data from the gene bank. Plants for tuberculosis were added into the data to observe the consistency of the clustered pattern by adding the bigger data by using different symptoms of malaria.

In this study, ITS region has been used to construct the phylogenetic tree. ITS region is known to be valuable in phylogenetic analyses in interspecies and intergeneric level of eukaryotes including angiosperms. ITS which is highly repeated region in plant nuclear genomes lead the amplification and sequencing are easy to perform due to its high copy number and small size (<700 bp). This region also undergoes rapid concerted evolution which lead an accuracy of phylogeny reconstruction among species. However, sometimes the non-homologous copies are present with the mutation which may generate small variation within a species [138].

Multiple sequences alignment (MSA) is the method to align more than 2 biological sequences which can be categorized into two including evolution-based method and similarity-based method [139]. In this study, MUSCLE and MAFFT were used as a method to align the sequences. MUSCLE and MAFFT are the progressive alignment program which use guide tree re-estimation. MUSCLE use log expectation score to align the sequences [140]. In other hand, MAFFT as the similarity-based method using the fast fourier transform which allow the rapid detection of the homologous sequences. This method assumes that the sequences are descended from common ancestor and all homologous [139, 141].

According to the generated phylogenetic tree from secondary data obtained from the NCBI gene bank by using MUSCLE sequence alignment and Maximum Likelihood Phylogenetic Test, consistency of strong signal clumping patten in both malaria and fever medical condition was shown in Asteraceae which is known as the family of antimalarial artemisinin producing species (*A. annua*) (Fig 18-21). Hence, this plant family is needed to be further investigate in the laboratory testing.

16 selected medicinal plants indigenous to Thailand were selected based on the traditional used for malaria and fever treatment. In other hand, *A. chinensis* which not been used for malaria and associated symptoms treatment was chosen due to the close relatedness with *A. annua* (under the same genera). Selection of the part of the plants was considered based on the traditional uses. Phylogenetic tree construction of 16 selected medicinal plants was performed by using MAFFT sequence alignment and RAxML (rapid accelerated maximum likelihood) test with automatic bootstrapping.

In this study, *Cannabis sativa* which is the member of family Cannabaceae, Order Rosales was chosen as an outgroup plant due to the genetic distance with the query sequences. The outgroup plant was used to help placing the root in the phylogenetic tree. Based on this result, phylogenetic tree constructed by ITS region showed some contradiction compared to the current Asteraceae classification system as mentioned in **Fig 25** and **Appendix I**. This may be happened because of the possible occurrence of mutation such like deletion and insertion hence may lead the variation within a species. Besides, a small number of our tested samples also may become the other factors included. According to [142], phylogenetic analyses of family level using ITS sequences data encounter limitation due to the size of the region and the number of information phylogeny hence this sequence may not be ideal for family level. Large sample become a key factor for successfulness of family level phylogenetic analysis using ITS data. In other hand, *Vernonia cinerea* which is supposed to be separated from the clade of Asteroideae subfamily has a taxa synonym *Eupatorium mysotifolium* hence might be possible to be found in the Eupatoriea tribe clade.

In addition, the method used to construct the phylogenetic tree which is maximum likelihood method has a purpose to represent the best tree among the analyzed data not the true tree which is mean that the constructed phylogenetic tree is not always represent the true phylogeny in nature. Commonly, Bayesian inference method is used to represent the true tree. However, the maximum likelihood method is known to overcome if the sequences data are not good or have high variability.

Asteraceae is known to be the largest family of flowering plants which is basically synthesizes the flavonoids, polyacetylenes and terpenoids. In addition, sesquiterpene lactones is the typical compound in this family hence has been used as taxonomic marker [143-145]. Sesquiterpene lactones (SLs) is the C-15 terpenes which is bearing α -methylene- γ -lactone and known to have ability to trap nucleophilic active site of the target enzyme due to their electrophilic moiety property (exocyclic enoate) [73][146]. Antimalarial drug artemisinin is SLs with endoperoxide bridge and the structure is known to be a key for mechanism of action for combating the parasites by producing the radical species inside of the parasite's cell [147, 148]. The SLs are synthesised from common precursor and are known to be predominate in various tribe of Asteraceae including Anthemideae, Senecioneae and Inuleae [149]. Similar chemical structure of SLs may be shared between closed related species (e.g. members of Vernonieae synthesize similar type of guaianolides, Inuleae and Heliantheae tribe shared similar skeleton types, etc.) [150].

According to preliminary phytochemicals screening result as shown in **Table 11**, it showed that all tested plant containing phenolic compound groups including

flavonoids. This may be happened because flavonoids are the ubiquitous secondary metabolites which are commonly produced as an adaptive response to the common environmental factors such as UV light exposure. Based on [151] broad range of phenolic compounds (including flavonoids, hydroxycinnamic acid, lignin or tannin) act as UV-B protectant and flavonoid is known to be the prominent group among others. Furthermore, phenolics compound including flavonoid can be found in all plant tested. Additionally, according to [152], phenolics and many terpenoids are produced by mostly of all the plants.

Addition of alkali to some phenolics compound can be useful to detect the acidic compound such like anthocyanins. In other hand, colorless phenolics compound such like flavones, xanthones, flavonols, or hydroxycinnamic acid can be observed as yellow color by adding the alkalis. Ferric chloride solution also can be used to detect some phenolics compound while negative result is not necessarily proven that the phenolics are absent in the extract solution. Doing the screening test for phenolics compound in crude plant extract is quite give limited value due the presence of other substances in the mixture. Phytochemical screening only a rough test which are useful for guiding the further testing. Hence, for confirming the presence of phenolics compounds are better if used the chromatography technique [153].

Our result showed that triterpenes and steroid were found in almost all plant tested (**Table 11**). Triterpenes could be found in plant in a mixture with latex, resin, corks or waxes on the leaves. These compounds are functioning to herbivore deterrent. Production of this compound is known to be not dependence on the temperature change. This may be happened because of the molecule with higher number isoprene unit cause the plant allocate substrate to less costly isoprene [154]. Steroids in plants commonly occurred in combination with sugar to form the glycosides such as cardiac glycosides, steroidal saponins or glycoalkaloids[155].

Generally, terpenoids act as defense substance which play role in protection against herbivore and pathogen, allelochemical which may inhibit the growth of neighboring plants, as well as act as attractant for the seed dispersing animals. These compounds also contribute in plant growth, development and reproduction. Some of compounds are acting as plant hormones [156].

In Asteraceae plants, sesquiterpene lactones and polyacetylenes are known to be the metabolites which fundamental to the evolutionary succession. Despite of that, diterpenes are known to be the most frequent metabolites as well [157]. Based on this research finding, diterpenes are found in almost all tested plants except *G. divaricata* (**Table 11**). Diterpenes is known to be restricted in certain group and less frequent in the occurrence distribution compare to the other lower terpenoids. These compounds may be used as chemosystematic markers especially in Leguminosae family [158].

Based on this finding, among 16 tested plants, only 4 plants were showed the presence of saponin using the foam test (**Table 11**). Saponins are the glycosides which act as surfactant hence can dissolve in water forming the foam after shaking. These compounds are widely distributed in higher plants families. Saponins can be classified into two type including steroidal saponins and triterpenoid saponins. Steroidal saponins are known to be exclusively found in monocotyledon angiosperms whereas the triterpenoid saponins occur mostly in dicotyledon angiosperms. Some saponins were reported have antimalarial activity against *P. falciparum* [159].

Saponins are chemically complex structure composed of terpenoids and amphiphatic glycosides of steroids. These compounds consist of glycan (sugar chain) and aglycon called sapogenin. Saponins can be found in various parts of the plants however most plants store the saponins in the roots especially in secondary phloem and vascular cambium. This compound is mostly present in outer layer of the cells and may accumulate in phloem. Besides, saponin may be detected in leaves especially in palisade. However, leaves are more functioning to be the site of production rather than for storage function. Saponins may be disappeared when leaves are withered. The presence and concentration of saponins may be affected by various factors including abiotic and biotic stress which may lead the production as a defense chemical. Consequently, the saponin content may increase because of the hydrolysis of the stored precursors by the mechanism of the defense again pathogen. However, this compound has been known to be played in innate immunity of the plant hence also may be presence in unchallenged plants [160].

Secondary metabolites are produced and store as a complex mixture and some compound groups are related to the other groups biosynthetically. Production of terpenoids was often accompanied by phenolics while alkaloids have more clustered distribution. Alkaloids usually can be found in certain and specific taxon hence this compound usually been used for chemotaxonomic marker. Production of other compounds such like sesquiterpene lactones, diterpenes, cardiac glycosides and iridoid glycosides also known to be restricted in certain plant [152]. Based on [30], alkaloid is commonly found in several plant families including Asteraceae.

The occurrence of alkaloids said to be scarce and the pyrolizidin alkaloids are known to be restricted only in Senecioneae and Eupatorieae tribes. Furthermore, alkaloids are known to be poorly evaluated in this family. Even though that this family is the largest consisting members (with 21,000 species from 1,100 genus), only 433 species from 92 plant's genus were reported containing the alkaloids [161]. Accordingly, alkaloids rarely been used as taxonomic markers for Asteraceae family.

Alkaloid known to be the waste product of plant metabolism, acted as growth regulator and reservoir storage of nitrogen. In nature, this compound is functioning as protective agents against the plant predators such as insects and herbivores [162]. Biosynthesis of alkaloids known to be gene-governed however, the production is affected by environmental condition. Environmental change can affect the concentration and amount of this compound through the impact on the growth and development of the plants. Commonly, alkaloids are produced in actively growing tissue (young tissue) hence environmental factors that affect growth such as light, temperature, soil moisture, latitude, supply of micronutrient (e.g. nitrogen, phosphorus, potassium) could affect the production of alkaloids. These factors might affect the biosynthesis or degradation hence can generate the lowering or increasing production from one to another species [163]. Alkaloids can be found in the roots, leaves, stem bark and seeds however commonly the woody part of plants posse low concentration [158].

Previous finding showed that nicotine production from seed *Nicotiana tabacum* known to be higher while the plant was germinated in the dark condition compared to the plant which was germinated in the environment with a sufficient amount of light. Respiration of the seed which was germinated in the dark might cause the losing of carbohydrate storage and they generate to use the amino acids from protein storage. Some amino acid which was mediated the alkaloids biosynthesis cannot be used for protein synthesis, therefore this compound is used for alkaloids production [163].

In this study, alkaloids test was performed using Dragendorff's test and Wagner's test. Based on the result of alkaloids screening using Dragendorff's and Wagner's reagent as shown in **Table 11**., some plants showed negative result tested with Dragendorff's while using Wagner's reagent were showed positive. It may be happened because each reagent may detect different type of alkaloids.

Dragendorff's reagent contained bismuth nitrate and potassium iodide which will generate the BiI_4 - ion. The nitrogen atom in the structure could behave as a base which will react with acid through the acid base reaction [164]. Heavy metal in the reagent could react with amine group in the alkaloid's structure via coupling pair. The reaction will produce an insoluble precipitate which may give various color of precipitation depend on the type of alkaloid in the plants.

The result showed that the colors of precipitations are varies from yellowish, yellow, yellowish brown, orange, orange-red and brown-red. Dragendorff's reagent detect mostly for tertiary amine while the secondary amine will produce less color of precipitation. False positive result may be occurred due to presence of amine group in other compound such like protein. Hence, in this study, subsequent extraction to salting out the alkaloid was performed to prevent the false positive result. The extract solution was treated with ammonia to set the free amine and then followed by acid extraction to form the salts of alkaloids. The salts will react with the detecting reagent to produce the precipitate.

Wagner's reagent is able to detect some alkaloids with the presence of precipitation as well. Precipitation occurred when salt of alkaloid reacted with the acid (hydroiodide) from the formation of iodine and water consisted in the reagent. However,

some alkaloids such like caffeine, theobromine, piperine and urea are shown to be not precipitated at all after treating with this reagent. In other case, while strychnine gave satisfactory result when detected using this reagent, brucine is not. Some of precipitation showed to give up the portion of its iodine to the water. Some alkaloids which are soluble in water are become free as not as a salt from which cannot be detected with this reagent [165].

Secondary metabolites which play in defense mechanism of organism commonly produce in low concentration. The production of these compounds is an adaptive response to the environment or by the induction of stress condition. Plant secondary metabolites are synthesized in such restricted organ then transported to the different region of the tissue and organ hence these metabolites could be detected in the whole plant's cells. Transportation of this compound through the vascular tissue target to the storage site depend on the polarity of the compound. Hydrophobic compound such like terpenes could be stored in trichomes, resin ducts, cuticles or thylakoid membranes while the hydrophilic compounds (e.g. alkaloid, glucosinolates, tannins) could be stored in vacuole or idioblast. The accumulation of this metabolites is affected by many factors (e.g. drought, salinity, light, temperature, infection, interaction between species, etc.) then may be observed differently during the physiological change and developmental stage of the plants [166]. Alkaloid which known to be accumulated in the seed in the most plant could be happened because of these compounds is used for defense agent along with the utilization for nitrogen source during the seed germination. Additionally, production of flavonoid during the drought environment suggest their activity as radical scavenging [166]

Induction of environmental stressed such as light intensity, temperature, herbivore, microbial attack may trigger production of secondary metabolites as result the changes in genetic or protein level. In addition, the ability in production or certain classes of this compound is restricted to certain plant also. Many functional groups which construct the secondary metabolites complex structure may generate the various biological activities [151].

Antimalarial activity against 3D7 *P. falciparum* was performed using DNA fluorosence-based assay. The IC₅₀ value of each ethanolic extract was used to classify the power of activity as shown in **Table 12**. According to this result, almost all tested plants which has been used for malaria treatment in some indigenous cultures showed antimalarial activity even though exhibited very weak-weak activity. In addition, 2 other plants (*B. pilosa* and *E. odoratum*) were inactive which showed the IC₅₀ more than 100 μ g/mL. This result suggested that the healing effect from these plants may be caused by other pharmacological properties which was related to curing other malarial symptoms which was not directly kill the parasites. In addition, the growing environment and method of preparation also become other factors. The non-scientific factor such like spirit, believe, and suggestion from the traditional healer might be the other cause of the healing properties from traditional medicine.

The best promising extract comes from the plants which commonly used by Ayuverdic medicine for fever treatment. Ethanolic extract of the aerial part *S. indicus* exhibited good-moderate activity against 3D7 *P. falciparum* with the IC₅₀ 6.59 μ g/mL. Another study which used the hexane and ethyl acetate extract of aerial part of the growing plant in other part of Thailand has been reported and showed has no activity against K1 *P. falciparum*. However, isolated sesquiterpene lactone eudesmanolides exhibited good-moderate antimalarial activity with the IC₅₀ ranging from 2.32-6.47 μ g/mL [129].

GHULALONGKORN UNIVERSITY

Clustered pattern of phytochemicals and antimalarial activity of 16 tested plants was observed descriptively as shown in **Fig 25**. Each species was classified into their tribal classification system. Classification system of Asteraceae family has been developed in recent decade by combining morphological and molecular data. Recent classification is refined by Panero and Funk in 2014 by using 10-14 chloroplast DNA (cpDNA) markers hence derived 12-13 major subfamilies (clade) [167]. Historically, the biggest change of Asteraceae classification has occurred in 1980s – 1980s by the molecular work done by Jansen et al. (1987, 1991 and 1996) [168].

As shown in Fig 25, the presence of phytochemicals showed were limited to the group of the compounds hence lead the difficulty to corelate between phylogeny and

clustered phytochemicals. Additionally, the presence of these phytochemicals can be affected by various factors including environmental of growing area hence the showed phytochemicals pattern might be changed if the source of collection is different.

Asteraceae has excellent morphologic and geographic diversity hence these plants able to produce a wide range of secondary metabolites including monoterpenes, sesquiterpenes, sesquiterpene lactones, diterpenes, triterpenes, polyacetylenes, phenolic acids, flavonoids, coumarins and benzofurans. Additionally, alkaloids are scarce in this family. However, pyrrolizidine alkaloids can be found and become the typical compound in the tribe of Senecioneae and Eupatorieae. In Eupatoriaeae tribe, the pyrrolizidine alkaloids are found to be lesser extent than Senecioneae. [169, 170].

In this family, flavonoids are the most occurrence compound followed by polyacetylene, sesquiterpenes, monoterpenes, diterpenes, coumarins, triterpenes and benzofurans respectively. Although triterpenes are known to be less abundance, however, they occur in 28 of 35 tribes of Asteraceae. These compounds act as a plant's defense, plant-plant interaction and plant-insect interaction. The other terpenes such as sesquiterpenes (including sesquiterpene lactones) and monoterpenes are equally abundant in Asteraceae [169].

Senecioneae is known to be a sister clade with all the other tribes of Asteroideae subfamily including Anthemideae, Inuleae and Heliantheae alliance [169]. ITS marker has been refined the relationship on inter and intra-generic level in this tribe especially for *Senecio* [171]. The notable phytochemical in this tribe is pyrrolizidine alkaloids which are derived from amino acid ornithine. These phytochemicals are toxic and act as deterrent to protect them from the herbivore. Eremophilanes sesquiterpene lactones also become the excellent marker of this tribe hence useful as sub-tribal and inter-generic classification. In other hand, polyacetylenes and coumarins which are commonly occurred in this family, known to be absent in this tribe [171]. In Vernonieae tribe, the bitter tasting compound, sesquiterpene lactones also been used in the tribal systematics. Typical SLs occurred in this tribe including glaucolides, guaianolides, germacranolides, hirsutinoldes, eremanolides, furoheliangolides, elemanolides along with nerolidol derivatives as well as non-SLs coumarins [169]. Flavonoids, sesquiterpene lactones and

polyacetylenes are the three major compounds in Anthemideae tribe. SLs are known to be taxonomic marker for this tribe [169]. Tribe Inuleae can be divided into two groups which are Inuleae-Inuleae and Inuleae-Plucheinae. The tribe Inuleae-inuleae including Blumea genus while the Inuleae-Plucheinae including Sphaeranthus genus. Typical chemicals in this tribe is oligosaccharide inuline while the SLs 8,12 eudesmanolides known to be predominant in Inuleae along with their sister group Heliantheae. Benzofuran or benzopyran which become diagnostic character of Asteroideae can be found in several Inuleae-Inuleae however not present in Inuleae-Plucheineae [169]. Diterpenes are considered as the frequent compounds occurred in Asteraceae. Based on chemicals occurrence investigation in this family, diterpenes are most concentrated in subfamily Asteroideae compared to the other subfamilies. Occurrences of this compounds are varies among the tribes [157, 172]. Based on the finding, diterpenes are detected in almost of all investigated plants except G. divaricata. This plant belong to Senecioneae tribe which known to be the largest tribe in Asteroideae sub-family. However, based on chemicals mapping of diterpenes, this tribe showed to have the lowest occurrence of diterpenes (28/3200 species) [172].

Based on the result as shown in **fig 25**., our result showed that among 16 tested plants, 8 plants species showed antimalarial activity which were exhibited very weak till good-moderate. Scattered pattern of the power of antimalarial activity has occurred in the phylogeny. However, the result showed that in tested plants from Heliantheae alliance exhibited very weak- inactive antimalarial activity. However, due the limited number of the tested plants and the un-even number of member group of each tribe, this result is not enough as a base for judgement to jump into the conclusion to clustering the power of bioactivity based on the tribal level. In addition, the part used of the plants for testing were different, hence may lead inconsistency when changing the part of the plant tested.

In order to investigate the sharing bioactivity between closed related species with the artemisinin producing species (*A. annua*), we investigated four taxa of *Artemisia* including *A. dracunculus, A. chinensis, A. lactiflora* and *A. vulgaris*. Based on the result, *A. vulgaris* and *A. chinensis* showed weak antimalarial activity. In other hand, *A. lactiflora* showed inactive even has a more closed relatedness with *A. vulgaris*. Besides,

A. dracunculus which showed to be not in the similar clade with the three other *Artemisia* species also exhibited inactive antimalarial activity.

