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เชื้อไวรัสพีอีดีเป็นอุปสรรคส าคัญในท าอุตสาหกรรมการเลี้ยงสัตว์และเป็นสาเหตุหลักที่ท าให้เกิดอัตราการ

ตายลูกสุกรแรกเกิดสูงถึง 95% จากการติดเชื้อในล าไส้ ทูซีเท็นโมโนโคลนอลแอนติบอดี (2C10 mAb) เป็นชีววัตถุที่ได้
จากการผลิตแบบชั่วคราวของต้นใบยาสูบ (Nicotiana benthamiana) ซึ่งถูกระบุว่าเป็นหนึ่งในชีววัตถุที่มีศักยภาพเป็น
แอนติบอดีต้านเชื้อไวรัสพีอีดีได้โดยการน าส่งทางปาก ชีววัตถุเป็นเวชภัณฑ์คลื่นลูกใหม่และได้รับการพัฒนาอย่างต่อเนื่อง
ซึ่งมีประโยชน์หลากหลายประการในด้านความเป็นพิษต่ าและมีความจ าเพาะสูง อย่างไรก็ตามชีววัตถุไม่เหมาะส าหรับใช้
ร่วมกับการให้ทางปากเนื่องจากข้อจ ากัดของความเป็นกรดสูงและน้ าย่อยต่างๆของทางเดินอาหาร  ดังนั้นเพื่อเอาชนะ
ข้อจ ากัดเหล่านี้การพัฒนาการให้ชีววัตถุทางปากจึงมีความจ าเป็นอย่างยิ่งเพิ่มความเสถียรให้กับชีววัตถุ  ไมโครบีดที่
ตอบสนองต่อค่าพีเอช ถูกใช้เป็นพาหนะส าหรับการน าส่งทางปากและอัลจิเนต - ไคโตซานเป็นวัสดุที่รู้จักกันดีคุณสมบัติ
ช่วยป้องกันชีววัตถุจากสภาพแวดล้อมที่ไม่เหมาะสมของทางเดินอาหาร ความเข้มข้นของอัลจิเนต - ไคโตซานได้รับการ
ปรับให้เหมาะสมที่สุดส าหรับการสร้างไมโครบีดที่ตอบสนองต่อค่าพีเอช ซึ่งใช้อัลจิเนตที่มีความเข้มข้น 2% และไคโตซาน
ที่มีความเข้มข้น 1% ซึ่งเป็นคุณสมบัติที่เหมาะสมที่สุด จากนั้นการวิเคราะห์ลักษณะทางกายภาพของไมโครบีดที่
ตอบสนองต่อค่าพีเอช รวมถึงการวัดขนาดเส้นผ่านศูนย์กลางด้วยเวอร์เนียดิจิทัลพบว่าการกระจายของขนาดเส้นผ่าน
ศูนย์กลางอยู่ระหว่าง 1.5-1.6 มม. ซึ่งมีมากถึง70% กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดแสดงให้เห็นว่าภาพพื้นผิว
ของไมโครบีดที่ตอบสนองต่อค่าพีเอช มีลักษณะเป็นโครงสร้างตาข่ายที่มีความพรุนมากมาย ในขณะเดียวกัน กล้อง
จุลทรรศน์อิเล็กตรอนแบบส่องผ่านแสดงใหเ้ห็นถงึอนุภาคนาโนที่ถูกเก็บไว้ในไมโครบีดนอกจากนี้พฤติกรรมการปลดปล่อย
ของไมโครบีดที่ตอบสนองต่อค่าพีเอช ในสารละลายจ าลองทางสรีรวิทยา (SPF) ได้รับการตรวจสอบภายใต้กล้อง
จุลทรรศน์เรืองแสงพบว่าไมโครบีดที่ตอบสนองต่อค่าพีเอช สามารถปกป้องและรักษาอนุภาคนาโนจากสารละลายจ าลอง
ทางสรีรวิทยา (SPF)  ได้ ในขั้นตอนสุดท้ายชีววัตถุที่ห่อหุ้มด้วยไมโครบีดได้รับการทดสอบด้วยสารละลายจ าลองทาง
สรีรวิทยา (SPF) หลังจากนั้นจะท าการประเมินประสิทธิภาพของชีววัตถุด้วยเทคนิคเรียลไทม์พีซีอาร์ (Real-Time PCR) 
จากผลลัพธ์ทั้งอนุภาคคล้ายไวรัสและ ทูซีเท็นโมโนโคลนอลแอนติบอดี (2C10 mAb)  ยังคงมีความเสถียรแม้ว่าจะผ่าน
การทดสอบด้วยสารละลายจ าลองทางสรีรวิทยา (SPF)  โดยสรุปแล้วอัลจิเนต - ไคโตซานมีประสิทธิภาพเพียงพอที่จะกัก
เก็บอนุภาคนาโนไว้และไมโครบีดที่ตอบสนองต่อค่าพีเอช สามารถใช้เป็นพาหนะในการส่งยาทางปากได้เนื่องจากสามารถ
ป้องกันชีววัตถุจากสภาพแวดล้อมที่มีความเป็นกรดสูงและปล่อยอนุภาคนาโนไปยังพื้นที่เป้าหมายได้ 
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ABSTRACT (ENGLISH) 
# # 6076112933 : MAJOR BIOMEDICINAL CHEMISTRY 
KEYWORD: chitosan-alginate, Porcine epidemic diarrhea virus, 2C10 monoclonal antibody, 

microencapsulation 
 Rachatapan Junchay : DEVELOPMENT OF NANOPARTICLE-IN-MICROSPHERE(NIMOS) SYSTEM 

FOR ORAL DELIVERY OF VACCINE AND ANTIBODY AGAINST PED VIRUS FOR SWINE. Advisor: 
Assoc. Prof. WARANYOO PHOOLCHAROEN, Ph.D. Co-advisor: TEERAPONG YATA, Ph.D. 

  
PED virus is a major barrier to the animal farming industry, and it is the main cause of the 

mortality of suckling piglets up to 95% by enteric infection. The 2C10 monoclonal antibody (mAb) 
obtained from Nicotiana benthamiana produced by transient expression was indicated as one of the 
potential candidates is an antibody against PEDV by oral delivery. The biologics are a new wave of 
pharmaceuticals and have been continuously developing, which has various benefits of low toxicity 
and high specificity. However, it unsuitable for use with oral drug delivery owing to limitations of the 
strong acidity and protease of the GI tract. Therefore, to overcome these limitations, the development 
of oral drug delivery is essential for biologics to enhance stability. The pH-responsive microbeads were 
used as a carrier for oral delivery and the alginate-chitosan is a well-known material, some properties 
protect biologics from an inappropriate environment of the GI tract. The concentration of alginate-
chitosan was optimized for pH-responsive beads construction, which the 2% alginate and 1% chitosan 
is a suitable qualification. Then the physical characterization of pH-responsive microbeads includes 
the diameter size measurement by digital vernier, found that the distribution of diameter size was 
between 1.5-1.6 mm which was more than 70%. The SEM showed that the surface of pH-responsive 
microbeads was a network structure with varying porosity, meanwhile, the TEM demonstrates to the 
nanoparticles kept in microbeads. Further, the release behaviour for pH-responsive microbeads in 
simulated physiological fluids (SPF) was investigated under a fluorescent microscope, it was found that 
the pH-responsive microbeads could protect and retain the nanoparticles from SPF. In the last step, 
the biologics encapsulated with microbeads were tested with SPF, after that, it evaluated the efficacy 
by Real-Time PCR. From the result, both the viral-like particles and the 2C10 mAb still stable, even 
though, was tested with SPF. In summary, the alginate-chitosan is efficient enough to retain the 
nanoparticles, and the pH-responsive microbeads can use as a carrier for oral drug delivery owing to 
could be protected from an acidic environment and released the nanoparticles to the target area. 
Field of Study: Biomedicinal Chemistry Student's Signature ............................... 
Academic Year: 2020 Advisor's Signature .............................. 
 Co-advisor's Signature ......................... 
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µm   =   micrometer 

µg   =   microgram 

NiMOS   =  Nanoparticles-in-microsphere  

NaCl    =   Sodium Chloride 
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PEDV   =  Porcine Epidemic Diarrhea Virus 
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S.D.    =   standard deviation 