Using phylogeny bioprospecting, we discovered new medicinal activity of the plants which was not used as herbal medicine for any treatment for malaria and its associated symptoms. In South China, the whole plant of *A. chinensis* is used for treatment of diabetes, cold, furuncle, and carbuncle [173]. *A. chinensis* was chosen due to the close relatedness with *A. annua* and showed the inhibition against 3D7 *P. falciparum* with the IC₅₀ 18.30 μ g/mL and was considered as a weak activity. According to [9][174, 175], secondary metabolites can be gene-governed due to their function as defense mechanism hence will be maintained during evolution. Hence, similar bioactivity may be shared between closed related species.

The antimalarial activity of *Artemisia* species was assumed caused by the effect of artemisinin or along with other antimalarial active compound consisted in the extract which may act agonist or antagonist. Therefore, the power of antimalarial activity may different. *A. vulgaris* and *A. dracunculus* were reported contained artemisinin in a lower concentration than *A. annua* [176].

Our study supported that the phylogeny is useful to help narrow down the selection for targeting the promising clade for investigating the antimalarial activity. However, the un-even numbers of each tribal give a difficulty to observe the clustered pattern of bioactivity. The association between phylogeny and bioactivity could not be assessed due to the unbalance of number of taxa in each tribe (e.g. 4 *Artemisia* species were used in this study and there was no other species in Anthemideae tribe). Additionally, the similar part of investigated plant should be used to generate the comparable result of activity. Single group of compounds which was typical in each tribe may be selected for further study in order to know the clustered pattern rather than use the group of compounds.

Validation of antimalarial activity through doing different type of antimalarial assay should be performed to get the robustness of the activity result. The different antimalarial assay might give different power of activity result hence might generate different clusterred pattern result in phylogenetic tree. According to our finding, Inuleae and Anthemideae tribe should be further investigated for discovering the antimalarial plants. The antimalarial activity should be performed in chloroquine resistant strain as well. In addition, the plants which showed the good-moderate till weak activity is worth to further be investigated to find which active compound was responsible for the activity. This approach may be used for another disease for selecting the candidate group of taxa to minimize the expenditure and time in antimalarial plant-based drug discovery.

CONCLUSSION

Clustered pattern was shown in phylogenetic tree of ethnobotanical medicinal plants for malaria majorly in Asteraceae family along with fever treatment. Other highlighted families including Apocynaceae, Rubiaceae and Euphorbiaceae were consistently found to be clustered for malaria treatment. In other hand, plants for fever treatment also clumped in Cucurbitacaeae. These highlighted families may be required for further experiment to investigate the antimalarial activity.

Among 16 selected Asteraceae medicinal plants, 1 ethanolic extract showed good-moderate 4 ethanolic extract showed weak antimalarial activity, 3 ethanolic extract showed very weak and the rest is inactive. The best active ethanolic extract was shown by ethanolic extract from aerial part *S. indicus*. New medicinal property as antimalarial of *A. chinensis* which never been used as treatment in traditional medicine was discovered by using this approach.

Phylogeny approach is useful to narrow down the selection of candidate taxa for screening antimalarial activity on ethnobotanical data in order to minimize the expenditure and time in laboratory experiment.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

REFERENCES

- 1. WHO, *World Malaria Report 2019*. 2019: World Health Organization 2019.
- Adebayo, J. and A. Krettli, *Potential antimalarials from Nigerian plants: a review*. Journal of Ethnopharmacology, 2011. 133(2): p. 289-302.
- Shankar, R., S. Deb, and B.K. Sharma, *Antimalarial plants of northeast India: An overview*.
 Journal of Ayurveda and integrative medicine, 2012. 3(1): p. 10-16.
- 4. Evans, W.C., *Trease and Evans : Pharmacognosy*. 2009, China: Saunders Elsevier. 614.
- Meshnick, S.R., Artemisinin: mechanisms of action, resistance and toxicity. International Journal for Parasitology, 2002. 32(13): p. 1655-1660.
- Manel, O., et al., *Plasmodium falciparum resistance to artemisinin-based combination therapies: A sword of Damocles in the path toward malaria elimination.* J Parasite, 2018.
 25.
- 7. Sinha, S., et al., *Development in Assay Methods for in Vitro Antimalarial Drug Efficacy Testing: A Systematic Review.* Frontiers in pharmacology, 2017. 8: p. 754.
- Calixto, J., *Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents)*. Braz J Med Biol Res, 2000. 33(2): p. 179-189.
- Haris, S.-L.C., et al., *Phylogenies reveal predictive power of traditional medicine in bioprospecting*. J Proceedings of the National Academy of Sciences, 2012. 109(39): p. 15835-15840.
- Saslis-Lagoudakis, C.H., et al., *The use of phylogeny to interpret cross-cultural patterns in plant use and guide medicinal plant discovery: an example from Pterocarpus (Leguminosae)*. PLOS ONE, 2011. 6(7): p. e22275.
- 11. Shaw, A.J., et al., *Phylogeography and phylodemography*. Bryologist, 2002: p. 373-383.
- 12. Liu, H., et al., *Molecular authentication and differentiation of Dendrobium species by rDNA ITS region sequence analysis.* AMB Express, 2019. **9**(1): p. 53.
- Cheng, T., et al., Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Molecular Ecology Resources, 2016.
 16(1): p. 138-149.
- 14. Linder, C.R., L.A. Moore, and R.B. Jackson, A universal molecular method for identifying

underground plant parts to species. Mol Ecol, 2000. 9(10): p. 1549-59.

- Ivanescu, B., A. Miron, and A. Corciova, Sesquiterpene lactones from Artemisia genus: biological activities and methods of analysis. Journal of analytical methods in chemistry, 2015. 2015.
- Deans, S.G. and E.J.M. Simpson, HERBS | Herbs of the Compositae, in Encyclopedia of Food Sciences and Nutrition (Second Edition), B. Caballero, Editor. 2003, Academic Press: Oxford. p. 3077-3081.
- Haldar, K. and N. Mohandas, *Malaria, erythrocytic infection, and anemia*. Hematology. American Society of Hematology. Education Program, 2009: p. 87-93.
- Maier, A.G., et al., *Plasmodium falciparum*. Trends in Parasitology, 2019. 35(6): p. 481-482.
- 19. Griffith, K.S., et al., *Treatment of malaria in the United States: a systematic review*. Jama, 2007. **297**(20): p. 2264-2277.
- 20. Prevention, C.f.D.C.a. Malaria. 2017.
- Poostchi, M., et al., Image analysis and machine learning for detecting malaria. Translational Research, 2018. 194.
- 22. Tangpukdee, N., et al., *Malaria diagnosis: a brief review*. Korean Journal of Parasitology, 2009. 47(2): p. 93.
- 23. Meshnick, S.R. and M.J. Dobson, *The history of antimalarial drugs*, in *Antimalarial chemotherapy*. 2001, Springer. p. 15-25.
- 24. Wang, J., et al., Artemisinin, the Magic Drug Discovered from Traditional Chinese Medicine. Engineering, 2019. 5(1): p. 32-39.
- 25. Ferreira, J.F. and D.L. Luthria, *Drying affects artemisinin, dihydroartemisinic acid, artemisinic acid, and the antioxidant capacity of Artemisia annua L. leaves.* Journal of Agricultural and Food Chemistry, 2010. **58**(3): p. 1691-1698.
- Duru, V., B. Witkowski, and D. Ménard, *Plasmodium falciparum resistance to artemisinin derivatives and piperaquine: a major challenge for malaria elimination in Cambodia.* The American Journal of Tropical Medicine Hygiene, 2016. 95(6): p. 1228-1238.
- Lu, F., et al., A brief history of artemisinin: Modes of action and mechanisms of resistance.
 Chinese Journal of Natural Medicines, 2019. 17(5): p. 331-336.

- Suresh, N. and K. Haldar, *Mechanisms of artemisinin resistance in Plasmodium falciparum malaria*. Current Opinion in Pharmacology, 2018. 42: p. 46-54.
- 29. Waksmundzka-Hajnos, M., J. Sherma, and T. Kowalska, *Thin Layer Chromatography in Phytochemistry*. 2008, US: Taylor & Francis Group, LLC. 888.
- 30. Shah, B. and A.K. Seth, *Textbook of Pharmacognosy and Phytochemistry : First edition*.
 2010, India: Elsevier.
- Kumar, G.S. and K.N. Jayaveera, A Textbook of Pharmacognosy and Phytochemistry. 2014, New Delhi: S.Chand & Company PVT.LTD. 288.
- 32. Soto-Hernandez, M., M. Palma-Tenango, and M.d.R. Garcia-Mateos, *Phenolic Compounds* : *Natural Sources, Importance and Applications*. 2017, Croatia: InTech.
- 33. Lattanzio, V., Phenolic Compounds: Introduction. 2013. p. 1543-1580.
- 34. Laura, A., et al., *Phenolic compounds*, in *Postharvest physiology and biochemistry of fruits and vegetables*. 2019, Elsevier. p. 253-271.
- Ivanescu, B., A. Miron, and A. Corciova, Sesquiterpene Lactones from Artemisia Genus: Biological Activities and Methods of Analysis. Journal of analytical methods in chemistry, 2015. 2015: p. 247685-247685.
- Ghantous, A., et al., What made sesquiterpene lactones reach cancer clinical trials? Drug Discov Today. Drug discovery today, 2010. 15: p. 668-78.
- Chadwick, M., et al., Sesquiterpenoids lactones: benefits to plants and people. International journal of molecular sciences, 2013. 14(6): p. 12780-12805.
- 38. MatejiĆ, J., Z. Šarac, and V. RanđeloviĆ, *Pharmacological activity of sesquiterpene lactones*. Biotechnology Biotechnological Equipment, 2010. **24**(sup1): p. 95-100.
- Pedersen, M.M., et al., *Antimalarial sesquiterpene lactones from Distephanus angulifolius*.
 Phytochemistry, 2009. 70(5): p. 601-607.
- 40. Rukunga, G., et al., *Anti-plasmodial activity of the extracts and two sesquiterpenes from Cyperus articulatus*. Fitoterapia, 2008. **79**(3): p. 188-190.
- 41. François, G. and C.M. Passreiter, *Pseudoguaianolide sesquiterpene lactones with high activities against the human malaria parasite Plasmodium falciparum.* Phytother Res, 2004. **18**(2): p. 184-186.
- 42. Sarker, S.D., Z. Latif, and A.I. Gray, Method in Biotechnology : natural products isolation

second edition. Humana Press Inc, 2006: p. 1-515.

- 43. Rates, S.M.K., *Plants as source of drugs*. Toxicon, 2001. **39**(5): p. 603-613.
- 44. Rocha, R. and E. Melo, *Influence of drying process on the quality of medicinal plants: A review*. Journal of Medicinal Plants Research, 2011. **5**(33): p. 7076-7084.
- 45. Zhang, Q.-W., L.-G. Lin, and W.-C. Ye, *Techniques for extraction and isolation of natural products: a comprehensive review.* Chinese medicine, 2018. **13**: p. 20-20.
- Ramluckan, K., K. Moodley, and F. Bux, An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the Soxhlet extraction method. Fuel, 2013. 116: p. 103-108.
- 47. Pandey, A. and S. Tripathi, Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. Journal of Pharmacognosy Phytochemistry, 2014.
 2(5).
- 48. ICH, *Impurities* : guideline for residual solvents QRC(R6), I.C.f.H.o.T.R.f.P.f.H. Use, Editor. 2016.
- 49. Zhang, Q.-W., L.-G. Lin, and W.-C. Ye, *Techniques for extraction and isolation of natural products: a comprehensive review.* Chinese Medicine, 2018. **13**(1): p. 20.
- 50. Rasul, M.G., Extraction, Isolation and Characterization of Natural Products from Medicinal Plants. 2011. 2(6): p. 1-6.
- 51. Kaur, H., et al., Antiplasmodial medicinal plants: a literature review on efficacy, selectivity and phytochemistry of crude plant extracts. Journal of Biologically Active Products from Nature, 2018. 8(5): p. 272-294.
- 52. Reddy, B.N., *Basics for the construction of phylogenetic trees.* 2011.
- 53. Abiri, R., et al., Towards a better understanding of Artemisia vulgaris: Botany, phytochemistry, pharmacological and biotechnological potential. Food Res Int, 2018. 109: p. 403-415.
- 54. Zeb, S., et al., *Pharmacology, Taxonomy and Phytochemistry of the genus Artemisia specifically from Pakistan: a comprehensive review.* J Pharmaceutical Biomedical Research, 2019.
- 55. Milliken, W., Plants for malaria. 1997.
- 56. Le Tran, Q., et al., In vitro antiplasmodial activity of antimalarial medicinal plants used in

Vietnamese traditional medicine. Journal of Ethnopharmacology, 2003. 86(2-3): p. 249-252.

- Ramazani, A., et al., In vitro antiplasmodial and phytochemical study of five Artemisia species from Iran and in vivo activity of two species. Parasitol Res, 2010. 107(3): p. 593-599.
- Thiengsusuk, A., W. Chaijaroenkul, and K. Na-Bangchang, Antimalarial activities of medicinal plants and herbal formulations used in Thai traditional medicine. Parasitol Res, 2013. 112(4): p. 1475-1481.
- 59. Nigam, M., et al., *Bioactive Compounds and Health Benefits of Artemisia Species*. Natural Product Communications, 2019. **14**(7): p. 1934578X19850354.
- 60. Mannan, A., et al., Survey of artemisinin production by diverse Artemisia species in northern Pakistan. Malaria journal, 2010. 9(1): p. 310.
- 61. Bora, K.S. and A. Sharma, *The genus Artemisia: a comprehensive review*. Pharmaceutical Biology, 2011. **49**(1): p. 101-109.
- Hussain, A., et al., *Pharmacological promises of genus Artemisia (Asteraceae): A Review*.
 B Life Environ. Sci, 2017. 54: p. 265-287.
- 63. Amidon, C., M.A. Thomas, and E. Kennel, *Artemisia : an essential guide from the herb society of america*. 2014: The Herbs Society of America
- Kiao, M.-t., et al., A novel polyacetylene from the aerial parts of Artemisia lactiflora.
 Phytochemistry Letters, 2014. 8: p. 52-54.
- 65. Li, D.-l., et al., *Ethnobotanical survey of herbal tea plants from the traditional markets in Chaoshan, China.* Journal of Ethnopharmacology, 2017. **205**: p. 195-206.
- Kulprachakarn, K., et al., Antioxidant Properties and Cytotoxicity of White Mugwort (Artemisia lactiflora) Leaf Extract in Human Hepatocellular Carcinoma Cell Line. Walailak Journal of Science, 2019. 16(3): p. 185-192.
- 67. Bhuiyan, M.N.I., J.U. Chowdhury, and J. Begum, *Chemical components in volatile oil from Blumea balsamifera (L.) DC*. Bangladesh Journal of Botany, 2009. **38**(1): p. 107-109.
- Pang, Y., et al., Blumea balsamifera--a phytochemical and pharmacological review. Molecules, 2014. 19(7): p. 9453-77.
- 69. Noor Rain, A., et al., Antiplasmodial properties of some Malaysian medicinal plants. J Trop

Biomed, 2007. 24(1): p. 29-35.

- 70. Xuan, N. and Dung, Selection of traditional medicines for study. Journal of Ethnopharmacology, 1991. **32**(1): p. 57-70.
- Abdillah, S., et al., *Phytochemical screening and antimalarial activity of some plants traditionally used in Indonesia*. Asian Pacific Journal of Tropical Disease, 2015. 5(6): p. 454-457.
- 72. Chauhan, A. and S. Rijhwani, A Comprehensive Review on Phytochemistry of Ageratum conyzoides linn.(Goat weed). International Journal of Engineering Technology Management, 2015. 3.
- 73. Joshi, B., et al., *In vitro antileishmanial and antimalarial activity of selected plants of Nepal.* J Intercult Ethnopharmacol, 2016. 5(4): p. 383-389.
- 74. de Madureira, M.d.C., et al., Antimalarial activity of medicinal plants used in traditional medicine in S. Tomé and Principe islands. Journal of Ethnopharmacology, 2002. 81(1): p. 23-29.
- 75. Kaur, R. and N. Dogra, A review on traditional uses, chemical constituents and pharmacology of Ageratum conyzoides L.(Asteraceae). Int J Pharmaceutical Biol Arch, 2014. 5(5): p. 33-45.
- Grombone-Guaratini, M.T., V.N. Solferini, and J. Semir, *Reproductive biology in species of Bidens L.(Asteraceae)*. Scientia Agricola, 2004. 61(2): p. 185-189.
- 77. Bartolome, A.P., I.M. Villaseñor, and W.-C. Yang, *Bidens pilosa L. (Asteraceae): botanical properties, traditional uses, phytochemistry, and pharmacology.* J Evidence-based Complementary Alternative Medicine, 2013. 2013.
- 78. Andrade-Neto, V.F., et al., Antimalarial activity of Bidens pilosa L.(Asteraceae) ethanol extracts from wild plants collected in various localities or plants cultivated in humus soil. J Phytotheraphy Research, 2004. 18(8): p. 634-639.
- 79. Titanji, V.P., D. Zofou, and M.N. Ngemenya, *The antimalarial potential of medicinal plants used for the treatment of malaria in Cameroonian folk medicine*. African Journal of Traditional, Complementary and Alternative Medicines, 2008. 5(3): p. 302.
- 80. Rajamurugan, R., et al., Identification, quantification of bioactive constituents, evaluation of antioxidant and in vivo acute toxicity property from the methanol extract of Vernonia

cinerea leaf extract. Pharmaceutical Biology, 2011. 49(12): p. 1311-1320.

- Shelar, D., S. Tikole, and T. Kakade, *Vernonia cinerea: a review*. Current Pharma Research, 2014. 4(3): p. 1194.
- 82. Guha, G., et al., *Therapeutic Potential of Polar and Non-Polar Extracts of Cyanthillium cinereum In Vitro.* J Evidence-based Complementary Alternative Medicine, 2011. **2011**.
- 83. Chea, A., et al., *Antimalarial activity of sesquiterpene lactones from Vernonia cinerea*.
 Chem Pharm Bull (Tokyo), 2006. 54(10): p. 1437-9.
- 84. Dogra, N.K. and S. Kumar, *A review on ethno-medicinal uses and pharmacology of Vernonia cinerea Less.* J Natural Product Research, 2015. **29**(12): p. 1102-1117.
- 85. Soma, A., et al., Antiplasmodial activity of Vernonia cinerea Less (Asteraceae), a plant used in traditional medicine in Burkina Faso to treat malaria. African Journal of Pharmacy Pharmacology, 2017. 11(5): p. 87-93.
- 86. Verma, S., *Phytochemical and pharmacological investigation of Vernonia cinerea: Asteraceae.* Pharma Innovat J, 2018. 7: p. 519-521.
- Vanijajiva, O. and N. Kundee, Genetic uniformity of exotic medicinal plant Gynura divaricata in Thailand. Research Journal of Phranakhon Rajabhat: Science Technology, 2014. 9(1): p. 77-86.
- 88. Poeaim, S. and O. Vanijajiva. Morphological Identification and In Vitro Cytotoxic Evaluation of Crude Extracts from Jak-Na-Rai (Gynura divaricata (L.) DC.). in 16th Asian Agricultural Conference. 2010.
- Vanijajiva, O. and J.W. Kadereit, *A revision of Gynura (Asteraceae: Senecioneae)*. Journal of Systematics Evolution, 2011. 49(4): p. 285-314.
- 90. Chen, J., et al., Detection and toxicity evaluation of pyrrolizidine alkaloids in medicinal plants gynura bicolor and gynura divaricata collected from different Chinese locations. Chemistry Biodiversity, 2017. 14(2): p. e1600221.
- 91. Xu, B.-Q. and Y.-Q. Zhang, Bioactive components of Gynura divaricata and its potential use in health, food and medicine: a mini-review. Africa Journal of Traditional, Complementary Alternative Medicines, 2017. 14(3): p. 113-127.
- 92. Chen, J., et al., Investigation of the volatile constituents of different Gynura species from two Chinese origins by SPME/GC-MS. Natural Product Communications, 2012. 7(5): p.

1934578X1200700528.

- 93. Siriwatanametanon, N. and M. Heinrich, The Thai Medicinal Plant Gynura Pseudochina var. hispida: Chemical Composition and in vitro NF-KB Inhibitory Activity. Natural Product Communications, 2011. 6(5): p. 1934578X1100600512.
- 94. Siriwatanametanon, N., et al., *Traditionally used Thai medicinal plants: in vitro anti-inflammatory, anticancer and antioxidant activities.* J Ethnopharmacol, 2010. **130**(2): p. 196-207.
- 95. Moelyono Moektiwardoyo, W., et al., The Potential of Dewa Leaves (Gynura Pseudochina (L) D.C) and Temu Ireng Rhizomes (Curcuma aeruginosa Roxb.) as Medicinal Herbs for Dengue Fever Treatment. Procedia Chemistry, 2014. 13: p. 134-141.
- 96. Kuldeep, G. and A. Pathak, *Pharmacognostic and Phytochemical Evaluation of Tridax* procumbens Linn. Journal of Pharmacognosy Phytochemistry, 2013. 1(5).
- 97. Pandey, A. and S. Tripathi, *A Review on Pharmacognosy, Pre-phytochemistry and Pharmacological analysis of Tridax procumbens.* PharmaTutor, 2014. **2**(4): p. 78-86.
- Appiah-Opong, R., et al., Antiplasmodial activity of extracts of Tridax procumbens and Phyllanthus amarus in in vitro Plasmodium falciparum culture systems. Ghana Medical Journal, 2011. 45(4).
- 99. Cáceres, A., et al., Plants used in Guatemala for the treatment of protozoal infections. I. Screening of activity to bacteria, fungi and American trypanosomes of 13 native plants. Journal of Ethnopharmacology, 1998. 62(3): p. 195-202.
- 100. Upadhyay, B., A.K. Dhaker, and A. Kumar, *Ethnomedicinal and ethnopharmaco-statistical studies of Eastern Rajasthan, India.* Journal of Ethnopharmacology, 2010. **129**(1): p. 64-86.
- 101. Kaushik, N.K., et al., Evaluation of antiplasmodial activity of medicinal plants from North Indian Buchpora and South Indian Eastern Ghats. Malaria journal, 2015. 14(1): p. 65.
- 102. Muthaura, C., et al., Antiplasmodial potential of traditional antimalarial phytotherapy remedies used by the Kwale community of the Kenyan Coast. Journal of Ethnopharmacology, 2015. **170**: p. 148-157.
- 103. Christudas, S., T.M. Kulathivel, and P. Agastian, *Phytochemical and antibacterial studies of leaves of Tridax procumbens L.* Asian Pacific Journal of Tropical Biomedicine, 2012.
 2(1, Supplement): p. S159-S161.

- 104. Andriana, Y., et al., *Antihyperuricemia, Antioxidant, and Antibacterial Activities of Tridax* procumbens L. Foods, 2019. **8**(1).
- 105. DSNBK, P. and L. Rao, Evaluation of Pharmacognostic, Phytochemical and Physicochemical Standards of Wedelia Trilobata (L.) Root.
- 106. Hui, Y., et al., Eudesmanolides and Other Constituents from the Flowers of Wedelia trilobata. Chemistry Biodiversity, 2018. **15**(3): p. 1700411.
- 107. Fauziana, M. and R. Susandarini, Species Diversity and Potential Use of Asteraceae in Tawangmangu, Karanganyar Regency, Central Java. Journal of Tropical Biodiversity Biotechnology, 2019. 4(1): p. 18-23.
- 108. Ton That, Q., et al., Wedelolides A and B: Novel Sesquiterpene δ-Lactones, (9R)-Eudesman-9,12-olides, from Wedelia trilobata. The Journal of Organic Chemistry, 2007.
 72(19): p. 7102-7105.
- 109. Zahara, M. Description of Chromolaena odorata LRM King and H. Robinson as medicinal plant: A Review. in IOP Conference Series: Materials Science and Engineering. 2019. IOP Publishing.
- 110. Fasola, T.R. and P.C. Iyamah, Comparing the phytochemical composition of some plant parts commonly used in the treatment of malaria. International Journal of Pure Applied Sciences Technology, 2014. 21(1): p. 1.
- 111. Ezenyi, I.C., et al., Antiplasmodial activity-aided isolation and identification of quercetin-4'-methyl ether in Chromolaena odorata leaf fraction with high activity against chloroquine-resistant Plasmodium falciparum. Parasitol Res, 2014. **113**(12): p. 4415-4422.
- Félicien, A., et al., Chemical composition and Biological activities of the Essential oil extracted from the Fresh leaves of Chromolaena odorata (L. Robinson) growing in Benin. ISCA Journal of Biological Sciences, 2012. 1(3): p. 7-13.
- Hassanzadeh, M.K., et al., Tarragon (Artemisia dracunculus L.) Oils, in Essential Oils in Food Preservation, Flavor and Safety. 2016, Elsevier. p. 813-817.
- 114. Obolskiy, D., et al., Artemisia dracunculus L. (Tarragon): A Critical Review of Its Traditional Use, Chemical Composition, Pharmacology, and Safety. Journal of Agricultural and Food Chemistry, 2011. 59(21): p. 11367-11384.
- 115. Eidi, A., et al., Antinociceptive and anti-inflammatory effects of the aerial parts of

Artemisia dracunculus in mice. Pharmaceutical Biology, 2015. 54.

- 116. Lopes-Lutz, D., et al., *Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils.* Phytochemistry, 2008. **69**(8): p. 1732-1738.
- Tabanca, N., et al., Eupatorium capillifolium essential oil: chemical composition, antifungal activity, and insecticidal activity. J natural Product Communications, 2010. 5(9): p. 1934578X1000500913.
- Johnson, M.F., *Eupatorieae (Asteraceae) in Virginia: Eupatorium L.* Castanea, 1974. 39(3):
 p. 205-228.
- 119. Uehara, A., et al., Further characterization of foliar flavonoids in Crossostephium chinense and their geographic variation. Natural Product Communications, 2014. 9(2): p. 1934578X1400900207.
- 120. Thomson, A.T., *The London Dispensatory : A practical synopsis of materia medica, pharmacy and therapeutics.* 1830, London: London.
- 121. Wiart, C., Anti-Inflammatory Plants, in Ethnopharmacology of Medicinal Plants: Asia and the Pacific. 2007, Humana Press: Totowa, NJ. p. 1-55.
- 122. Li, T.S.C., Taiwanese Native Medicinal Plants : Phytopharmacology and Therapeutic Values CRC Press Taylor & Francis Group, LLC.
- 123. Wu, Q., et al., Novel sesquiterpene and coumarin constituents from the whole herbs of Crossostephium chinense. Journal of Asian Natural Products Research, 2009. 11(1): p. 85-90.
- 124. Uehara, A., et al., *Further characterization of foliar flavonoids in Crossostephium chinense and their geographic variation.* Nat Prod Commun, 2014. **9**(2): p. 163-4.
- 125. Chang, T.-N., et al., *Hepatoprotective effect of Crossostephium chinensis (L.) makino in rats*. The American Journal of Chinese Medicine, 2011. **39**(03): p. 503-521.
- Chakraborty, A., et al., Sphaeranthus indicus Linn.: A phytopharmacological review. Int J Drug Formul Res, 2010. 1: p. 113-33.
- 127. Ramachandran, S., *Review on Sphaeranthus indicus Linn.(Koțțaikkarantai).* Pharmacognosy reviews, 2013. 7(14): p. 157.
- 128. Galani, V.J., B.G. Patel, and D.G. Rana, *Sphaeranthus indicus Linn.: A phytopharmacological review*. Int J Ayurveda Res, 2010. 1(4): p. 247-53.

- 129. Sangsopha, W., et al., *Cytotoxic and antimalarial constituents from aerial parts of Sphaeranthus indicus*. Phytochemistry Letters, 2016. **17**: p. 278-281.
- Dubey, S., et al., *Phytochemistry, pharmacology and toxicology of Spilanthes acmella: a review*. Advances in Pharmacological Sciences, 2013. 2013.
- Joseph, B., J. George, and M.J.W.J.P.R. Jeevitha, *The role of Acmella Olerecea in Medicine—A review*. World Journal of Pharmaceutical Research, 2017. 2: p. 2781-2792.
- 132. Spelman, K., et al., *The traditional medicine Spilanthes acmella, and the alkylamides spilanthol and undeca-2e-ene-8, 10-diynoic acid isobutylamide, demonstrate in vitro and in vivo antimalarial activity.* Phytotheraphy Research, 2011. **25**(7): p. 1098-1101.
- 133. Abeysiri, G.R.P.I., et al., Screening of phytochemical, physico-chemical and bioactivity of different parts of Acmella oleraceae Murr. (Asteraceae), a natural remedy for toothache. Industrial Crops and Products, 2013. 50: p. 852-856.
- 134. Aid, A.N. and M. Jeanmaire, *The ethnobotany of psychoactive plant use: a phylogenetic perspective.* PeerJ, 2016. 4: p. e2546-e2546.
- 135. Alebiosu, C. and A. Yusuf, *Phytochemical screening, thin-layer chromatographic studies* and UV analysis of extracts of Citrullus lanatus. J Pharm Chem Biol Sci, 2015. 3(2): p. 214-220.
- 136. Coronado-Aceves, E.W., et al., Reynosin and santamarine: two sesquiterpene lactones from Ambrosia confertiflora with bactericidal activity against clinical strains of Mycobacterium tuberculosis. Pharmaceutical Biology, 2016. 54(11): p. 2623-2628.
- 137. Prasad, M.A., C.P. Zolnik, and J. Molina, Leveraging phytochemicals: the plant phylogeny predicts sources of novel antibacterial compounds. Future Science OA, 2019. 5(7): p. FSO407.
- 138. Manissorn, J., Molecular Analysis of Phyllanthus spp. in Thailand based on RAPD and DNA sequencing, in Pharmacognosy and Pharmaceutical Botany. 2010, Chulalongkorn University: Faculty of Pharmaceutical Sciences.
- 139. Katoh, K. and D.M. Standley, MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 2013.
 30(4): p. 772-780.
- 140. Chowdhury, B. and G. Garai, A review on multiple sequence alignment from the perspective

of genetic algorithm. Genomics, 2017. 109(5): p. 419-431.

- 141. Katoh, K., et al., *MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform*. Nucleic Acids Research, 2002. 30(14): p. 3059-3066.
- 142. Goertzen, L.R., et al., ITS secondary structure derived from comparative analysis: implications for sequence alignment and phylogeny of the Asteraceae. Molecular Phylogenetics and Evolution, 2003. 29(2): p. 216-234.
- McDonald-Spicer, C., et al., *Big data for a large clade: Bioregionalization and ancestral range estimation in the daisy family (Asteraceae)*. Journal of Biogeography, 2019. 46(2): p. 255-267.
- 144. Mandel, J.R., et al., *The Compositae tree of life in the age of phylogenomics*. Journal of Systematics Evolution, 2017. 55(4): p. 405-410.
- 145. Gallon, M.E., et al., *Metabolomic analysis applied to chemosystematics and evolution of megadiverse Brazilian Vernonieae (Asteraceae)*. Phytochemistry, 2018. **150**: p. 93-105.
- Moujir, L., et al., *Applications of sesquiterpene lactones: a review of some potential success cases*. Applied Sciences, 2020. 10(9): p. 3001.
- M., O.N.P., B.V. E., and W.S. A., *The molecular mechanism of action of artemisinin--the debate continues*. Molecules (Basel, Switzerland), 2010. 15(3): p. 1705-1721.
- 148. Gunjan, S., et al., Artemisinin derivatives and synthetic trioxane trigger apoptotic cell death in asexual stages of plasmodium. Frontiers in Cellular Infection Microbiology, 2018. 8: p. 256.
- 149. S., S., The Chemistry of Natural Products: 6: Plenary Lectures Presented at the Sixth International Symposium on the Chemistry of Natural Products. 2013: Elsevier Science.
- C., S.F., Sesquiterpene lactones as taxonomic characters in the asteraceae. The Botanical Review, 1982. 48(2): p. 121-594.
- 151. Ncube, B., J.F. Finnie, and J. Van Staden, *Quality from the field: The impact of environmental factors as quality determinants in medicinal plants*. South African Journal of Botany, 2012. 82: p. 11-20.
- Wink, M., Plant secondary metabolism: diversity, function and its evolution. Natural Product Communications, 2008. 3(8): p. 1934578X0800300801.
- 153. Harborne, J.B., Methods in plant biochemistry. Volume 1. Plant phenolics. 1989: Academic

Press Ltd.

- 154. Holopainen, J., et al., *Ecological Functions of Terpenoids in Changing Climates*. 2013. p. 2913-2940.
- 155. Heftmann, E., *Biochemistry of plant steroids*. Journal Annual Review of Plant Physiology, 1963. 14(1): p. 225-248.
- 156. Ashour, M., M. Wink, and J. Gershenzon, *Biochemistry of terpenoids: monoterpenes, sesquiterpenes and diterpenes.* Annual Plant Reviews Online, 2018: p. 258-303.
- 157. Alvarenga, S.A., et al., A general survey and some taxonomic implications of diterpenes in the Asteraceae. Botanical Journal of the Linnean Society, 2005. 147(3): p. 291-308.
- 158. Gottlieb, O.R., Evolution of Natural Products, in Natural Products of Woody Plants: Chemicals Extraneous to the Lignocellulosic Cell Wall, J.W. Rowe, Editor. 1989, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 125-153.
- 159. Sparg, S.G., M.E. Light, and J. van Staden, *Biological activities and distribution of plant saponins*. Journal of Ethnopharmacology, 2004. **94**(2): p. 219-243.
- Faizal, A. and D. Geelen, Saponins and their role in biological processes in plants. Phytochemistry Reviews, 2013. 12(4): p. 877-893.
- 161. Ur Rashid, M., et al., *The chemistry and pharmacology of alkaloids and allied nitrogen compounds from Artemisia species: A review.* Phytother Res, 2019. **33**(10): p. 2661-2684.
- Waller, G.R. and E.K. Nowacki, *The role of alkaloids in plants*, in *Alkaloid Biology and Metabolism in Plants*. 1978, Springer. p. 143-181.
- Waller, G., Alkaloid biology and metabolism in plants. 2012: Springer Science & Business Media.
- 164. Kurek, J., Introductory Chapter: Alkaloids-Their Importance in Nature and for Human Life, in Alkaloids-Their Importance in Nature and Human Life. 2019, IntechOpen.
- 165. Gomberg, M., ON THE ACTION OF WAGNER'S REAGENT UPON CAFFEINE AND A NEW METHOD FOR THE ESTIMATION OF CAFFEINE. Journal of the American Chemical Society, 1896. 18(4): p. 331-342.
- 166. Isah, T., Stress and defense responses in plant secondary metabolites production. Biological Research, 2019. 52(1): p. 39.
- 167. Fu, Z.-X., et al., A comprehensive generic-level phylogeny of the sunflower family:

Implications for the systematics of Chinese Asteraceae. China Phylogeny Consortium, 2016. 54(4): p. 416-437.

- Funk, V.A., et al., *Classification of compositae*. Systematics, evolution, biogeography of Compositae, 2009.
- 169. Funk, V., et al., Systematics, Evolution, and Biogeography of Compositae. 2009, Veinna, Austria: International Association for Plant Taxonomy, Institue of Botany, University of Vienna.
- 170. Zdero, C. and F. Bohlmann, *Systematics and evolution within theCompositae, seen with the eyes of a chemist.* Plant Systematics and Evolution, 1990. **171**(1): p. 1-14.
- B, P.P. and W. L, Systematics, evolution, biogeography of Compositae: Introduction to Asteroideae 2009. 495: p. 502.
- 172. Alvarenga, S.A.V., et al., *A general survey and some taxonomic implications of diterpenes in the Asteraceae*. Botanical Journal of the Linnean Society, 2005. **147**(3): p. 291-308.
- 173. Chen, T., et al., The complete chloroplast genome of Crossostephium chinense (Asteraceae), using genome skimming data. Mitochondrial DNA Part B, 2019. 4(1): p. 322-323.
- 174. Kowiyou, Y., D.B. H, and M.A. Muthama, *Phylogenetic exploration of commonly used medicinal plants in S outh Africa*. Mol Ecol Resour, 2015. **15**(2): p. 405-413.
- 175. Mellergaard, L.M., et al., Using a phylogenetic approach to selection of target plants in drug discovery of acetylcholinesterase inhibiting alkaloids in Amaryllidaceae tribe Galantheae. Biochemical Systematics and Ecology, 2010. 38(5): p. 1026-1034.
- 176. Numonov, S., et al., Assessment of artemisinin contents in selected Artemisia species from Tajikistan (central Asia). Medicines, 2019. 6(1): p. 23.