SEM    =   Scanning Electron Microscope 

Sec    =   seconds 

SGF   =  Simulated Gastric Fluid 

SIF    =   Simulated Intestinal Fluid  

siRNA   =  interfering Ribonucleic Acid 
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TBP    =   TATA binding protein    
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CHAPTER I INTRODUCTION 
  INTRODUCTION 
 

Swine is one of the most important livestock species produced in animal 
farming. Inevitably, several infectious diseases can cause major financial damage to 
the producers of farmed pigs. Among several viruses, Porcine Epidemic Diarrhea has 
been now identified as one of the most serious infectious diseases. Porcine Epidemic 
Diarrhea Virus (PEDV), the causative agent of porcine epidemic diarrhea, was firstly 
discovered in Belgium in the early 1970s (Pensaert and De Bouck 1978). The 
symptoms of infected animals include intense diarrhea, vomiting, weight loss, and 
dehydration (Chasey and Cartwright 1978). PEDV infection also affects the growth rate 
of swine and newborn piglets (Pensaert and De Bouck 1978) leading to severe 
economic losses. 

 Among the effective prevention and control strategies, vaccination is one of 
the most effective approaches. Vaccines against infectious pathogens for the swine 
industry can be broadly categorized as traditional and modern vaccines. The 
traditional vaccine includes inactivated or killed vaccines and attenuated vaccines. 
The modern vaccine includes recombinant technology vaccines and synthetic 
peptide vaccines as well as DNA vaccines, which are in progress intensively (Correia, 
Bates et al. 2014). Generally, all of these vaccines have shown both advantages and 
disadvantages. Although there are several efforts trying to develop effective vaccines 
against various infectious diseases using recombinant vaccines and recombinant DNA 
technology, the inherent limitation of these modern antigens is their low 
immunogenicity in comparison to the traditional vaccines. The poor immunogenicity 
frequently observed in recombinant antigens is associated with a lack of immune 
activating components (Jorge and Dellagostin 2017). Most licensed vaccines in the 
swine industry are in the form of live attenuated or inactivated microorganisms 
(McVey and Shi 2010), (Unnikrishnan, Rappuoli et al. 2012). Traditional vaccines are 
generally more effective than modern vaccines because mostly the protection is 
mediated by the combination of multiple antigens composed of lipopolysaccharides, 
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lipoproteins, complex polysaccharides as well as proteins (LaFrentz, LaPatra et al. 
2008), (Shoemaker, Klesius et al. 2009), (Shoemaker, Klesius et al. 2011). 

Another approach to prevent or inhibit viral infections is the use of 
neutralizing antibodies to inhibit direct viral cell-to-cell spread of PED viruses. A 
previous study developed a plant-produced monoclonal antibody (mAb) 2C10 as a 
prophylactic candidate to prevent the PEDV infection (Rattanapisit, Srijangwad et al. 
2017). The 2C10 mAb was transiently expressed in tobacco and lettuce using a 
geminiviral vector. Interestingly, the plant-produced 2C10 mAb can efficiently bind to 
the virus and inhibit PEDV infection in vitro, suggesting excellent potential for a plant-
expressed 2C10 as PEDV prophylaxis for PEDV infection. 

Orally administration of biopharmaceutical agents is more advantageous over 
other routes of administration due to its easy handling and low cost of production 
(Ferraro, Morrow et al. 2011). However, oral delivery of biopharmaceutical agents, 
such as vaccines and monoclonal antibodies, still has some limitations. The harsh 
conditions in the gastrointestinal tract (e.g., to the low pH and enzymes in the 
stomach) have the potential to damage biopharmaceutical agents (Silin, Lyubomska 
et al. 2007). Additionally, inefficient delivery to the active site causes the 
administration of large doses of biopharmaceutical agents. Therefore, the 
development of safe and cheap carriers capable of efficient and selective delivering 
biopharmaceutical agents to the intestine is important. 

Recently, we have successfully developed the formulation of pH-responsive 
microspheres as a potential delivery of biopharmaceutical agents (Ma, Pacan et al. 
2008). As shown in Figure 1, our preliminary study suggested that the pH-responsive 
microparticles maintain their structure in an acidic environment and stimulated the 
release of encapsulated cargos in alkaline conditions, indicating that this 
microparticle system has potential to use for oral delivery of biopharmaceutical 
agents to the intestine.  
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Figure  1; pH responsive behavior of alginate microspheres 

a) Size changes of spherical microbeads in intestinal and gastric fluids. 
Representative stereo microscope images of microbeads after treatments. The 
samples of microbeads were collected at a given interval. b) Release behavior of 
alginate microspheres in simulated physiological fluids. In our preliminary study, Nile 
Red, a fluorescent lipophilic dye was used as a model drug to evaluate the drug 
release behaviors of the pH-responsive alginate microparticles, and subsequently a 
comparison on the release behaviors is made between the gastric and intestinal 
fluid. The samples of microbeads were collected at a given interval. The remaining 
Nile Red-labelled nanoparticles entrapped in alginate beads as a function of time 
was determined using a fluorescent microscope. 

 
In this study, we proposed to use a combination of pH sensitive polymers 

and a timed-release approach to optimize the formulation of alginate microbeads for 
the release of active ingredients at specific areas in the intestine. This could be 
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achieved by varying polymer types (alginate and chitosan) and concentrations of 
polymer based on transit time through the small intestine as shown in Figure 2. 
 

 
 
Figure  2; Transit time and luminal pH changes to the gastrointestinal 

tract. (Modified from (Hua, Marks et al. 2015). Reference: (Hua, Marks et al. 
2015). 

Advances in oral nano-delivery systems for colon targeted drug delivery in 
inflammatory bowel disease: selective targeting to diseased versus healthy tissue 
(Hua, Marks et al. 2015). 
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Next, the encapsulation of biopharmaceutical agents in pH-responsive 
microspheres will be exploited to improve the stability and efficacy of two different 
biopharmaceutical agents. These include i) lived attenuated PEDV as a potent 
vaccine for the PED prevention and ii) 2C10 monoclonal antibody as PEDV 
prophylaxis for the control of PEDV infection as schematically shown in Figure 3. 

 

Figure  3; Two potential applications of the pH-responsive microsphere 
proposed in this study. 
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The pH-responsive microspheres will be exploited to improve the stability 
and efficacy of two different biopharmaceutical agents. 
 
Research Questions 

1. Does the pH-responsive microparticle maintain their structure in acidic 
environment and stimulate the release of encapsulated cargos in alkaline 
condition? 

2. Can this microparticle system be used for oral delivery of biopharmaceutical 
agents to intestine? 

3. Can the pH-responsive microsphere prevent encapsulated biopharmaceutical 
agents from low acidic environment and enzymatic degradation in the 
stomach? 

4. Will encapsulated PED vaccines remain infectible after long incubation in 
simulated gastric fluids and release in simulated intestinal fluids? 

5. Will encapsulated 2C10 monoclonal antibody remain effective against PED 
virus after long incubation in simulated gastrointestinal fluids? 
 

Objectives  
The main objective of this study is to investigate the application of pH-

Responsive Microsphere as a smart carrier system for precision delivery of 
biopharmaceutical agents to the intestine for control of PED infections. 
Objective I: To use a combination of pH sensitive polymers and a timed-release 

approach to optimize the formulation of a smart carrier for 
encapsulation of biopharmaceutical agents and release in the 
intestine 

Objective II: To improve the stability and efficacy of live attenuated vaccines 
against PEDV by the pH-Responsive Microsphere when in contact with 
physiological fluids  

Objective III: To improve the stability and efficacy of 2C10 monoclonal antibody by 
the pH-Responsive Microsphere when in contact with physiological 
fluids 
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Hypothesis 
We propose in this study that the stability of biopharmaceutical agents could 

be protected by the pH-Responsive microsphere when in contact with physiological 
fluids. Therefore, we hypothesize that the encapsulated live attenuated PEDV is still 
infectious after long incubation in simulated gastrointestinal fluids, and encapsulated 
2C10 monoclonal antibody is able to neutralize remain effective against PED virus 
after long incubation in simulated gastrointestinal fluids. 
 
Expected benefits  

 The success of this study potentially provides a significant extension to 
the development of innovative products by using this platform for 
efficient and targeted delivery of a broad spectrum of orally administered 
substances (drugs, biopharmaceutical agents and natural bioactive 
compounds) in order to improve the effectiveness for prevention and 
treatment of human and animal diseases. 