Chulalongkorn University

APPENDIX I

CURRENT CLASSIFICATION OF ASTERACEAE [168]

No	Sub-family	Tribe
1	Barnadesioideae (D. Don) Bremer & Jansen 1992	Barnadesieae D. Don 1830
2	Stifftioideae (D. Don) Panero 2007	Stifftieae D. Don 1830
3	Mutisioideae (Cass.) Lindl 1829	Mutisieae Cass 1819
		Onoserideae Bentham, Panero & Funk 2007
4	Wunderlichioideae Panero & Funk 2007	Wunderlichieae Panero & Funk 2007
		Hyalideae Panero 2007
5	Gochnatioideae Benth & Hook; Panero &	Gochnatieae Benth & Hook; Panero &
	Funk 2002	Funk 2002
6	Hecastocleidoideae Panero & Funk 2002	Hecastocleideae Panero & Funk 2002
7	Carduiodae Cass Sweet 1826	Dicomeae Panero & Funk 2002
		Oldenburgieae Ortiz 2009
		Tarchonantheae Kostel 1883
	จุหาลงกรณมหาวิท	Cardueae Cass 1819
8	Pertyoideae Panero & Funk 2002	Pertyeae Panero & Funk 2002
9	Gymnarrhenoideae Panero & Funk 2002	Gymnarrheneae Panero & Funk 2002
10	Cichoriodeae Juss Chevall 1828	Cichorieae Lam & DC 1860
		Arctotideae Cass 1819
		Eremonthamneae H.Rob & Brettell 1973
		Liabeae Cass x Dumort 1927
		Vernonieae Cass 1918
		Platycarpheae Funk & H Rob 2009
		Moquinieae H Rob 1994
11	Corymbioideae Panero & Funk 2002	Corymbieae Panero & Funk 2002

12	Asteroideae Cass Lindl 1829	Senecioneae Cass 1819
		Calenduleae Cass 1819
		Gnaphalieae Cass Lecoq & Juillet 1831
		Astereae Cass 1819
		Anthemideae Cass 1819
		Inuleae Cass 1819
		Athroismeae Panero 2002
	Heliantheae Alliance	Feddeeae Pruski 2008
	S 11/1/2	Helenieae Lindl 1829
		Coreopsideae Lindl 1829
		Neurolaeneae Rydb 1927
		Tagetae Cass 1819
		Chaenactideae BG Baldwin 2002
		Bahieae BG Baldwin 2002
		Polymnieae Panero 2002
		Heliantheae Cass 1819
		Millerieae Lindl 1929
		Perityleae BG Baldwin 2002
	จุหาลงกรณ์มหาวิท	Eupatorieae Cass 1819

Chulalongkorn University

APPENDIX II

Ethnomedicinal Plants Working List for Phylogenetic Mapping

28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	ω	2	4	No
KC747456.1	KJ833767.1	JQ403571.1	KY968931.1	MH768066.1	0	0	0	KY968942.1	0	0	0	0	0	KU692183.1	0	0	KM034015.1	KC441008.1	KJ718259.1	0	0	KC991048.1	0	EU528907.1	GQ465765.1	0	0	Acession NCBI
Amaranthaceae	Amaranthaceae	Amaranthaceae	Amaranthaceae	Amaranthaceae	Amaranthaceae	Amaranthaceae	Amaranthaceae	Amaranthaceae	Aloaceae	Aloaceae	Aloaceae	Aloaceae	Aloaceae	Alliaceae	Agapanthaceae	Adantiaceae	Acanthaceae	Acanthaceae	Acanthaceae	Acanthaceae	Acanthaceae	Acanthaceae	Acanthaceae	Acanthaceae	Acanthaceae	Acanthaceae	Acanthaceae	Family
Celosia	Mangifera	Alternanthera	Amaranthus	Achyranthes	Deeringia	Amaranthus	Alternanthera	Celosia	Aloe	Aloe	Aloe	Aloe	Aloe	Tulbaghia	Agapanthus	Adiantum	Blepharis	Andrographis	Thunbergia	Strobilanthes	Monechma	Justicia	Justicia	Phlogacanthus	Asystasia	Adhatoda	Hygrophila	Genus
Celosia trigyna L	Mangifera indica L.	Alternanthera spp.	Amaranthus spp.	Achyranthes aspera	Deeringia amaranthoides	Amaranthus spinosus L	Alternanthera sessiles DC/Alternanthera halimifolia	Celosia cristata	Aloe volkensii	Aloe lateritia	Aloe kedongensis	Aloe ferox Mill	Aloe dawei A. Berger	Tulbaghia violacea Harv. var.	Agapanthus inapertus P. Beav	Adiantum capillaris-veneris L	Blepharis diversispina (Nees) C.B.Clarke SSS99	Andrographis paniculata Wall. Ex Nees	Thunbergia alata Sims/Alternaria thunbergiae	Strobilanthes auriculatus Nees	Monechma subsessile C. B. Clarke	Justicia spp.	Justicia anselliana (Nees) T. Anderson	Phlogacanthus thyrsiflorus	Asystasia gangetica	Adhatoda zeylanica	Hygrophila auriculata	Species
Uganda	Multicultural	Multicultural	Multicultural	Multicultural	Meghalaya	Bangladesh	Nepal	India	Uganda		Uganda	Uganda	Uganda	Limpopo	Limpopo	Multicultural	Limpopo	Multicultural	Uganda	Northeast india	Uganda	Uganda	Uganda	Northeast India	Uganda	India	West bengal	Indigenous culture
Uganda	Uganda, Ghana, Nigeria, Ivory coast, Maputaland, Nepal	lvory coast, Nepal, West bengal	Uganda, Kenya, Bangladesh	India, bangladesh	Meghalaya	Bangladesh	Nepal	India	Uganda		Uganda	Uganda	Uganda	Limpopo	Limpopo	Nepal, Limpopo	Limpopo	Northeast india, Bangladesh, Nepal	Uganda	Northeast india	Uganda	Uganda	Uganda	Northeast India	Uganda	India	West bengal	note
Tuberculosis	Malaria, Fever, Tuberculosis, Diarrhea	Malaria, Diarrhea	Malaria	Fever, Diarrhea	Fever	Fever	Fever	Diarrhea	Malaria	Malaria	Malaria	Malaria	Malaria	Tuberculosis	Tuberculosis	Fever, Tuberculosis	Tuberculosis	Malaria, Fever	Malaria	Malaria	Malaria	Malaria	Malaria	Fever	Fever	Fever	Diarrhea	Disease

Heteromorpha Heteromorph	Heteromorpha trifoliata Eckl. & Zeyh.	Uganda	Uganda
Alstonia Alstonia boonei De Wild	<i>oonei</i> De Wild		Multicultural
Heracleum Heracleum spp	i spp.		Nepal
Heracleum pi	Heracleum pinnatum C.B.	Clarke	Clarke Nepal Nepal
Trachyspermum Trachyspermum ammi	ermum ammi		Nepal
Lagoecia Lagoecia cuminoides	ruminoides		Iran
Annonaceae Xylopia Xylopia aethiopica	thiopica		Nigeria
Annonaceae Enantia Enantia chlorantha Oliv	<i>lorantha</i> Oliv		Nigeria
Annonaceae Annona Annona muricata L	uricata L		Indonesia
Annonaceae Uvaria Uvaria schefflera Diels	<i>lefflera</i> Diels		Kenya
Annonaceae Uvaria dzelii	Uvaria afzelii G.F. Scott-Ellio	Ellio	Ellio Ivory coast
Annonaceae Uvaria Uvaria acuminata Oliv	ıminata Oliv.		Kenya
Annonaceae Greenwayodendron Greenwayodendron sp	odendron sp.		Ghana
Annonaceae Cleistopholis Cleistopholis	<i>lis patens</i> Eng	Cleistopholis patens Engl. &Diels. (GOM 23	I. &Diels. (GOM 23 Ghana
Annonaceae Pachypodanthium Pachypodant	Pachypodanthium staudli	ï	i Ghana Ghana
Sclerocarya	<i>ra birrea</i> (A.Ri	Sclerocarya birrea (A.Rich.) Hochst. subsp. caffra	
Anacardiaceae Schinus Schinus molle	olle L		Limpopo
Anacardiaceae Pseudospondia Pseudosponc	ondia microcarj	Pseudospondia microcarpa (A. Rich.) Engl.	va (A. Rich.) Engl. Uganda
Anacardiaceae Rhus Rhus vulgaris Meikle	<i>aris</i> Meikle		Uganda
Anacardiaceae Anacardium Anacardium c	Anacardium occidentale L	L.	L. Multicultural
Anacardiaceae Rhus Rhus natalen	<i>Rhus natalensi</i> s Bernh. Ex Krauss	∃x Krauss	Ex Krauss multicultural
Anacardiaceae Lannea Lannea schw	Lannea schweinfurthii (Engl.) Engl	Engl.) Engl	ingl.) Engl Kenya
Anacardiaceae Semicarpus Semicarpus anacardium	ıs anacardium		India
Anacardiaceae Searsia Searsia chirindensis	iirindensis		Bizana Bizana
Anacardiaceae Ozoroa Ozoroa sphaerocarpa	haerocarpa		Limpopo
Anacardiaceae Ozoroa Ozoroa insignis	signis		Zimbabwe
	ulis		Zimbabwe
Amaryllidaceae Allium spp. Allium spp.			Multicultural
Crinum	ifolium		engal
Amaryllidaceae Brunsvigia Brunsvigia grandiflora	grandiflora		Bizana Bizana

84	83	82	81	80	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59
HQ130657.2	MH566880.1	KC878601.1	0	0	MN257723.1	MN177158.1	JX856518.1	0	0	0	0	0	KC189049.1	0	0	0	MH566887.1	DQ916852.1	0	AJ492817.1	0	AM748814.1	U27578.2	AM158945.1	KR215628.1
Apocynaceae	Apocynaceae	Apocynaceae	Apocynaceae	Apocynaceae	Apocynaceae	Apocynaceae	Apocynaceae	Apocynaceae	Apocynaceae	Apocynaceae	Apocynaceae	Apocynaceae	Apocynaceae	Apocynaceae	Apocynaceae	Apocynaceae	Apocynaceae	apocynaceae	Apocynaceae	Apocynaceae	Apocynaceae	Apiaceae	Apiaceae	Apiaceae	Apiaceae
Catharanthus	Alstonia	Rauvolfia	Picralima	Alstonia	Holarrhena	Carissa	Tabernaemontana	Rauvolfia	Melodinus	Laudolphia	Landolphia	Funtumia	Funtumia	Diplorhynchus	Carissa	Alstonia	Allamanda	Mondia	Hedranthera	Sarcostemma	Carissa	Steganotaenia	Heteromopha	Alepidea	Centella
Catharanthus roseus G. Don	Alstonia scholaris R.Br	Rauvolfia vomitoria Afz	Picralima nitida Th. & H.Dur	Alstonia boonei De Wild.	Holarrhena pubescens Wall. Ex G. Don	Carissa spp.	Tabernaemontana elegans Stapf	Rauvolfia mombasiana Stapf	Melodinus monogynus Roxb	Laudolphia buchananii (Hall.f) Stapf.	Landolphia sp.	Funtumia elastica (Preuss) Stapf	Funtumia africana (Benth.)	Diplorhynchus condylocarpon (Müll.Arg.) Pichon	Carissa spinarum Lodd. ex A. DC	Alstonia congensis Engl	Allamanda cathartica L.	Mondia whitei	Hedranthera barteri Hook. f.	Sarcostemma viminale/Cynanchum viminale	Carissa bispinosa	Steganotaenia araliacea Hochst	Heteromopha arborescens var frutescens	Alepidea amatymbica Eckl. & Zeyh. v	Centella asiatica (L.) Urb
Multicultural	Multicultural	Multicultural	Ghana	Multicultural	Multicultural	Multicultural	Zimbabwe	Kenya	Northeast india	Kenya	Ghana	lvory coast	Nigeria	Zimbabwe	Uganda		Nigeria	Ghana	Nigeria	Maputaland	Zimbabwe	Uganda	Limpopo	Limpopo	Multicultural
Uganda, Zimbabwe, Maputaland	Northeast india, Indonesia, Bangladesh, Nepal, West bengal	Nigeria, Ivory coast	Ghana	Nigeria, Ivory coast	Zimbabwe, India	Uganda , Kenya, Zimbabwe, Limpopo	Zimbabwe	Kenya	Northeast india	Kenya	Ghana	lvory coast	Nigeria	Zimbabwe	Uganda	Nigeria	Nigeria	Ghana	Nigeria	Maputaland	Zimbabwe	Uganda	Limpopo	Limpopo	Uganda, Nepal, Kenya, Bangladesh
Malaria, Tuberculosis, Diarrhea	Malaria, Fever, Diarrhea	Malaria, Fever	Malaria, Fever	Malaria, Fever	Malaria, Diarrhea	Malaria, Diarrhea	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Fever	Fever	Diarrhea	Diarrhea	Tuberculosis	Tuberculosis	Tuberculosis	Malaria, Fever, Tuberculosis, Diarrhea

112	111	110	109	108	107	106	105	104	103	102	101	100	66	86	97	96	95	94	93	92	91	06	89	88	87	86	85
EU527198.1	0	KY968839.1	0	0	KP072742.1	AM396851.1	0	KP764850.1	GQ465764.1	AM396851.1	DQ916851.1	KM092118.1	0	0	0	HQ265515.1	MK683071.1	HQ265520.1	MK978665.1	U63186.1	0	0	FJ874937.1	0	0	0	0
Asteraceae	Asteraceae	Asteraceae	Aspleniaceae	Asphodelaceae	Asphodelaceae	Aspecidaceae	Asparagaceae	Asclepiadaceae	Asclepiadaceae	Asclepiadaceae	Asclepiadaceae	Aristolochiaceae	Aristolochiaceae	Aristolochiaceae	Aristolochiaceae	Arecaceae	Arecaceae	Arecaceae	Araliaceae	Araliaceae	Araceae	Araceae	Araceae	Araceae	Araceae	Araceae	Apocynaceae
Berkheya	Artemisia	Ageratina	Asplenium	Aloe	Aloe	Daemia	Dracaena	Parquetina	Gomphocarpus	Pergularia	Hemidesmus	Aristolochia	Aristolochia	Aristolochia	Aristolochia	Cocos	Phoenix	Elaeis	Schefflera	Hedera	Zantedeshia	Stylochaeton	Acorus	Pothos	Homalomena	Culcasia	Strophanthus
Berkheya bipinnatifida	Artemisia parviflora	Ageratina adenophora	Asplenium adiantoides C. Chr	Aloe falcata Baker	Aloe spp.	Daemia extensa/Pergularia daemia	Dracaena steudneri Engl	Parquetina nigrescens (Afzel.) Bullock	Gomphocarpus physocarpus E. Mey.	Pergularia daemia	Hemidesmus indicus	Aristolochia spp.	Aristolochia tomentosa Sims.	Aristolochia spp.	Aristolochia heppii Merxm	Cocos nucifera L.	Phoenix reclinata Jacq	Elaeis guineensis Jacq	Schefflera sp.	Hedera helix L	Zantedeshia aethiopica (L.)	Stylochaeton natalensis Schott	Acorus calamus L.	Pothos ovatifolius Engl	Homalomena rubra Hassk	Culcasia faleifolia Eng	Strophanthus speciosus (Ward & Harv.) Reber
Bizana	West bengal	Meghalaya	Northeast india	Limpopo	Multicultural	India	Uganda	lvory coast	Uganda	India	India	Multicultural	Uganda	Zimbabwe	Zimbabwe	Multicultural	Nigeria	Nigeria	Indonesia	Iran	Limpopo	Limpopo	Multicultural	Indonesia	Indonesia	Uganda	Limpopo
Bizana	West bengal	Meghalaya	Northeast india	Limpopo	Uganda, Kenya, Nigeria, Bizana	India	uganda	lvory coast	Uganda	India	India	Uganda, Zimbabwe	Uganda	Zimbabwe	Zimbabwe	Ghana, nigeria	Nigeria	Nigeria	Indonesia	Iran	Limpopo	Limpopo	Northeast india, Nepal, Bangladesh	Indonesia	Indonesia	Uganda	Limpopo
Diarrhea	Diarrhea	Diarrhea	Malaria	Tuberculosis	Malaria, Fever, Tuberculosis, Diarrhea	Fever	Tuberculosis	Malaria	Malaria	Fever, Diarrhea	Diarrhea	Malaria, Tuberculosis	Malaria	Malaria	Malaria	Malaria, Fever	Fever	Fever	Malaria, Fever	Fever	Tuberculosis	Tuberculosis	Malaria, Fever, Diarrhea	Malaria	Malaria	Malaria	Tuberculosis

140 0	139 E	138 0	137 0	136 F	135 0	134 0	133 0	132 0	131 A	130 0	129 K	128 0	127 A	126 J	125 0	124 H	123 K	122 N	121 0	120 0	119 0	118 0	117 A	116 0	115 0	114 K	113 K
	EF 155745.1			FJ696965.1					AY914821.1		KF454311.1		AY723272.1	JQ230974.1		KY676855.1	KY397481.1	MH711524.1					AY603185.1			KY909250.1	KF443296.1
Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae
Bidens	Baccharoides	Aspilia	Artemisia	Acanthospermum	Eclipta	Waldheimia	Tanacetum	Tanacetum	Saussurea	Inula	Inula	Eclipta	Cremanthodium	Cichorium	Chrysanthemum	Centaurea	Carthamus	Atractylodes	Aster	Aster	Artemisia	Artemisia	Achillea	Vernonia	Launaea	Mikania	Blumea
Bidens grantii Sherf	Baccharoides adoensis (Sch. Bip. ex Walp.) H. Rob.	Aspilia africana (Pers.) C. D. Adams	Artemisia nilagirica (C.B. Clarke) Pamp	Acanthospermum hispidum (DC) Kuntze	Eclipta prostrata	Waldheimia stoliczkai (C.B. Clarke.) Ostenf	Tanacetum gracile Hk. f. & T	Tanacetum dolichophyllum (Kitam.) Kitam	Saussurea lappa C.B. Clarke/Saussurea costus	Inula rhizocephala Shrenk. var. rhizocephaloides (CI.) Kitam.	Inula racemosa Hk. f	Eclipta erecta	Cremanthodium ellisii (Hk. f.) Kitam	Cichorium intybus L	Chrysanthemum pyrethroides (Kar. & Kir.) B. Fedtsch	Centaurea depressa M Bieb	Carthamus tinctorius L.	Atractylodes lancea	Aster tibeticus Hk. f	Aster diplostephioides Benth	Artemisia gmelinii Web. ex Stechm	Artemisia brevifolia Wall.	Achillea millefolium Linn	Vernonia amygdalina	Launaea pinnatifida	Mikania micrantha	Blumea spp
Uganda	Multicultural	Uganda	Northeast india	Multicultural	Nepal	Nepal	Nepal	Nepal	Nepal	Nepal	Nepal	India	Nepal	Iran	Nepal	Nepal	Iran	Thailand	Nepal	Nepal	Nepal	Nepal	Nepal	Congo	India	Meghalaya	West bengal
Uganda	Uganda , Zimbabwe	Uganda	Northeast india	lvory coast, Ghana	Nepal	Nepal	Nepal	Nepal	Nepal	Nepal	Nepal	India	Nepal	Iran	Nepal	Nepal	Iran	Thailand	Nepal	Nepal	Nepal	Nepal	Nepal	Congo	India	Meghalaya	West bengal
Malaria	Malaria	Malaria	Malaria	Malaria	Fever, Diarrhea	Fever	Fever	Fever	Fever	Fever	Fever	Fever	Fever	Fever	Fever	Fever	Fever	Fever	Fever	Fever	Fever	Fever	Fever	Diarrhea	Diarrhea	Diarrhea	Diarrhea

INICIALIC	ogaliaa	Ogaliaa			Digitioniacoac	C	100
Hever, Luberculosis	Nigeria, Uganda	Multicultural	Kigelia atricana (Lam.) Benth.	Kigelia	Bignoniaceae	JN115030.1	19/
Fever, Diarrhea	India, Bizana	Multicultural	Tecoma spp	Tecoma	Bignoniaceae	AY178636.1	196
Diarrhea	India	India	Tecomaria capensis	Tecomaria	Bignoniaceae	AY695862.1	195
Diarrhea	Nigeria	Nigeria	Stereospermum kunthianu	Stereospermum	Bignoniaceae	0	194
Diarrhea	Meghalaya, nepal	Multicultural	Oroxylum indicum	Oroxylum	Bignoniaceae	FJ606747.1	193
Malaria	Northeast india	Northeast india	Betula alnoides BuchHam	Betula	Betulaceae	AJ783641.1	192
Malaria, Fever	Nepal	Nepal	Berberis lyceum Royle	Berberis	Berberidaceae	0	191
Malaria, Diarrhea	Northeast india, Himalaya	Multicultural	Berberis aristata DC.	Berberis	Berberidaceae	HM347891.1	190
Fever	Nepal	Nepal	Podophyllum hexandrum Royle	Podophyllum	Berberidaceae	AF328965.1	189
Diarrhea	Meghalaya	Meghalaya	Begonia rubrovenia	Begonia	Begoniaceae	0	188
Malaria	Northeast india	Northeast india	Impatiens angustifolia Blume	Impatiens	Balsaminaceae	0	187
Fever	Bangladesh	Bangladesh	Averrhoa carambola L	Averrhoa	Averrhoaceae	EU436863.1	186
Tuberculosis, Diarrhea	Limpopo	Limpopo	Vernonia natalensis	Vernonia	Asteraceae	0	185
Tuberculosis, Diarrhea	Limpopo	Limpopo	Helichrysum spp	Helichrysum	Asteraceae	0	184
Tuberculosis, Diarrhea	Limpopo	Limpopo	Dicoma anomala subsp. Gerrardii	Dicoma	Asteraceae	0	183
Tuberculosis	Limpopo	Limpopo	Senecio serratuloides DC	Senecio	Asteraceae	0	182
Tuberculosis	Limpopo	Limpopo	Psiadia punctulata (DC.) Vatke	Psiadia	Asteraceae	AF046954.1	181
Tuberculosis	Uganda	Uganda	Gnaphalium purpureum L/Gamochaeta purpurea	Gnaphalium	Asteraceae	JX524599.1	180
Tuberculosis	Limpopo	Limpopo	Callilepis laureola DC	Callilepis	Asteraceae	KT865463.1	179
Tuberculosis	Limpopo	Limpopo	Brachylaena transvaalensis	Brachylaena	Asteraceae	0	178
Tuberculosis	Uganda	Uganda	Aspilia africana (Pers.) C.D. Adams	Aspilia	Asteraceae	0	177
Malaria, Tuberculosis	Uganda	Uganda	Vernonia cinerea (L.) Less.	Vernonia	Asteraceae	0	176
Malaria, Tuberculosis	Uganda, Indonesia	Multicultural	Tithonia diversifolia A. Gray	Tithonia	Asteraceae	MH050186.1	175
Malaria, Tuberculosis	Uganda, Limpopo	Multicultural	Artemisia afra Jacq. ex Willd	Artemisia	Asteraceae	0	174
Malaria, Fever, Tuberculosis, Diarrhea	Uganda, Nigeria, Ghana, Congo	Multicultural	Vernonia spp./Gymnanthemum spp.	Vernonia	Asteraceae	AY504695.1	173
Malaria, Fever, Tuberculosis	Uganda , nepal	Multicultural	Bidens pilosa L	Bidens	Asteraceae	KY968897.1	172
Malaria, Fever, Tuberculosis	Uganda , Nigeria, Nepal	Multicultural	Ageratum conyzoides L.	Ageratum	Asteraceae	KR425612.1	171

	Cochlospermum tinctorium A. Rich	permum	ermaceae	KY670819.1
Limpopo	Garcinia gerrardii Harv. ex Sim			0
Uganda	Garcinia buchananii Baker			0
Multicultural	Garcinia spp	Garcinia Garcinia spp	Clusiaceae	EU128453.1
Limpopo	Pristimera longipetiolata (Oliv.) N.Hall			HM230141.1
Limpopo	Pleurostylia capensis (Turcz.) Loes	a	Celastraceae /	DQ217525.1
Limpopo	Gymnosporia senegalensis (Lam.) Loes	Gymnosporia Gymn	Celastraceae	0
Limpopo	Gymnosporia maranguensis (Loes.) Loe	Gymnosporia Gymn	Celastraceae	0
Limpopo	Elaeodendron transvaalense (Burtt Davy) R.H.Archer	Elaeodendron R.H.Archer	Celastraceae	0
Multicultural	Maytenus senegalensis (Lam.) Exel/Gymnosporia spp	Maytenus ExeVG	Celastraceae /	KJ004285.1
Kenya	Maytenus undata (Thunb.) Blakelock	Maytenus Mayte	Celastraceae /	0
Nigeria	Celastrus indica	Celastrus Celast	Celastraceae	0
Nepal	Drymaria cordata	Drymaria Dryma	Caryophilaceae	FJ980408.1
Maputaland	Krauseola mossambicina	Krauseola Kraus	Caryophilaceae	0
Multicultural	Carica papaya L	Carica	Caricaceae	AY461547.1
Nigeria	Buchholzia coriacea Engl.	Buchholzia Buchh		0
India	Capparis zeylanica	Capparis Cappa	Capparaceae	0
Nigeria	Canna indica L.	Canna Canna	Cannaceae	FJ939544.1
Uganda	Warburgia ugandensis Sprague	Warburgia Warbu	Canellaceae	0
Limpopo	Warburgia salutaris (G. Bertol.)	Warburgia Warbu	Canellaceae	0
Multicultural	Warburgia spp	Warburgia Warbu	Canellaceae	MN257823.1
Madagascar	<i>Cinnamosma fragrans</i> H. Bn	Cinnamosma	Canellaceae	0
Nepal	Lobelia pyramidalis Wall	Lobelia	Campanulaceae	0
is Multicultural	Cassia occidentalis Linn/Senna occidentalis	Cassia	Caesalpiniaceae	0
Multicultural	spp.	Senna Spp.	Caesalpiniaceae	MF963893.1

255	254	253	252	251	250	249	248	247	246	245	244	243	242	241	240	239	238	237	236	235	234	233	232	231	230
KY670819.1	0	0	EU128453.1	FJ980362.1	HM230141.1	DQ217525.1	0	0	0	KJ004285.1	0	0	FJ980408.1	0	AY461547.1	0	0	FJ939544.1	0	0	MN257823.1	0	0	0	MF963893.1
Cochlorspermaceae	Clusiaceae	Clusiaceae	Clusiaceae	Chenopodiaceae	Celastraceae	Celastraceae	Celastraceae	Celastraceae	Celastraceae	Celastraceae	Celastraceae	Celastraceae	Caryophilaceae	Caryophilaceae	Caricaceae	Capparaceae	Capparaceae	Cannaceae	Canellaceae	Canellaceae	Canellaceae	Canellaceae	Campanulaceae	Caesalpiniaceae	Caesalpiniaceae
Cochlospermum	Garcinia	Garcinia	Garcinia	Chenopodium	Pristimera	Pleurostylia	Gymnosporia	Gymnosporia	Elaeodendron	Maytenus	Maytenus	Celastrus	Drymaria	Krauseola	Carica	Buchholzia	Capparis	Canna	Warburgia	Warburgia	Warburgia	Cinnamosma	Lobelia	Cassia	Senna
Cochlospermum tinctorium A. Rich	Garcinia gerrardii Harv. ex Sim	Garcinia buchananii Baker	Garcinia spp	Chenopodium ambrosioides	Pristimera longipetiolata (Oliv.) N.Hall	Pleurostylia capensis (Turcz.) Loes	Gymnosporia senegalensis (Lam.) Loes	Gymnosporia maranguensis (Loes.) Loe	Elaeodendron transvaalense (Burtt Davy) R.H.Archer	Maytenus senegalensis (Lam.) Exel/Gymnosporia spp	Maytenus undata (Thunb.) Blakelock	Celastrus indica	Drymaria cordata	Krauseola mossambicina	Carica papaya L	Buchholzia coriacea Engl.	Capparis zeylanica	Canna indica L.	Warburgia ugandensis Sprague	Warburgia salutaris (G. Bertol.)	Warburgia spp	Cinnamosma fragrans H. Bn	Lobelia pyramidalis Wall	Cassia occidentalis Linn/Senna occidentalis	Senna spp.
Nigeria	Limpopo	Uganda		Maputaland	Limpopo	Limpopo	Limpopo	Limpopo	Limpopo	Multicultural	Kenya	Nigeria	Nepal	Maputaland	Multicultural	Nigeria	India	Nigeria	Uganda	Limpopo	Multicultural	Madagascar	Nepal	Multicultural	Multicultural
Nigeria	Limpopo	Uganda	Nigeria, Maputaland	Maputaland	Limpopo	Limpopo	Limpopo	Limpopo	Limpopo	Kenya, Uganda, Maputaland, Limpopo	Kenya	Nigeria	Nepal	Maputaland	Northeast india, Uganda, Zimbabwe, Nigeria, Indonesia , Ghana	Nigeria	India	Nigeria	Uganda	Limpopo	kenya, Uganda, Limpopo	Madagascar	Nepal	lvory coast, Kenya, Ghana, Limpopo	Uganda, Ivory coast, Ghana, Kenya, Nigeria, Iran, Zimbabwe, Limpopo, Maputaland, India
Fever	Tuberculosis	Tuberculosis	Malaria, Diarrhea	Diarrhea	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Malaria, Tuberculosis, Diarrhea	Malaria	Fever	Fever	Diarrhea	Malaria, Fever, Tuberculosis	Fever	Diarrhea	Malaria	Tuberculosis	Tuberculosis	Malaria, Tuberculosis	Malaria	Fever	Malaria, Tuberculosis	Malaria, Fever, Tuberculosis, Diarrhea

286	285	284	283	282	281	280	279	278	277	276	275	274	273	272	271	270	269	268	267	266	265	264	263	262	261	260	259	258	257	256
0	0	GQ183047.1	AY283435.1	0	GQ240881.1	0	KJ026937.1	0	KP114736.1	0	MG730644.1	MH566959.1	MN824794.1	HQ728520.1	KC528926.1	0	0	0	FJ381769.1	0	0	0	0	0	MH432182.1	EU338046.1	0	0	0	0
Curcubitaceae	Curcubitaceae	Curcubitaceae	Cupresaceae	Cupresaceae	Cucurbitaceae	Cucurbitaceae	Cucurbitaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Cornaceae	Convolvulaceae	Convolvulaceae	Convolvulaceae	Connaraceae	Commelinaceae	Commelinaceae	Combretaceae	Combretaceae	Combretaceae	Combretaceae	Combretaceae	Combretaceae	Combretaceae	Combretaceae	Combretaceae	Combretaceae	Combretaceae	Combretaceae
Momordica	Gerranthus	Solena	Juniperus	Juniperus	Trichosanthes	Coccinia	Lagenaria	Kalanchoe	Rhodiola	Rhodiola	Bryophyllum	Alangium	lpomoea	Cuscuta	Convolvulus	Roureopsis	palisota	Floscopa	Guiera	Terminalia	Combretum	Combretum	Combretum	Combretum	Terminalia	Combretum	Terminalia	Terminalia	Combretum	Anogeissus
Momordica balsamina L	Gerranthus lobatus (Cogn.) Jeffrey	Solena heterophylla Lour	Juniperus spp	Juniperus indica	Trichosanthes dioica	Coccinia cordifolia (L.) Cogn.	Lagenaria siceraria	Kalanchoe glaucescens Planch. ex benth	Rhodiola spp.	Rhodiola imbricata Edgew	Bryophyllum pinnatum	Alangium chinense	lpomoea albivenia (Lindl.)	Cuscuta reflexa	Convolvulus scammonia L	Roureopsis obliquifoliolata	palisota hirsota	Floscopa africana (P.Beauv.) C.B.Clarke	Guiera senegalensis J.F. GMel	Terminalia sericea Burch. ex DC.		Combretum molle R.Br. ex. G. Don	Combretum hereroense	Combretum aculeatum Vent	Terminalia spp.	Combretum spp	Terminalia spinosa Engl.	Terminalia ivorensis A. Chev	Combretum illairii Engl.	Anogeissus leiocarpus (DC.) Guill & Perr
Zimbabwe	Kenya	Nepal	Nepal	Nepal	India	Bangladesh	Nepal	Uganda	Nepal	Nepal	Nigeria	Uganda	Limpopo	India	Iran	Congo	Nigeria	Nigeria	Multicultural	Limpopo	Senegal	Uganda	Limpopo	Senegal	Multicultural	Multicultural	Kenya	Ghana	Kenya	Nigeria
Zimbabwe	Kenya	Nepal	Nepal	Nepal	India	Bangladesh	Nepal	Uganda	Nepal	Nepal	Nigeria	Uganda	Limpopo	India	Iran	Congo	Nigeria	Nigeria	Senegal, Nigeria	Limpopo	Senegal	Uganda	Limpopo	Senegal	Ghana, Limpopo, Maputaland, Meghalaya	Kenya, Uganda, Limpopo	Kenya	Ghana	Kenya	Nigeria
Malaria	Malaria	Fever	Fever, Diarrhea	Diarrhea	Fever	Fever	Diarrhea	Tuberculosis	Fever	Fever	Fever	Tuberculosis	Tuberculosis	Fever	Fever	Diarrhea	Fever	Fever	Tuberculosis, Diarrhea	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Malaria, Tuberculosis, Diarrhea	Malaria, Tuberculosis	Malaria	Malaria	Malaria	Fever

316 (315 (314 (313 (312 (310 (309	308	307 (306 (305	304 (303	302	301 (300	299	298	297	296	295	294 /	293 (292	291 (290	289	288 (287
0	0	0	0	0	MH710817.1	0	0	AY755760.1	0	0		0	0	0	0	KM514673.1	0	0	0	KJ956698.1	0	AY096030.1	0	MH768132.1	0	0	AM981119.1	0	JN407450.1
Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Ericaceae	Ericaceae	Ephedraceae	Ebenaceae	Ebenaceae	Ebenaceae	Ebenaceae	Ebenaceae	Dracaenaceae	Dracaenaceae	Dipterocarpaceae	Dioscoreaceae	Dioscoreaceae	Dioscoreaceae	Dioscoreaceae	Dioscoreaceae	Dillaneaceae	Cyperaceae	Cyperaceae	Cyperaceae	Curcubitaceae	Curcubitaceae	Curcubitaceae	Curcubitaceae
Emblica	Croton	Phyllanthus	Euphorbia	Clutia	Acalypha	Rhodondendron	Gaultheria	Ephedra	Euclea	Diospyros	euclea	Euclea	Diospyrosmes	Dracaena	Sansevieria	Shorea	Dioscorea	Dioscorea	Dioscorea	Dioscorea	Dracaena	Dillenia	Cyperus	Cyperus	Cyperus	Cucumis	Cucumis	Momordica	Momordica
Emblica officinalis	Croton mubango	Phyllanthus emblica	Euphorbia royleana	Clutia pulchella	Acalypha australis	Rhodondendron campanulatum D.Don	Gaultheria fragantissima	Ephedra gerardiana Wall. ex Stapf	Euclea undulata Thunb	Diospyros mespiliformis Hochst. ex A.DC SSS36	Euclea divinorum	Euclea natalensis A.DC	Diospyrosmes piliformis Hochst. ex A.DC	Dracaena loureiri Gagnep	Sansevieria hyacinthoides	Shorea robusta	Dioscorea sylvatica Eckl. var. brevipes (Burtt Davy) Burkill	Dioscorea dregeana (Kunth)	Dioscorea dumetorum Kunth	Dioscorea spp	Dracaena loureiri Gagnep	Dillenia indica L.	Cyperus sexangularis Nees	Cyperus spp	Cyperus rotundus	Cucumis zeyheri Sond	Cucumis spp	Momordica foetida Schumach	Momordica spp
India	Congo	Nepal	Nepal	Bizana	adesh	Nepal	Meghalaya	Nepal	Limpopo	Limpopo	Zimbabwe	Zimbabwe	Nigeria	Thailand	Limpopo	India	Limpopo	Limpopo	Nigeria	Multicultural	Thailand	Bangladesh	Limpopo	Multicultural	Congo	Limpopo	Limpopo	Multicultural	Multicultural
India	Congo	Nepal	Nepal	Bizana	Bangladesh	Nepal	Meghalaya	Nepal	Limpopo	Limpopo		Zimbabwe	Nigeria	Thailand	Limpopo	India	Limpopo	Limpopo	Nigeria	Nigeria, India	Thailand	Bangladesh	Limpopo	Indonesia, Bizana	Congo	Limpopo	Limpopo	Zimbabwe, Uganda	Indonesia , Ghana, Nigeria, Nepal, Zimbabwe
Fever	Diarrhea	Diarrhea	Diarrhea	Diarrhea	Diarrhea	Fever	Diarrhea	Fever	Tuberculosis	Tuberculosis	Malaria, Tuberculosis, Diarrhea	Malaria	Malaria	Fever	Diarrhea	Diarrhea	Tuberculosis	Tuberculosis	Malaria	Fever, Diarrhea	Fever	Fever	Tuberculosis	Malaria, Diarrhea	Diarrhea	Tuberculosis	Tuberculosis	Malaria, Tuberculosis	Malaria, Fever

344 /	343 0	342 H	341 0	340 (339	338 (337 0	336 (335 (334 F	333	332	331 0	330	329	328 0	327 0	326 0	325 (324 (323 (322 [321 [320	319 (318 1	31/ 0
AY748439.1	0	KX057832.1		0	KP794335.1	0		0	0	FJ439920.1	KP092923.1	MH768161.1	0	KY968910.1	MH768145.1	0	0	0	0	0	0	DQ866606.1	DQ866581.1	KF500512.1	0	MN257852.1	
Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Eupnorbiaceae
Vigna	Peltophorum	Alysicarpus	Alhagi	Albizia	Tragia	Sapium	Jatropha	Croton	Croton	Bridelia	Croton	Ricinus	Alchornea	Phyllanthus	Euphorbia	Tetrorchidium	Suregada	Shirakiopsis	Phyllanthus	Phyllanthus	Mareya	Mallotus	Macaranga	Jatropha	Homonoia	Flueggea	Croton
Vigna unguiculata	Pettophorum africanum	Alysicarpus rugosus	Alhagi pseudalhagi	Albizia antunesiana	Tragia dioica	Sapium ellipticum (Hochst.) Pax	Jatropha zeyheri	Croton menyharthii Pax	Croton gratissimus Burch	Bridelia micrantha (Hochst.) Baill	Croton spp	Ricinus communis L.	Alchornea cordifolia (Schumach. and Thonn.)	Phyllanthus spp.	Euphorbia spp	Tetrorchidium didymostemon (Baill.) Pax & K. Hoffm.	Suregada zanzibarensis Baill	Shirakiopsis elliptica (Hochst.) HJ. Esser	Phyllanthus muellerianus (Kuntze)	Phyllanthus (pseudo) niruri Mull. Arg.	Mareya micrantha	Mallotus oppositifolius Mull. Arg	Macaranga schweinfurthii Pax	Jatropha curcas L.	Homonoia riparia Lour	Flueggea virosa (Willd.) Voigt	Croton caudatus Geisei
Limpopo	Zimbabwe	Bizana	Iran	Zimbabwe	Limpopo	Uganda	Limpopo	Limpopo	Limpopo	Uganda	Multicultural	Multicultural	Multicultural	Multicultural	Multicultural	Uganda	Kenya	Uganda	lvory coast	Uganda	Ivory coast	Nigeria	Uganda	Multicultural	Northeast india	Multicultural	Northeast India
Limpopo	Zimbabwe	Bizana	Iran	Zimbabwe	Limpopo	Uganda	Limpopo	Limpopo	Limpopo	Uganda	Northeast india, Limpopo, Congo	Kenya, Limpopo	lvory coast, Uganda	Ghana , Nigeria, Uganda, Ivory coast, Nepal	lvory coast, Nigeria, Senegal, Nepal	Uganda	Kenya	Uganda	lvory coast	Uganda	lvory coast	Nigeria	Uganda	Uganda, india	Northeast india	Kenya ,Ghana	Northeast India
Diarrhea	Diarrhea	Diarrhea	Diarrhea	Diarrhea	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Malaria, Tuberculosis, Diarrhea	Malaria, Tuberculosis	Malaria, Tuberculosis	Malaria, Fever, Tuberculosis, Diarrhea	Malaria, Fever, Tuberculosis, Diarrhea	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria

377		375	374	373	372	371	370	369	368	367	366	365	364	363	362	361	360	359	358		356	355	354	353	352	351	350	349	348	347	346	345
0	0	KX057840.1	0	0	0	0	0	KX057869.1	JQ067205.1	MN852274.1	MK207321.1	KX057842.1	AF467015.1	0	0	0	0	0	0	0	0	JX494756.1	KY968966.1	MH260279.1	0	0	0	AF467493.1	0	MH768281.1	AF189023.1	KJ436384.1
Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae
Detarium	Desmodium	Burkea	Albizia	Albizia	Acacia	Acacia	Acacia	Entada	Crotalaria	Indigofera	Erythrina	Cajanus	Abrus	Tetrapleura	Millettia	Erythrina	Entada	Crotolaria	Crotalaria	Cassia	Albizia	Alhagi	Melilotus	Clitoria	Cassia	Sophora	Sesbania	Pongamia	Pongamia	Desmodium	Dalbergia	Butea
Detarium senegalense J.F.Gmel.	Desmodium salicifolium (Poir.) D.C.	Burkea africana Hook	Albizia coriaria Welw.ex Oliv	Albizia adianthifolia (Schumach.) W.Wight var. adianthifolia	Acacia spectabilis	Acacia hockii De Wild	Acacia erioloba E.Mey./Vachellia erioloba	Entada abyssinica Steud. ex A. Rich.	Crotalaria spp	Indigofera sp. (GOM 1)	Erythrina spp.	Cajanus cajan (L.) Druse	Abrus precatorius L.	Tetrapleura tetraptera	Millettia zechiana Harms	Erythrina excelsa Bak	Entada africana Guill. & Perr.	Crotolaria occulta Grab	Crotalaria ochroleuca G. Don	Cassia sieberiana DC	Albizia ferruginea (Guill. and Perr.)	Alhagi spp	Melilotus officinalis Linn.	Clitoria ternatea	Cassia angustifolia Vahl/Senna alexandrina	Sophora mollis	Sesbania grandifolia	Pongamia spp	Pongamia glabra	Desmodium triflorum	Dalbergia sissoo	Butea frondosa/ Butea monosperma
Senegal	Uganda	Limpopo	Uganda	Limpopo	Uganda	Uganda	Limpopo	Multicultural	Multicultural	Multicultural	Multicultural	Multicultural	Kenya	Ghana	lvory coast	Northeast india	Northeast india	Northeast india	Northeast india	lvory coast	lvory coast	Iran	Nepal	India	Iran	Nigeria	India	India	India	India	India	India
Senegal	Uganda	Limpopo	Uganda	Limpopo	Uganda	Uganda	Limpopo	Northeast india, Uganda Malaria, Tuberculosis	Northeast india, Uganda Malaria, Tuberculosis	Ghana, Uganda	Northeast india, Uganda, Limpopo	Northeast india, Nigeria	Kenya	Ghana	lvory coast	Northeast india	Northeast india	Northeast india	Northeast india	lvory coast	lvory coast	Iran	Nepal	India	Iran	Nigeria	India	India	India	India	India	India
Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Malaria, Tuberculosis	Malaria, Tuberculosis	Malaria, Tuberculosis	Malaria, Fever, Tuberculosis	Malaria, Fever	Malaria, Fever	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Fever, Diarrhea	Fever	Fever	Fever	Diarrhea	Diarrhea	Diarrhea	Diarrhea	Diarrhea	Diarrhea	Diarrhea