 It is also expected that this platform would be used for the development 
of oral vaccines for veterinary use. In collaboration with Vet Products 
Research & Innovation Center Co.,Ltd. which focuses the development of 
an oral vaccine against the Porcine Epidemic Diarrhea Virus (PEDV), which 
causes a serious and high contagious swine disease, especially in neonatal 
piglets, leading to a significant loss in the swine industry. 
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CHAPTER II LITERATURE REVIEWS 
LITERATURE REVIEWS 

 
Presently, biologics is a product obtained from living systems include 

microorganisms, plants, and animal cells. The well-known biologics example 
recombinant protein, antibodies, peptide, and vaccines. Nearly a century ago, the 
biologics often used to treatment such as insulin which mostly it will use in oral drug 
delivery.  It has many advantages such as low toxic, high specific but the important 
one of a weak point is often destroyed by the acidic environment and proteolytic 
enzyme (Vllasaliu, Thanou et al. 2018). Hence, the development of oral drug delivery 
is very important for high effectiveness. Nanotechnology is used in several industries 
especially in pharmaceutical science. There are several nanoparticles that can be 
applied to use in the drug delivery process such as liposome, albumin-bound, 
nanoemulsion, gold particle. There are two nanoparticles that will be used in this 
study, nanoparticle-in-microsphere and, microcapsules of alginate cross-linked with 
divalent ions.  

1. Nanoparticle-in-Microsphere (NiMos)  

Nanoparticles-in-microsphere (NiMOS) is an encapsulated gene, drug, or 
biologics of interest with a nanoparticle polymer as shown in Figure 4. Which NiMOS 
can specifically design for various routes of delivery depending on the users (Kriegel 
and Amiji 2011). 
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Figure  4; Nanoparticles-in-microsphere oral system (NiMOS) for short 
interfering RNA (siRNA) delivery by Gelatin nanoparticle and poly(e-
caprolactone) microsphere. 

Previous studies reported the plasmid DNA can be encapsulated in gelatin 
nanoparticles. These systems can protect the plasmid DNA during delivery to the 
target and increase the transforming efficiency (Kaul and Amiji 2005). Previous reports 
showed that Nanoparticles-in-microsphere oral system (NiMOS) can apply several 
drugs and polymers (Kaul and Amiji 2005). 
  

2. Microcapsules of alginate cross-linked with divalent ions 

Microencapsulation is a technology that can control the release of nutrients 
in specific places.  It is a new technology that was firstly used in carbonless copy 
paper (Wilson and Shah 2007). Over the past few decades, the use of natural 
polymers for the development of drug delivery systems has received considerable 
attention due to their easy availability, cost effectiveness, biodegradability, and 
biocompatibility (Hua, Ma et al. 2010, Chen, Fang et al. 2011, Balaure, Andronescu et 
al. 2013, Wischke, Schneider et al. 2013). Microencapsulation is a barrier that protects 
and helps to avoid material in a capsule to direct contact with the environment 
(Poshadri and Aparna 2010). Among several natural polymers, alginate is one of the 
most abundant polymers found in brown marine algae (Nayak and Pal 2011). Alginate 
is a linear co-polymer consisting of guluronic (G) and mannuronic (M) acid-forming 
regions of M- and G-blocks and alternating structure (MG-blocks) as shown in Figure 5 
(De’Nobili, Curto et al. 2013). Doubly charged calcium ions (Ca2+) or barium ions (Ba2+) 
can bind two different alginate strands simultaneously, and therefore crosslinking and 
solidifying the solution (Mørch, Donati et al. 2006, Lee and Mooney 2012). Frequently 
used in various applications, alginate is so far mainly processed into capsules, beads, 
and fibers (Degen, Leick et al. 2012) and has been commonly used for encapsulation 
of bioactive agents (Capretto, Mazzitelli et al. 2010). 
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Figure  5; Microcapsules of alginate cross-linked with divalent ions. 

Divalent cations such as Ca2+ and Ba2+ can bind to the G-blocks of alginate in 
a highly cooperative manner, such that a gel is formed. In most cases, spherical 
alginate particles are available by use of a typical droplet formation approach. 
 