410 0		408 (407 /	406			403	402	401		399	398	397 (396	395 (394	393 (392	391	390 (389 (388 (386	385 (384	383 (382	381	380	379 (378 (
0	AF349295.1	0	AF256560.1	FJ232582.1	0	0	MN561250.1	JX569818.1	0	AJ294675.1	KU512311.2	KX282162.1	0	DQ521289.1	0	KX838252.1	0	MN992833.1	KX057868.1	0	0	0	0	JN083479.1	0	FJ172178.1	0	AF467482.1	EU720492.1	0	0	0
Gramineae	Gesneriaceae	Geraniaceae	Geraniaceae	Gentinaceae	Gentinaceae	Gentinaceae	Gentinaceae	Gentianaceae	Gentianaceae	Gentianaceae	Gentianaceae	Fumariaceae	Fumariaceae	Flacourtiaceae	Flacourtiaceae	fagaceae	Fagaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae
Andropogon	Aeschynanthus	Geranium	Pelargonium	Enicostema	Swertia	Swertia	Halenia	Swertia	Swertia	Gentianella	Gentiana	Fumaria	Corydalis	Flacourtia	Gynocardia	Quercus	Quercus	Schotia	Dichrostachys	Tylosema	Senna	Senna	Rhynchosia	Pterocarpus	Piptadeniastrum	Phaseolus	Parkia	Mundulea	Lepisanthes	Indigofera	Erythrina	Elephantorrhiza
Andropogon schænanthus/nardis L	Aeschynanthus sikkimensis Stapf	Geranium pretense Linn	Pelargonium luridum	Enicostema axillare (Lam.) A.	Swertia nervosa Wall	Swertia dilatata Wall.	Halenia elliptica D. Don	Swertia spp	Swertia petiolata Royle ex D. Don	Gentianella moorcroftiana (Wall. ex Griseb.) Airy Shaw	Gentiana algida Pallas	Fumaria parviflora Lam	Corydalis govaniana Wall	Flacourtia indica (Burm.f) Merr.	Gynocardia odorata	Quercus spp	Quercus brantii	Schotia brachypetala Sond	Dichrostachys cinerea (L.)	Tylosema fassoglense (Schweinf.) Torre & Hillc	Senna petersiana (Bolle) Lock	Senna italica Mill. subsp. arachoides (Burch.) Lock	Rhynchosia hirta (Andrews)	Pterocarpus erinaceus Poir	Piptadeniastrum africanum (Hook. f.) Brenan	Phaseolus vulgaris L.	Parkia filicoidea Welw. ex Oliv	Mundulea sericea Willd	Lepisanthes senegalensis (Poir.) Leehn	Indigofera emarginella Steud. ex A. Rich	Erythrina lysistemon Hutch	Elephantorrhiza burkei Benth
Madagascar				Limpopo	Northeast india	Northeast india	Northeast india	Multicultural	Nepal	Nepal	Nepal	Iran	Nepal	Multicultural	Nepal	Multicultural	Iran	Multicultural	Multicultural	Limpopo	Limpopo	Limpopo	Limpopo	Senegal		Uganda	Uganda	Limpopo	Senegal	Uganda	Limpopo	Limpopo
Madagascar	Nepal	Nepal	Bizana	Limpopo	Northeast india	Northeast india	Northeast india	Nepal, Northeast india	Nepal	Nepal	Nepal	Iran	Nepal	Kenya, Zimbabwe	Nepal	Northeast India	Iran	Limpopo, Maputaland	Limpopo, India	Limpopo	Limpopo	Limpopo	Limpopo	Senegal	Uganda	Uganda	Uganda	Limpopo	Senegal	Uganda	Limpopo	Limpopo
Malaria	Fever	Fever	Diarrhea	Tuberculosis	Malaria	Malaria	Malaria	Malaria, Fever	Fever	Fever	Fever	Fever	Fever	Malaria, Diarrhea	Fever	Fever, Diarrhea	Diarrhea	Tuberculosis, Diarrhea	Tuberculosis, Diarrhea	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis

452	451	450	449	448	447	446	445	444	443	442	441	440	439	438	437	436	435	434	433	432	431	430	429	428	427	426	425	424	423	422	421	420	419	418	417	416	415	414	413	412	411
KX509877.1	0	AF272298.1	0	0	0	0	JF301584.1	0	MF468205.1	0	0	0	0	KT210237.1	KF769031.1	KC535539.1	0	0	0	0	MK881159.1	KM877374.1	0	0	0	0	0	0	0	0	0	0	KC709362.1	MN999720.1	KP092583.1	0	0	0	0	0	AF426350.1
Lauraceae	Lauraceae	Lauraceae	Lauraceae	Lauraceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Labietaceae	Labiatae	Kirkiaceae	Icacinaceae	Icacinaceae	Hypoxidaceae	Hypoxidaceae	Hypoxidaceae	Hypericaceae	Hypericaceae	Hydrangiaceae	Hydnoraceae	Hyacinthaceae	Hyacinthaceae	Hyacinthaceae	Hyacinthaceae	Grossulariaceae
Persea	Cinnamonum	Ocotea	Cinnamomum	Cinnamomum	Tetradenia	Stachys	Hyptis	Clerodendrum	Ocimum	Ocimum	Ocimum	Mesona	Gomphostemma	Elsholtzia	Stachys	Scutellaria	Nepeta	Nepeta	Melissa	Leucas	Leucas	Coleus	Ajuga	Thymus	Hoslundia	Ocimum	Kirkia	Pyrenacantha	Cassinopsis	Curculigo	Hypoxis	Curculigo	Harungana	Psorospermum	Dichroa	Hydnora	Eucomis	Drimia	Drimia	Ledebouria	Ribes
Persea americana Mill	Cinnamonum bejolghota (BuchHam)	Ocotea bullata	Cinnamomum tamala	Cinnamomum paucliflorum	Tetradenia riparia (Hochst.) Codd	Stachys spp	Hyptis suaveolens (L.) Poit	Clerodendrum ternatum Schinz	Ocimum spp.	Ocimum gratissimum L	Ocimum angustifolium Benth.	Mesona wallichiana Benth	Gomphostemma parviflora Wall	Elsholtzia blanda Benth	Stachys spp	Scutellaria discolor Colebr	Nepeta floccosa Benth	Nepeta discolor Royle ex Benth	Melissa parviflora Benth	Leucas lavendulifolia Sm.	Leucas aspera	Coleus amboinicus/Plectranthus amboinicus	Ajuga integrifolia	Thymus linearis	Hoslundia opposite Vahl	Ocimum basilicum L.	Kirkia wilmsii Engl.	Pyrenacantha grandiflora Baill	Cassinopsis ilicifolia (Hochst.)Kuntze	Curculigo pilosa Schum & Thonn	Hypoxis hemerocallidea	Curculigo orchioides	Harungana madagascariensis Poir.	Psorospermum febrifugum Spach.	Dichroa febrifuga Lour	Hydnora africana	Eucomis autumnalis (Mill.)	Drimia sanguinea (Schinz)Jessop	Drimia elata Jacq.	Ledebouria ovatifolia	Ribes uva-crispa L
Multicultural	Northeast india	Bizana	Multicultural	Meghalaya	Uganda	Limpopo	Uganda	Limpopo	Multicultural	Multicultural	Zimbabwe	Northeast india	Northeast india	Northeast india	Multicultural	Nepal	Nepal	Nepal	Nepal	Bangladesh	India	India	pakistan	Nepal	Kenya	Kenya	Limpopo	Limpopo	Limpopo	Nigeria	Bizana	Nepal	Multicultural	Nigeria	Multicultural	Bizana	Multicultural	Limpopo	Limpopo	Bizana	Uganda
Nigeria, Uganda	Northeast india	Bizana	meghalaya, nepal	Meghalaya	Uganda	Limpopo	Uganda	Limpopo	Northeast india, Bangladesh, Ghana, Nigeria, Kenya	Ghana, Nigeria	Zimbabwe	Northeast india	Northeast india	Northeast india	Nepal, Limpopo	Nepal	Nepal	Nepal	Nepal	Bangladesh	India	India	pakistan	Nepal	Kenya	Kenya	Limpopo	Limpopo	Limpopo	Nigeria	Bizana	Nepal	kenya, nigeria	Nigeria	nepal, northeast india	Bizana	Limpopo, Bizana	Limpopo	Limpopo	Bizana	Uganda
Malaria, Fever, Tuberculosis	Malaria	Diarrhea	Diarrhea	Diarrhea	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Malaria, Fever	Malaria, Fever	Malaria	Malaria	Malaria	Malaria	Fever, Tuberculosis	Fever	Fever	Fever	Fever	Fever	Fever	Fever	Fever	Diarrhea	Malaria	Malaria	Tuberculosis	Tuberculosis	Tuberculosis	Fever	Diarrhea	Diarrhea	Malaria, Fever	Fever	Malaria, Fever	Diarrhea	Tuberculosis, Diarrhea	Tuberculosis	Tuberculosis	Diarrhea	Tuberculosis

494 0	493 0	492 0		490 MN	489 MH	L	487 0	486 0	485 0					480 FJ2	479 0	478 LC(477 MH	476 0	475 EU:	474 AF-	473 JQ7	472 MN	471 FJ2	470 0	469 0	468 0	467 0	466 0			463 0	462 0	461 0	460 MN	459 0	458 0	457 0	456 0	455 0	454 0	
			KY798015.1	MN177142.1	MH768331.1					U12713.1		KP222461.1		FJ204691.1		LC093518.1	MH768225.1		EU593550.1	AF420217.1	JQ740193.1	MN257683.1	FJ232578.1						JQ230982.1	GQ184575.1				MN257791.1							
Meliaceae	Meliaceae	Melastomaceae	Melastomaceae	malvaceae	Malvaceae	Malvaceae	malvaceae	malvaceae	malvaceae	malvaceae	malvaceae	Malvaceae	Malvaceae	Malvaceae	Malvaceae	Malvaceae	Malvaceae	Malpighiaceae	Magnoliacae	Lythraceae	Lythraceae	Loganiaceae	Loganiaceae	Loganiaceae	Loganiaceae	Liliaceae	Liliaceae	Liliaceae	Liliaceae	Liliaceae	Liliaceae	Liliaceae	Liliaceae	Leguminosae	Leguminosae	Leguminosae	Leguminosae	Leguminosae	Leguminosae	Lecythidaceae	
Turraea	Trichilia	Osbeckia	Melastoma	Grewia	Waltheria	Triumfetta	Hibiscus	Grewia	Grewia	Gossypium	Abutilon	Abelmoschus	Triumffeta	Malva	Grewia	Byttneria	Abutilon	Tristellateia	Magnolia	Lawsonia	Punica	Strychnos	Fagraea	Anthocleista	Anthocleista	Allium	Aloe	Aloe	Asparagus	Paris	Allium	Protoasparagus	Asparagus	Albizia	Desmodium	Cassia	Acacia	Pentacletra	Cassia	Petersianthus	
l urraea obtustfolia	Trichilia emetica	Osbeckia crinata	Melastoma malabathricum	Grewia spp	Wattheria indica L	Triumfetta flavescens Hochst. ex A. Rich	Hibiscus fuscus Garcke	Grewia occidentalis L	Grewia flava DC.	Gossypium herbaceum	Abutilon galpinii A.Meeuse	Abelmoschus esculentus	Triumffeta spp	Malva parviflora	Grewia sapida	Byttneria herbacea	Abutilon indicum	Tristellateia madagascariensis Poir	Magnolia grandiflora L	Lawsonia inermis L.	Punica granatum	Strychnos spp	Fagraea racemosa Jack	Anthocleista nobilis G. Don	Anthocleista djalonensis A. Chevalier	Allium sativum L	Aloe macrosiphon Bak.	Aloe deserti Berger.	Asparagus spp	Paris polyphylla Smith	Allium ascalonicum L. Backer	Protoasparagus racemosus	Asparagus racemosus	Albizia spp	Desmodium mauritianum D.C.	Cassia abbreviata Oliv	Acacia nilotica (L.)	Pentacletra macrophylla	Cassia fistula	Petersianthus macrocarpus (P.Beauv.)Liben	Diane/Cimanoman spp
Bizana	Maputaland	Meghalaya	Bangladesh	Multicultural	Limpopo	Uganda	Uganda	Limpopo	Limpopo	Limpopo	Limpopo	India	Limpopo	Bizana	West bengal	West bengal	Bangladesh	Madagascar	Northeast india	Multicultural	Multicultural	Multicultural	Indonesia	Ghana	lvory coast	Multicultural	Kenya	Kenya	Multicultural	Nepal	Nigeria	India	Nepal	Multicultural	Madagascar	Multicultural	Kenya	Nigeria	India	Ghana	
Bizana	Maputaland	Meghalaya	Bangladesh	Limpopo, Zimbabwe, West bengal	Limpopo	Uganda	Uganda	Limpopo	Limpopo	Limpopo	Limpopo	India	Limpopo	Bizana	West bengal	West bengal				Nigeria, Senegal	Limpopo, India	Ivory coast, Maputaland	Indonesia		lvory coast	Nigeria, Uganda		Kenya	India, Zimbabwe, Nepal		a	India	Nepal	abwe		Zimbabwe, Kenya	Kenya	Nigeria	India	Ghana	
Diarrhea	Diarrhea	Diarrhea	Diarrhea	Tuberculosis, Diarrhea	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Fever	Diarrhea	Diarrhea	Diarrhea	Diarrhea	Diarrhea	Malaria	Malaria	Fever, Tuberculosis	Diarrhea	Malaria, Diarrhea	Malaria	Malaria	Malaria	Malaria, Fever, Tuberculosis	Malaria	Malaria	Fever, Diarrhea	Fever	Fever	Diarrhea	Diarrhea	Malaria, Diarrhea	Malaria	Malaria	Malaria	Fever	Diarrhea	Malaria	

Tuberculosis	Limnono	l imnono	Ficus innens (Min) Min	Fictio	Moraceae		531
Tuberculosis		Inanda	Ficus alumosa Delile	Ficus		D	530
Tuberculosis		Limpopo	Ficus abutilifolia (Miq.) Miq.	Ficus		0	529
Tuberculosis	Uganda	Uganda	Antiaris toxicaria Lesch.	Antiaris	Moraceae	KT002559.1	528
Malaria, Tuberculosis. Diarrhea	Kenya, Uganda, Limpopo, Senegal, Bizana	Multicultural	Ficus spp	Ficus	Moraceae	EU091599.1	527
Malaria, Tuberculosis	Nigeria, Uganda	Multicultural	Melicia excelsa (Welw.)	Melicia	Moraceae	0	526
Malaria	Madagascar	Madagascar	Ficus megapoda Bak.	Ficus	Moraceae	0	525
Malaria	Nigeria			Ficus		0	524
Malaria	ast	ast	Thunb	Ficus		0	523
Fever	Nigeria			Artocarpus		MT012131.1	522
Diarrhea	Bangladesh	fesh		Streblus	Moraceae	KT207487.1	521
Fever	India	India	Mollugo nudicaulis	Mollugo	Molluginaceae	KT907365.1	520
Malaria, Fever, Tuberculosis, Diarrhea	Northeast india, Limpopo, Uganda, Maputaland, Bizana	Multicultural	Acacia spp	Acacia	Mimosaceae	AF360728.1	519
Fever, Tuberculosis	Limpopo	Multicultural	Acacia senegal (L.) Willd	Acacia	Mimosaceae	0	518
Fever	Nigeria	Nigeria	Parkia biglobosa (Jacq.) R. Br	Parkia	Mimosaceae	0	517
Fever	Bangladesh	Bangladesh	Mimosa pudica L.	Mimosa	Mimosaceae	KX057889.1	516
Tuberculosis	Limpopo	Limpopo	Carpobrotus edulis (L.) L.Bolus	Carpobrotus	Mesembryanthemace ae	0	515
Malaria, Fever	Nigeria	Nigeria	Sphenocentrum jollyanum Pierre	Sphenocentrum	Menispermaceae	KY365656.1	514
Malaria, Diarrhea	Northeast india, Maputaland	Multicultural	Cissampelos spp	Cissampelos	Menispermaceae	MK256959.1	513
Malaria	Northeast india	Northeast india	Stephania japonica Miers.	Stephania	Menispermaceae	KJ566142.1	512
Malaria	Ivory coast	Ivory coast	Rhigiocarya racemifera Miers	Rhigiocarya	Menispermaceae	KY365655.1	511
Malaria	Kenya		A. Rich.	Cissampelos	Menispermaceae	0	510
Fever, Diarrhea	Nepal, India	cultural	Tinospora cordifolia Willd	Tinospora	Menispermaceae	0	509
Fever, Diarrhea			tus	cocculus	Menispermaceae		508
Fever				Tinospora	Menispermaceae	MK256960.1	507
Fever				Stephania	Menispermaceae	0	506
Fever				Cocculus	Menispermaceae	0	505
Diarrhea	Congo	Congo		Epinetrum	Menispermaceae	0	504
Malaria	Ivory coast	lvory coast	Bersama abyssinica Fresen.	Bersama	Melianthaceae	MT137493.1	503
Tuberculosis, Diarrhea	Limpopo, Maputaland	Multicultural	Melia azedarach L	Melia		AY695595.1	502
Tuberculosis	Uganda	Uganda	Trichilia dregeana Sond	Trichilia	Meliaceae	0	501
Malaria, Fever, Tuberculosis, Diarrhea	enya , Ghana, janda, a, West bengal	Multicultural	Azadirachta indica (A Juss)	Azadirachta	Meliaceae	AY695594.1	500
Malaria, Fever	a	sia	mesticum Corr. Serr	Lansium	Meliaceae	AY695587.1	499
Malaria, Fever				Khaya		KF840425.1	498
Malaria			ha (Thonn.)J.de Wilde	Trichilia	Meliaceae	KR364563.1	497
Fever				Lovoa		FJ518899.1	496
Fever	Nigeria	Nigeria	Entandrophragma cylindricum	Entandrophragma	Meliaceae	JN565010.1	495