Chitosan is a polysaccharide that is a derivative of chitin. Chitosan is extracted 
from the shells of crab and shrimp. Mostly It is used in medicine because it can be 
prepared in the form of gel or film (Rinaudo 2006). Previously study, it was reported 
that the pore size of alginate gel was approximately 5 nm (Boontheekul, Kong et al. 
2005, Lee and Mooney 2012).  
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3. Porcine Epidemic Diarrhea (PED) Virus 

Porcine epidemic diarrhea (PED) is an enteric disease by Porcine Endemic 
Diarrhea (PED) Virus. PED virus is an enveloped virus with positive-sense single-
stranded RNA genome of about 28 kb. It is gram-positive bacteria and belongs to the 
Alphacoronavirus genus in the Coronaviridae family. The PEDV consisted of the spike 
[S], envelope, membrane and nucleocapsid [N] proteins, which the S protein is a 
type I glycoprotein present on the surface of virus, it was used for entry to host cell 
and it is target site for neutralizing antibodies (Li, van Kuppeveld et al. 2016).  

The PED virus was called Coronavirus-like particles (Pensaert and De Bouck 
1978) because when PED virus infected swine, the swine have symptoms including 
intense diarrhea, vomiting, weight loss, and dehydration (Chasey and Cartwright 
1978). These symptoms are like the symptom of Transmissible Gastroenteritis (TGE) 
and rotavirus infection. Therefore, the scientists misunderstand that the infection is 
occurred from rotavirus. PED virus is different from TGE because it has severely 
affected newborn piglets. The diarrhea cause PED virus spreads among the swine at a 
slower rate and diarrhea happens in most of the piglet. Yang et al, shown the 
structure of the PED virus by EM images, found that a diameter size about 80 to 120 
nm as figure 6 (Yang, Kim et al. 2018). 
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Figure  6; The morphology of Porcine Endemic Diarrhea (PED) Virus (Yang, 
Kim et al. 2018). Scale bar = 100 nm. 

 
PED virus was found in the early 1970s in Europe and the outbreak was 

spread to Asia. The virus can infect swine by oral route and replicates in the small 
intestine cells (Vlasova, Marthaler et al. 2014). Although the PED virus is non-severe 
to sow, whereas it is severe in piglet or newborn piglet. When the piglets were 
infected by the PED virus, they have symptoms as mentioned above, and finally, die 
from severe water shortage. Therefore, this problem adversely affects the growth 
performance of piglets (Chasey and Cartwright 1978). Now, there is no specific 
treatment for PED, however the swine with diarrhea should have free access to water 
and separate out of the group for 4-5 days to outbreak decrease (Harris 2012).  

Over the years, several types of orally administrating vaccines have been 
established and some of these vaccines have sufficient potential to inactivate PEDV, 
for example, live attenuated vaccines (Song et al., 2007) and recombinant protein 
vaccines from bacteria (Hou et al., 2018). Has been reported that the traditional 
vaccination induces low immunogenic efficacy in sow. Moreover, the transfer of 
immunity from sow to newborn piglet by transfer the antibodies in milk cannot 
forward to neonatal piglet because destroyed by strong pH and enzyme in GI tract 
(Wang, Huang et al. 2019). Therefore, the oral vaccination for inducing specific 
antibodies through intestinal mucosal immune system is probably more efficient 
strategy than parenteral route to protect PEDV mucosal infection (Mutwiri, Watts et 
al. 1999, Chattha, Roth et al. 2015).  

Currently,  there are many platforms available for recombinant protein 
production, including bacteria, insect cells, yeast, mammalian cells, and plants 
(Cereghino, Cereghino et al. 2002) (Demain and Vaishnav 2009). However, the protein 
production in bacterial have weak point such as endotoxin contamination. The 
benefit of the recombinant protein production from the plant is low toxicity and high 
specificity (Oo and Kalbag 2016) especially there are post-translational modifications 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 15 

which it helping more complete protein. Among all of these systems, plants were 
developed lately to  use as bioreactors to recombinant proteins (HASHEMI, Jourabchi 
et al. 2005). Recombinant protein production in plants can be done by two methods 
including transgenic and transient expression. The transgenic plant is a plant that 
contained the recombinant gene in the plant chromosome. This method takes a long 
time to develop. Transient expression is one alternative way to produce protein in 
plants without inserting the recombinant gene into the plant chromosome. It takes a 
short time for protein production. This can be an alternative method for recombinant 
protein production in a plant. Previous studies showed that there are several 
proteins successfully produced in plant by transient expression technique, such as 
influenza vaccine (Shoji, Chichester et al. 2008), rabies monoclonal antibody 
(Yusibov, Hooper et al. 2002), Ebola monoclonal antibody (Olinger, Pettitt et al. 
2012), and PEDV monoclonal antibody (Rattanapisit, Srijangwad et al. 2017).  