568	567	566	565	564	563	562	561	560	559	558	557	556	555	554	553	552	551	550	549	548	547	546	545	544	543	542	541	540	539	538	537	536	535	534	533	532
0	0	DQ521349.1	0	0	GQ889049.1	MH768272.1	0	0	MH768271.1	KX168366.1	FM208221.1	JX856583.1	MN257848.1	KY780582.1	0	MK683227.1	0	MK452746.1	0	0	0	KM064881.1	AY487283.1	EF026622.1	HM596038.1	0	0	0	0	0	0	KP406145.1	0	0	0	0
Phyllanthaceae	Pedaliaceae	Pasifloraceae	Pasifloraceae	Pasifloraceae	Papilionaceae	Papaveraceae	Pandaceae	Palmae	Oxalidaceae	Onagraceae	Oleaceae	Oleaceae	Olacaceae	Olacaceae	Olacaceae	Olacaceae	Ochnaceae	Nymphaeaceae	Nyctaginaceae	Myrtaceae	Myrtaceae	Myrtaceae	Myrtaceae	Myrtaceae	Myrtaceae	Myrtaceae	Myrsinaceae	Myrothamnaceae	Myristicaceae	Myristicaceae	Myristicaceae	Myristicaceae	myricaceae	Myricaceae	Moraceae	Moraceae
Phyllanthus	Dicerocarvum	Adenia	Adenia	Passiflora	Securidaca	Argemone	Microdesmis	Bridelia	Oxalis	Ludwigia	Osmanthus	Nyctanthes	Ximenia	Olea	Olax	Borassus	Ochna	Nymphaea	Boerhaavia	Syzygium	Syzygium	Callistemon	Psidium	Syzygium	Eucalyptus	Syzygium	Maesa	Myrothamnus	Pycnanthus	Ficus	Pycnatus	Myristica	Myrica	Myrica	Ficus	Ficus
Phyllanthus reticulatus Poir	Dicerocaryum senecioides (Klotzsch)	Adenia spinosa Burtt Davy	Adenia fruticose Burtt Davy	Passiflora nepalensis Walp	Securidaca longepedunculata Fres.	Argemone mexicana L.	Microdesmis keayana J. Leonard	Bridelia ferruginea		Ludwigia peruviana (L.) Hara	Osmanthus fragrans Lour	Nyctanthes arbor-tristis	Ximenia spp	Olea europaea L	Olax subscorpiodea	Borassus aethiopum	Ochna pulchra Hook.	Nymphaea lotus L	Boerhaavia diffusa		Syzygium cumini (L.) Skeels	Callistemon citrinus (Curtis) Skeels	Psidium guajava L	Syzygium spp	Eucalyptus camaldulensis Dehnh	Syzygium rubicundum	Maesa lanceolata	Myrothamnus flabellifolius Welw.	Pycnanthus angolensis (Welw.)Warb.	Ficus capensis Thunb	Pycnatus kombo	Myristica fragrans	Myrica spp	Myrica kandtiana Engl.	Ficus thonningii Blume	Ficus natalensis Hochst
Uganda	Limpopo	Limpopo	Limpopo	Multicultural	Multicultural	Multicultural	Ivory coast	Ghana	Multicultural	Nigeria	Nepal	West bengal	Limpopo	Limpopo	Nigeria	Ghana	Limpopo	Madagascar	Nigeria	Limpopo	Uganda	Uganda	Multicultural	Multicultural	Multicultural	India	Bizana	Limpopo	multicultural	Ivory coast	Nigeria	Nepal	Multicultural	Uganda	Senegal	Uganda
Uganda	Limpopo	Limpopo	Limpopo	Northeast india, Nepal	Kenya, Nigeria, Limpopo	Nigeria, Uganda, Limpopo	Ivory coast	Ghana	meghalaya, nepal	Nigeria	Nepal	West bengal	Limpopo	Limpopo	Nigeria	Ghana	Limpopo	Madagascar	Nigeria	Limpopo	Uganda	Uganda	Nigeria, Ghana, Maputaland	Nigeria, Uganda, Maputaland, India	Nigeria, Limpopo, Bizana	India	Bizana	Limpopo	Ghana, Uganda	Ivory coast	Nigeria	Nepal	Uganda, Meghalaya	Uganda	Senegal	Uganda
Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Malaria, Fever	Malaria, Fever, Tuberculosis	Fever, Tuberculosis	Malaria	Fever	Diarrhea	Malaria	Fever	Diarrhea	Tuberculosis, Diarrhea	Tuberculosis	Fever	Fever	Tuberculosis	Malaria	Fever	Tuberculosis	Tuberculosis	Tuberculosis	Malaria, Fever, Diarrhea	Fever,Tuberculosis, Diarrhea	Fever,Tuberculosis, Diarrhea	Diarrhea	Diarrhea	Tuberculosis	Malaria, Tuberculosis	Malaria	Fever	Diarrhea	Tuberculosis, Diarrhea	Tuberculosis	Tuberculosis	Tuberculosis

606	Ш	604	603	602	601	600	599		597	596	595	594	593	592	591								583	582	581		579	578		576	575		574		572	571		569
MH432188.1	MG995011.1	EU669109.1	FJ449737.1	KF912900.1	0	KR083102.1	0	0	JX233693.1	KC815302.1	0	KM887365.1	0	0	DQ410718.1	0	L78042.1	0	0	DQ372904.1	0	MH762138.1	MN781147.1	0	FJ410314.1	KR005618.1	KR259538.1	AY101861.1	0	0	AF275202.1		0	0	0	0	0	EU196128.1
Rubiaceae	Rubiaceae	Rosaceae	Rosaceae	Rosaceae	Rosaceae	Rhamnaceae	rhamnaceae	Rhamnaceae	Ranunculaceae	Ranunculaceae	Ranunculaceae	Ranunculaceae	Ranunculaceae	Ranunculaceae	Ranunculaceae	Proteaceae	Portulacaceae	Polygonaceae	Polygalaceae	Polygalaceae	Podocarpaceae	Poaceae	Poaceae	Poaceae	poaceae	Poaceae	Plumbaginaceae	Plantaginaceae	Plantaginaceae	Plantaginaceae	Piperaceae		Piperaceae	Piperaceae	Piperaceae	Piperaceae	Piperaceae	Pinaceae
Neolamarckia	Catunaregam	Prunus	Eriobotrya	Duchesnea	Cerasus	Ziziphus	Ziziphus	Ziziphus	Thalictrum	Coptis	Aconitum	Aconitum	Aconitum	Aconitum	ranunculus	Protea	Portulacaria	Rheum	Polygala	Polygonum	Podocarpus	Sorghum	Pennisetum	saccharum	Bambusa	Coix	Plumbago	Plantago	Plantago	Plantago	Piper		Piper	Piper	Piper	Piper	Piper	Abies
Neolamarckia cadamba	Catunaregam spinosa	Prunus africana (Hook.f.) Kalkman	Eriobotrya japonica (Thunb.)	Duchesnea indica/ Potentilla indica	Cerasus brachypetala	Ziziphus spp	Ziziphus zeyheriana Sond.	Ziziphus mauritiana	Thalictrum foliolosum DC	Coptis teeta Wall	Aconitum violaceum Jacq. ex Stapf	Aconitum spp.	Aconitum spicatum (Bruhl) Stapf	Aconitum heterophyllum Wall. ex Royle	Ranunculus muricatus	Protea caffra Meisn	Portulacaria afra Jag	Rheum ribes	Polygala persicariaefolia DC.	Polygonum perfoliatum	Podocarpus usambarensis Pilg	Sorghum bicolor (L.)	Pennisetum glaucum L	Saccharum officinarum	Bambusa vulgaris	Coix lacryma-jobi	Plumbago zeylanica L.	Plantago spp	Plantago psyllium L.	Plantago depressa Willd	Piper spp.		Piper betle L.	Piper mullesua Buch. Ham.	Piper sarmentosum Roxb	Piper longum L	Piper guineense Schum & Thonn	Abies pindrow
West bengal	Nepal	Multicultural	Limpopo	Nigeria	Iran	Multicultural	Limpopo	Nepal	Multicultural	Northeast india						Limpopo	Limpopo		Northeast india	Meghalaya	Uganda	Limpopo	Limpopo	Limpopo	India	Meghalaya	ultural	Nepal	Iran	Nepal	Multicultural		Indonesia	Northeast india	Thailand			Pakistan
West bengal	Nepal	Uganda, Bizana	Limpopo	Nigeria	Iran	Limpopo, Bizana, Nepal	Limpopo	Nepal	Nepal, Northeast india	Northeast india	Nepal	Nepal	Nepal	Nepal	Nigeria	Limpopo	Limpopo	Iran	Northeast india	Meghalaya	Uganda	Limpopo	Limpopo	Limpopo	India	Meghalaya	Uganda, Limpopo, Meghalaya, India	Nepal	Iran	Nepal	Nigeria, Nepal, Northeast India	Indonesia, Thailand,	Indonesia	Northeast india	Thailand	Nepal	Nigeria	Pakistan
Diarrhea	Diarrhea	Tuberculosis, Diarrhea	Tuberculosis	Diarrhea	Diarrhea	Tuberculosis, Diarrhea	Tuberculosis	Diarrhea	Malaria, Fever	Malaria	Fever	Fever	Fever	Fever	Diarrhea	Tuberculosis	Tuberculosis	Diarrhea	Malaria	Diarrhea	Tuberculosis	Tuberculosis	Tuberculosis	Malaria, Fever, Tuberculosis, Diarrhea	Fever	Diarrhea	Tuberculosis, Diarrhea	Fever	Fever	Fever	Malaria, Fever		Malaria, Fever	Malaria	Fever	Fever	Fever	Fever

645 0	644 0	643 MN2	642 KU1	641 KU1	640 0	639 JX1 ²	638 0	637 0	636 FJ43	635 KX2	634 0		632 0		630 0		628 AY8	627 FJ9		625 0		623 0		621 MF1						615 0	614 0			611 0		609 KF4	
		MN257824.1	KU193675.1	KU193665.1		JX144189.1			FJ434169.1	KX277675.1				JX144214.1		DQ153593.1	AY845130.1	FJ907073.1	AM267049.1		AJ346899.1		JX111223.1	178591.1	AY538354.1	AJ617752.1		MH710785.1	MK607927.1			AJ492631.1				KF488111.1	
Rutaceae	Rutaceae	Rutaceae	Rutaceae	Rutaceae	Rutaceae	Rutaceae	Rutaceae	Rutaceae	Rutaceae	Rutaceae	Rutaceae	Rutaceae	Rutaceae	Rutaceae	Rutaceae	Rubiaceae	Rubiaceae	Rubiaceae	Rubiaceae	Rubiaceae	Rubiaceae	Rubiaceae	Rubiaceae	Rubiaceae	Rubiaceae	Rubiaceae	Rubiaceae	Rubiaceae	Rubiaceae	Rubiaceae	Rubiaceae	Rubiaceae	Rubiaceae	Rubiaceae	Rubiaceae	Rubiaceae	
Zanthoxylum	Zanthoxylum	Vepris	Teclea	Fagaropsis	Fagara	Clausena	Citrus	Citrus	Aegle	Skimmia	Evodia	Citrus	Atalantia	Murraya	Zanthoxylum	Coffea	Moringa	Morinda	Pentas	Pentas	Nauclea	Morinda	Hedyotis	Craterispermum	Cinchona	Canthium	Aganthesanthemum	Rubia	Paedaria	Musenda	Galium	Adina	Spermacoce	Morinda	Gardenia	Vangueria	
Zanthoxylum tsihanimposa Bak	Zanthoxylum hamiltonianum Wall.	Vepris ampody H. Perr.	Teclea simplicifolia (Eng) Verdoon	Fagaropsis angolensis (Engl) Del	Fagara macrophylla (Oliv.)	Clausena excavata Burm. f	Citrus sinensis (L.) Osbeck	Citrus aurantium L.	Aegle marmelos (L.)	Skimmia anquetilia N.P. Taylor & Airy Shaw	Evodia fraxinifolia Hook	Citrus limon (L.) Burm.f	Atalantia racemosa	Murraya koenigii	Zanthoxylum armatum	Coffea canephora Pierre ex A. Froehner	Moringa oleifera Lam	Morinda spp	Pentas longiflora Oliv	Pentas agathisanthemum KI.	Nauclea latifolia Sm/Sarcocephalus latifolius	Morinda chrysorhiza DC		Craterispermum laurinum (Poir.) Benth	Cinchona officinalis Linn f.	Canthium glaucum Hiern.	Aganthesanthemum bojeri Klotzsch	Rubia cordifolia L	Paederia foetida L	Musenda frondosa L	Galium pauciflorum Bunge	Adina cordifolia Wild/Haldina cordifolia	Spermacoce ocymoides	Morinda tinctoria	Gardenia gummifera	Vangueria infausta	
	Northeast india	Madagascar	Kenya	Kenya	lvory coast	Northeast india	Northeast india	Nigeria	Multicultural	Nepal	Nepal	Nigeria	India	India	Nepal	Uganda	Multicultural	Multicultural	Kenya	Kenya	Multicultural	lvory coast	Northeast india	÷.	Northeast india	Kenya	Kenya	Multicultural	Multicultural	Nepal	Nepal	Nepal	India	India	India	Maputaland	
Madagascar	Northeast india	Madagascar	Kenya	Kenya	lvory coast	Northeast india	Northeast india	Nigeria	Bangladesh, Meghalaya, Nepal	Nepal	Nepal	Nigeria	India	India	Nepal	Uganda	Nigeria, Bangladesh, Uganda, Zimbabwe	Nigeria, Ghana, Uganda, Ivory coast, India	Kenya	Kenya	nigeria, Ivory coast, Ghana	Ivory coast	Northeast india	Ivory coast	Northeast india	Kenya	Kenya	Nepal, Uganda	Nepal, Meghalaya	Nepal	Nepal	Nepal	India	India	India	Maputaland	
Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Fever, Diarrhea	Fever	Fever	Fever	Fever	Diarrhea	Diarrhea	Tuberculosis	Malaria, Fever, Tuberculosis, Diarrhea	Malaria, Fever, Tuberculosis, Diarrhea	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Malaria	Fever, Tuberculosis	Fever, Diarrhea	Fever	Fever	Fever	Diarrhea	Diarrhea	Diarrhea	Diarrhea	

678	677	676	675	674	673	672	671	670	669	899	667	666	665	664	663	662	661	660	659	658	657	656	655	654	653	652	651	650	649	648	647	646
0	KX065314.1	KY986451.1	JN102224.1	KF686247.1	0	KF686306.1	0	KX545256.1	FJ546974.1	JN190976.1	KX584937.1	JN190997.1	0	KX584899.1	0	0	EU720424.1	MT137488.1	KJ137254.1	0	MH711020.1	0	JF978978.1	0	0	KU193662.1	0	MH016555.1	FJ641964.1	0	0	0
Scrophulariaceae	Saxifragaceae	Saxifragaceae	Saxifragaceae	Sapotaceae	Sapotaceae	Sapotaceae	Sapotaceae	Sapotaceae	Sapindaceae	Sapindaceae	Sapindaceae	Sapindaceae	Sapindaceae	Sapindaceae	Sapindaceae	Sapindaceae	Sapindaceae	Santalaceae	santalaceae	Salicaceae	Salicaceae	Rutaceae	Rutaceae	Rutaceae	Rutaceae	Rutaceae	Rutaceae	Rutaceae	Rutaceae	Rutaceae	Rutaceae	Rutaceae
Aptosimum	Hydrangea	Bergenia	Astilbe	Mimusops	Chrysophyllum	Vitellaria	Mimusops	Madhuca	Dodonaea	Blighia	Paullinia	Lecaniodiscus	Deinbollia	Allophylus	Nephelium	Sapindus	Pappea	Osyris	Santalum	Trimeria	Salix	Zanthoxylum	Toddalia	Zanthoxylum	Zanthoxylum	Citropsis	Zanthoxylum	Zanthoxylum	Citrus	Zanthoxylum	Citrus	Citrus
Aptosimum lugardiae (N.E.Br.ex Hemsl. & Skan)	Hydrangea macrophylla (Thunb.) Ser	Bergenia ciliata	Astilbe rivularis	Mimusops spp	Chrysophyllum albidum G. Don	Vitellaria paradoxa (Gaertn. f.)	Mimusops elengi	Madhuca sp	Dodonaea viscosa Jacq.	Blighia unijugata Baker	Paullinia pinnata L	Lecaniodiscus cupanioides	Deinbollia pinnata Schum.& Thonn	Allophylus pervillei Blume.	Nephelium mutabile	Sapindus emarginata	Pappea capensis	Osyris lanceolata Hochst. & Steud.	Santalum album	Trimeria grandifolia (Hochst.) Warb.	Salix babylonica L	Zanthoxylum capense (Thunb.)	Toddalia asiatica (L.) Lam	Zanthoxylum leprieurii Guill. & Perr	Zanthoxylum humile (E.A.Bruce)	Citropsis articulata (Willd. ex Spreng.) Swingle & M. Kellerm	Zanthoxylum chalybeum Engl.	Zanthoxylum spp	Citrus spp.	Zanthoxylum alatum Roxb	Citrus paradisi L.	Citrus medica L
Limpopo	Northeast india	Nepal	Himalaya	Multicultural	Nigeria	Nigeria	India	India	Limpopo	Uganda	Ghana	Nigeria	Ghana	Nigeria	Malaysia	India	Limpopo	Limpopo	India	Uganda	Nepal	Multicultural	Multicultural	Uganda	Limpopo	Uganda	Multicultural	Multicultural	Multicultural	Nepal	Nigeria	Multicultural
Limpopo	Northeast india	Nepal	himalaya	Limpopo, India	Nigeria	Nigeria	India	India	Limpopo	Uganda	Ghana	Nigeria	Ghana	Nigeria	Malaysia	India	Limpopo	Limpopo	India	Uganda	Nepal	Limpopo, Bizana	Uganda, India	Uganda	Limpopo	Uganda	Kenya, Uganda	Nigeria, Ghana, Kenya, Limpopo, Nepal	Nigeria, Ghana, Northeast india, Meghalaya	Nepal	Nigeria	Northeast india, Meghalaya
Tuberculosis	Malaria	Diarrhea	Diarrhea	Tuberculosis, Diarrhea	Malaria	Fever	Diarrhea	Diarrhea	Tuberculosis	Tuberculosis	Malaria	Malaria	Malaria	Malaria	Fever	Diarrhea	Diarrhea	Tuberculosis, Diarrhea	Fever	Tuberculosis	Fever	Tuberculosis, Diarrhea	Tuberculosis, Diarrhea	Tuberculosis	Tuberculosis	Tuberculosis	Malaria, Tuberculosis	Malaria, Fever, Tuberculosis, Diarrhea	Malaria, Fever, Diarrhea	Malaria, Fever	Malaria, Fever	Malaria, Diarrhea

Malaria	Northeast india	Northeast india	Clerodendrum colebrookoianum Walp	Clerodendrum	Verbenaceae	0	715
Malaria, Tuberculosis	Northeast india	Northeast india	Clerodendrum spp	Clerodendrum	Verbenaceae	KT728416.1	714
Fever, Diarrhea	Nepal, Bangladesh, India	Multicultural	Vitex negundo L	Vitex	Verbenaceae	MH711742.1	713
Tuberculosis	Limpopo	Limpopo	Xerophyta retinervis Bake	Xerophyta	Velloziaceae	JN016988.1	712
Fever, Diarrhea	Nepal	Nepal	Nardostachys spp	Nardostachys	Valerianaceae	AY236190.1	711
Diarrhea	Nepal	Nepal	Valeriana jatamansi	Valeriana	Valerianaceae	KX277663.1	710
Diarrhea	Nepal	Nepal	Nardostachys grandiflora	Nardostachys	Valerianaceae	0	709
Tuberculosis	Limpopo	Limpopo	Pouzolzia mixta Solms var.mixta	Pouzolzia	Urticaceae	KF137916.1	708
Tuberculosis	Uganda	Uganda	Fleurya aestuans (L.) Gaudich. ex Miq	Fleurya	urticaceae	0	707
Fever	Pakistan	Pakistan	Debregeasia saeneb	Debregeasia	Urticaceae	KF137835.1	706
Fever	India	India	Coriandrum sativum	Coriandrum	umbeliferae	HQ377205.1	705
Tuberculosis	Uganda	Uganda	Chaetacme aristata Planch.	Chaetacme	Ulmaceae	KC539583.1	704
Fever, Diarrhea	Nigeria, Bizana	Multicultural	Trema spp	Trema	ulmaceae	0	703
Malaria, Fever	Kenya	Kenya	Grewia plagiophylla K. Schum	Grewia	Tiliaceae	0	702
Malaria	Kenya	Kenya	Grewia hexaminta Burret.	Grewia	Tiliaceae	0	701
Tuberculosis	Limpopo	Limpopo	Lasiosiphon caffer Meisn	Lasiosiphon	Thymelaeaceae	0	700
Malaria	Iscar	Madagascar	Peddiea involucrata Bak.	Peddiea	Thymelaeaceae	AJ744920.1	699
Diarrhea	Rizana	Bizana	Dais cotinifolia	Dais	Thymelaeaceae	A.1744928 1	869
Diarrhoa	Morheleva	Seriegal	Sumpolococ rocomoco	Sumpolooon	Sterullaceae		090
Malaria		Ghana	Theobroma cacao L	Theombroma	Steruliaceae	AY074729.1	695
Diarrhea		Limpopo	Dombeya rotundifolia	Dombeya	Steruliaceae	MK696138.1	694
Diarrhea	India	India	Helicteres isora	Helicteres	Sterculiaceae	KX277729.1	693
Malaria, Fever, Diarrhea	Nigeria, Northeast india, Limpopo, India	Multicultural	Solanum spp.	Solanum	Solanaceae	KR425501.1	692
Malaria, Diarrhea	Nigeria, Bizana	Multicultural	Physalis spp	Physalis	Solanaceae	AY665875.1	691
Malaria, Diarrhea	Northeast india, Pakistan	Multicultural	Datura metel L.	Datura	Solanaceae	MH768322.1	690
Malaria	Northeast india	Northeast india	Solanum vairum Cl	Solanum	Solanaceae	0	689
Malaria	Northeast india	Northeast india	Solanum torvum Sw	Solanum	Solanaceae	0	889
Fever	Nigeria	Nigeria	Nicotiana tabacum SW. Afr	Nicotiana	Solanaceae	MH566981.1	687
Fever	Nigeria	Nigeria	Capsicum frutescens	Capsicum	Solanaceae	HQ705990.1	686
Diarrhea	India	India	Solanum nigrum	Solanum	Solanaceae	0	685
Malaria	Northeast india	Northeast india	Picrasma javanica Bl	Picrasma	Simaroubaceae	KR532487.1	684
Malaria	lvory coast	lvory coast	Irvingia gabonensis (Aubry-Lecomte ex	Irvingia	Simaroubaceae	0	683
Malaria		Multicultural	Harrisonia abyssinica Oliv.	Harrisonia	Simaroubaceae	MN257686.1	682
Malaria	ist india	Northeast india	Brucea javanica (Linn.) Merr	Brucea	Simaroubaceae	AY510155.1	681
Diarrhea	Congo	Congo	Quassia africana	Quassia	Simaroubaceae	0	680
Tuberculosis	Limpopo	Limpopo	Buddleja salvifolia (L.) Lam	Buddleja	Scrophulariaceae	0	679

733	732	731	730	729	728	727	726	725	724	723	722	721	720	719	718	717	716
AF478792.1	AF478715.1	KT344623.1	0	0	0	0	KT344571.1	0	MK261289.1	0	0	0	MH768342.1	0	0	0	0
Zingiberaceae	Zingiberaceae	Vitaceae	Vitaceae	Vitaceae	Vitaceae	Vitaceae	Vitaceae	Violaceae	Verbenaceae	Verbenaceae	Verbenaceae	Verbenaceae	Verbenaceae	Verbenaceae	Verbenaceae	Verbenaceae	Verbenaceae
Siphonochilus	Alpinia	Rhoicissus	Cyphostemma	Cyphostemma	Cissus	Ampelocissus	Ampelocissus	Viola	Lippia	Lippia	Lippia	Lantana	Lantana	Vitex	Premna	Premna	Clerodendrum
Siphonochilus aethiopicus (Schweinf.) B.L.Burtt	Alpinia galanga	Rhoicissus tridentata (L.f.)Wild & R.B.Drumm Multicultura	Cyphostemma woodii (Gilg &M.Brandt) Desc. Limpopo	<i>Cyphostemma humil</i> e (N.E.Br.)Desc. ex Wild & R.B.Drumm	Cissus rubiginosa	Ampelocissus obtusata	Ampelocissus africana	Viola canescens	<i>Lippia javanica</i> (Burm f.) Spreng.	Lippia grandifolia Hochst. ex A. Rich	Lippia chevalieri Moldenkes	Lantana rugosa Thunb	Lantana camara L.	Vitex peduncularis Wall	Premna sp. (of. glandulosa Merr.)	Premna chrysoclada (Bojer) Gürke	Clerodendrum serratum (L.) Moon/Rotheca serrata
Limpopo	India	Multicultural	Limpopo	Limpopo	Congo	Zimbabwe	Zimbabwe	Pakistan	Multicultural	Uganda	Senegal	Limpopo	Multicultural	Northeast india	Indonesia	Kenya	Northeast india
Limpopo	India	Limpopo, Bizana	Limpopo	Limpopo	Congo	Zimbabwe	Zimbabwe	Pakistan	Uganda, Limpopo	Uganda	Senegal	Limpopo	Northeast india, Kenya, Uganda, Limpopo, India	Northeast india	Indonesia	Kenya	Northeast india
Tuberculosis	Diarrhea	Tuberculosis, Diarrhea	Tuberculosis	Tuberculosis	Diarrhea	Diarrhea	Diarrhea	Fever	Tuberculosis	Tuberculosis	Tuberculosis	Tuberculosis	Malaria, Tuberculosis, Diarrhea	Malaria	Malaria	Malaria	Malaria

APPENDIX III

Phytochemical Screening Result (Picture)

Table preliminary phytochemical screening result for alkaloids

		Same of	Dragen	dorff's test		Wagner	's test	
No	Species list	Source of	D14	Picture	Color of		Picture	Color of
		collection	Result		precipitate	Result		precipitate
				ah.	-			Brown
1	A. vulgaris	Tak Province	NHOS			+		
			NIN OF	A. 2	Yellow		PL.	Blackish
			///		white			
2	A. lactiflora	Chatuchak				+		
				Ada	N-		AL 2	Brown
		Nakhin						
3	A. dracunculus	Pathom	CONTRACTOR DA			+		
		8		(real	3		Can	-
4	A. chinensis	Northaburi	รณ์มา	n 🔰 ยา	้าลัย	-		
		GHULALON	GKORI	V	Yellow		T.	Brown
				-	white			
5	A. conyzoides	Kumpangsan	+	4		+		
				60	Orange		64	Yellow
		North			red			black
6	E. odoratum	Thailand	+			+		
					Orange		TS.	Black
				0	red			
7	V. cinerea	Northern Thai	+			+		

					-		64	Red black
8	W. trilobata	Bangkok	-			+	-	
				Tric	Yellow		T	Yellow
				_	orange			
9	T. procumbens	Chiang Mai	+			+		
				R'h 12	Brown		9.	Yellow
		North			red			
10	B. balsamifera	Thailand	+		~	+		
			AUN/	64	-		3	Yellow
			2/11					black
11	G. divaricata	Chatuchak	//			+		
			AO	4	Yellow		fr	Yellow
			A DECE		brown			brown
12	G. pseudochina	Chatuchak	×~~~&>>			+		
			1238/10	Bp.C	Yellow		3	Yellow
					orange		and a	
13	B. pilosa	Chiang Mai	รุณ์มา	ก 🤳 ย	าลัย	+		
		CHULALON	GKORI	te.	Yellow		6 L	Black
				_	orange			
14	E. capilifolium	Northaburi	+	1		+		
				Paka	Yellow		4 100	Red Black
					brown			
15	S. indicus	Mukdahan	+			+		

					Orange			Yellow
		Nakhon		R.L.			1	
		Sithumarat,						
16	A. oleracea	South Thai	+			+		

Table preliminary phytochemical screening result of flavonoid (alkaline test)

			Alkalin	e test (flavono	id)
				Picture	Picture
No	Species list	Source		after	after
				addition of	addition of
			Result	5% NaOH	2M HCl
				Olarsi Po	GERA Ai
1	A. vulgaris	Tak Province	+		
				AL	AL Shuit
				E Lard	
2	A. lactiflora	Chatuchak	+		
				Res LES	Care ACC
3	A. dracunculus	Nakhin Pathom	+		
				Charlent	Share front
4	A. chinensis	Northaburi	++		
				Date Set	Durk Bat
5	A. conyzoides	Kumpangsan	+-		

			1	Providence	
6	E. odoratum	North Thailand	+	Clark S	
				and in the second second	-
7	C. cinereum	Northern Thai	+		
					Back Sat :
8	W. trilobata	Bangkok	+		
9	T. procumbens	Chiang Mai	+		
10	B. balsamifera	North Thailand	+	Our da	
	2. ouisumijeru			C. C.	
11	G. divaricata	Chatuchak	+-		
				Con The second	
12	G. pseudochina	Chatuchak	+		

13	B. pilosa	Chiang Mai	++		
14	E. capilifolium	Northaburi	+		
15	S. indicus	Mukdahan	++	25	
16	A. oleracea	Nakhon Sithumarat, South Thai	+		
L	L		9		L

Table preliminary phytochemical screening result of flavonoid (ferric chloride test)

No	CHULA	LONGKORN UNIV	/ERSIT)	
	Species list	Source		
				A L
				and the second se
1	A. vulgaris	Tak Province	++	
				-
2	A. lactiflora	Chatuchak	+	

				Contraction of the second
3	A. dracunculus	Nakhin Pathom	++	
				and the second sec
4	A. chinensis	Northaburi	++	U
5	1 compoides	Kumpanggan		will
3	A. conyzoides	Kumpangsan	+	
	4			len of
		AGA		
6	E. odoratum	North Thailand	++	
	E.		XI	
7	C. cinereum	Northern Thai	++	
	วุ ฬา	ลงกรณิมหาวิท	ยาลัย	
	CHULA	LONGKORN UNIV	/ERSIT\	
8	W. trilobata	Bangkok	++	
9	T. procumbens	Chiang Mai	+	
				1 m m m m m m m m m m m m m m m m m m m
10	B. balsamifera	North Thailand	++	

11	G. divaricata	Chatuchak	++	-
				A mail
12	G. pseudochina	Chatuchak	++	
	G. pseudoenina			hard
				The CAR
				a second
12	D milong	Chiang Mai	++	
13	B. pilosa		++	
				L'anc. Fic
	2			
14	E. capilifolium	Northaburi	+	
			P -	
				Contra -
		AND AND A		
15	S. indicus	Mukdahan	++	
	-11			
	ຈຸ ທາ	ลงกรณ์มหาวิท	ยาลัย	e kog An
	CHULA	LONGKORN UNI	/ERSITY	
		Nakhon Sithumarat,		
16	A. oleracea	South Thai	++	

N	Succionalist	Course Shirld A	Triterpenes	Steroids	Picture	Saponir	1
No	Species list	Source	Result	Result	Ticture	Result	Picture
1	4 milesuis	Tak Description	+		1		2
1	A. vulgaris	Tak Province	T	+		-	
					AL		17
2	A. lactiflora	Chatuchak	+	+		-	
					ALI		
3	A. dracunculus	Nakhin Pathom	าวิทยาลัย +	-		-	
4	A. chinensis	GHULALONGKORN	UNIVERSI	ΤY +	(res		
4	A. CHINENSIS			-		-	(march)
5	A. conyzoides	Kumpangsan	+	+		+	

Table preliminary phytochemical screening result of triterpenes and steroids (salkowski test)

6	E. odoratum	North Thailand	+	+	6	-	
7	C. sin susses	Northarn Thai	+	+			
/	C. cinereum	Northern Thai	+	+		-	
8	W. trilobata	Bangkok		+		+	1
9	T. procumbens	Chiang Mai	+	+		-	
10	B. balsamifera	North Thailand		+		+-	
11	G. divaricata	Chatuchak	าวิทยาลัย	+	64	+	
12	G. pseudochina	CHULALONGKORN	Universi	TY -		_	The second
13	B. pilosa	Chiang Mai	+	+		+	
14	E. capilifolium	Northaburi	+	+		_	

15	S. indicus	Mukdahan	+	_	The	-	
16	A. oleracea	Nakhon Sithumarat, South Thai	+	+		-	

Chulalongkorn University

	Table premimary phytochemical screening result for unerpenes and factories					
Ν	Species list	Source	diterpene	Result	lactone	Result
0	Species list	Source	S		s	
						1 Ac
				Tak Bi		-
1	A. vulgaris	Tak Province	+		+	
						ALL DE LA DE
						at at
2	A. lactiflora	Chatuchak	+		+	
		S.		ere Tal		10
	А.					
		Nakhin Pathom	ายาลัย			
3	dracunculus		<u>រដ</u> ាតខ		+	
		Chulalongkorn Un	IVERSIT	ilon Coose		
						Canal I
4	A. chinensis	Northaburi	+-		+	
				Ax -		No.
5	A. conyzoides	Kumpangsan	+		+	
						1164 20
6	E. odoratum	North Thailand	+		+	

Table preliminary phytochemical screening result for diterpenes and lactones

	[1	
7	C. cinereum	Northern Thai	+		+	
						328
				6		
8	W. trilobata	Bangkok	+		+	
						a - ve
	Т.					
9	procumbens	Chiang Mai	+		+	
			2	100		
1	В.					
0	balsamifera	North Thailand	+		+	
		-//b84				
		BOA				
11	G. divaricata	Chatuchak	-		-	
				ACT.		
	<i>G</i> .					
12	pseudochina	Chatuchak	+		-	
			10	Non't Proc		
1		จุหาลงกรณ์มหาวิเ	เยาลัย			
3	B. pilosa	Chiang Mai	IVERSIT		+	
				Nin -		10-1
				onle te		
14	E. capilifolium	Northaburi	+		+	
				Carl Carl		10
						and the second s
15	S. indicus	Mukdahan	+-		+	
						14
		Nakhon Sithumarat, South				
16	A. oleracea	Thai	+		-	

APPENDIX IV

Phytochemical Screening Reagents Preparation

1. Preparation of Dragendorff's reagent

Reagent	: Bismuth (III) subnitrate, SIGMA ALDRICH
KI (Potassium iodide), AnalaR, BDH Chemicals Ltd	
	Glacial acetic acid

Procedure:

Preparation of 10 mL stock solution

- Step 1: making 50 % potassium iodide by dissolving 2,5 g of KI into H₂O until obtained 5 mL of solution.
- Step 2: 85 mg of bismuth (III) subnitrate is dissolved into 4 mL of H₂O and stir, then followed by adding 1 mL of glacial acetic acid. After stirring, add 5 mL of 50% potassium iodide solution and stir until dissolved completely. Keep in the dark bottle.

Preparation of 100 mL working solution

10 mL of stock solution is added with 20 mL of glacial acetic acid, then add the solution into 70 ml of H_2O . Keep the working solution in the dark bottle.

Chulalongkorn University

2. Preparation of Wagner's reagent

Reagent	: Iodine,
	KI (Potassium iodide), AnalaR, BDH Chemicals Ltd
	Glacial acetic acid

Procedure:

Dissolve 2 g of iodine and 6 g of KI into 100 mL of H_2O .

3. Preparation of 1% diluted acid

Reagent: conc. HCl 37%,

Procedure:

27,027 mL of conc. HCl (37%) is added into 972,973 mL of H₂O.

4. Preparation of 25 mL 5% Ferric Chloride reagent

Reagent: FeCl3.6H₂O, Iron (III) chloride hexahydrate Pure P.A., POCH SA

Procedure:

Dissolve 1,25 g of FeCl₃.6H₂O into 25 ml of H₂O.

5. Preparation of 50 mL 5% NaOH

Procedure:

Dissolve 2,5 gram of NaOH into 50 mL of H₂O

6. Preparation of 50 mL 10% NaOH

Procedure:

Dissolve 5 gram of NaOH into 50 mL of H₂O

7. Preparation of 40 mL 2M HCl

37 % HCl equivalent with 12 M HCl

Procedure:

Add 6,66 ml of conc. HCl into 33.34 mL of H₂O.

8. Preparation of 1000 mL 1 % diluted HCl

X = 27,027 mL

Procedure:

Add 27,027 ml conc. HCl into 972.973 ml H_2O .

9. Preparation of 1% Copper acetate reagent

Reagent: Copper acetate,

Procedure:

Dissolve 1 g copper acetate into $100 \text{ ml of } H_2O$.

10. Preparation of Baljet reagent

Reagent	: saturated Picric acid (1,3 % in water)		
	NaOH 10 %		
	Ethanol		

Procedure:

Prepare freshly before using the reagent. Add the saturated picric acid into 10% NaOH

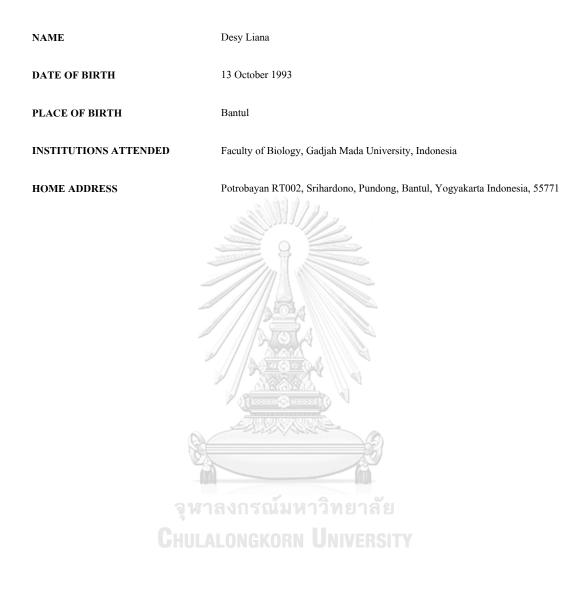
with ratio 1:1

APPENDIX V

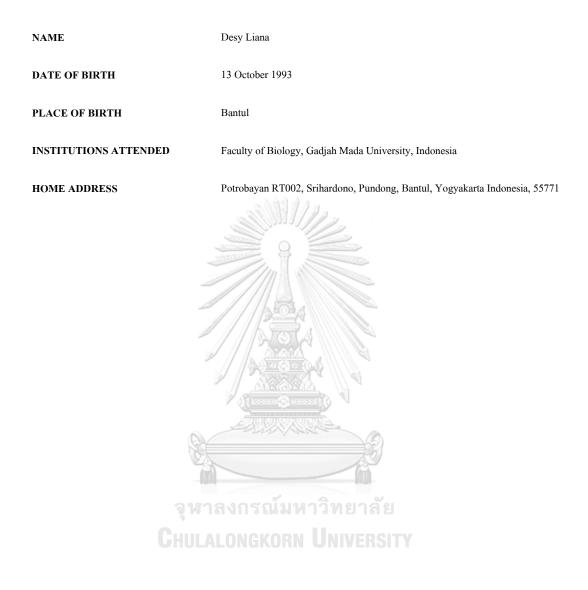
Preparation of 2XCTAB Buffer

Stock	Final Concentration	Amount
СТАВ	2% (W/V)	2 g
1 M Tris-HCl pH 8	100 mM	10 ml
0,5 EDTA pH 8	20 mM	4 ml
5 M NaCl	1.4 M	28 ml
PVP	1%	1 g

Composition of CTAB Buffer:


These components were made up to 100 mL in water. And added 4 μ L of 2-mercaptoethanol to each 1 mL of 2XCTAB buffer before used.

Chulalongkorn University


VITA

Chulalongkorn University

VITA