In 2009, the 2C10 monoclonal antibody was expressed in Escherichia coli and 
also found its potential to neutralize PEDV (Pyo, Kim et al. 2009). In recent years 
later, one of our researchers was found that the 2C10 mAb can be produced from 
plants such as Nicotiana benthamiana Domin (Solanaceae) by transient expression. 
The 2C10 mAb against PED virus is IgG antibody and have a diameter size 
approximately 6.9 nm (Steinbock, Krishnan et al. 2014). In addition, it is one more 
candidate for prophylaxis of PED because it has been proven to neutralize the virus 
(Rattanapisit, Srijangwad et al. 2017).  
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CHAPTER III METERIALS AND METHODS 
METERIALS AND METHODS 

 
MATERIALS 

Sodium alginate, chitosan, pepsin, pancreatin, calcium chloride, and Nile Red 
dye were purchased from Sigma (Missouri, USA). Deionized water was produced from 
Thermo Scientific™ Barnstead™ LabTower™ EDI Water Purification System 
(Massachusetts, USA). The antibody labelled with Alexa FluorTM 488 Phalloidin was 
purchased from Thermo Scientific™ Barnstead™ LabTower™.  Vero cell line derived 
(African green monkey kidney) was obtained from American Type Culture Collection 
(ATCC). RNeasy mini kit was purchased from QIAGEN Inc. (Germantown, MD, USA). The 
live attenuate PED viruses were growing by serial passage and obtained from Vet 
Products Research & Innovation Center Co.,Ltd.  

METHODS 

1. Preparation of pH-responsive microbeads 

For the formation of pH-responsive microbeads, 900 µL of various 
concentrations of pH sensitive polymers (2% alginate and 1% chitosan) is mixed with 
100 µL of biopharmaceutical agents (9:1 v/v, ratio). The mixture is then introduced 
dropwise from a glass syringe with a size-30 needle into 50 mL of an aqueous Cacl2 
solution being stirred at 400 rpm. The concentration of CaCl2 in the solution is fixed 
at 3% w/v. The stirring is continued for 10 mins and the beads are harvested from 
the CaCl2 solution by filtration, washed with distilled water. Tissue paper is used to 
absorb the surface excessive water and oil onto the wet microbeads.   
 

2. Physical characterization of pH-responsive microbeads 

The size and morphology of the obtained microbeads are assessed by direct  
observation, and images are recorded digitally. The measurements are carried out 
using digital Vernier calipers (ABSOLUTE DIGIMATIC, Mitutoyo Corp., Japan). 
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Individually, 30 beads are subjected to size measurement, and the average was 
calculated. The morphology of surface of microbead was investigated under a 
scanning electron microscope (SEM, JEOL- 2100 Japan), coated with a gold layer 
under vacuum for 20 min operated at 20 kV. For Transmission Electron Microscope 
analysis, the samples are fixed in 4% v/v glutaraldehyde in 0.1 M PIPES buffer at 4˚C 
for 1 hour and post fixed in 1% w/v osmium tetroxide in 0.1 M PIPES buffer at room 
temperature for 1 hour. The samples are dehydrated using graded ethanol series 
from 50%, 70%, 90% and 100% v/v. The samples are then progressively 
infiltrated with Epon 812 resin (Electron Microscopy Science Ltd.) and polymerized at 
60˚C for 24 hours. The ultrathin sections are cut via ultramicrotomy using a 
45° diamond knife. Bright-field TEM is performed on a JEOL 2100, operated at 120 kV. 
 

3. Release behavior in Simulated Physiological Fluids (SPF). 

In order to investigate the release behavior of biopharmaceutical agents from 
the matrix, the liposome represented by the PED virus is labelled with Nile Red, a 
fluorescent lipophilic dye was entrapped in the pH-responsive microbeads. After 
synthesis, the liposomes are separated from unencapsulated Nile Red by 
centrifugation at 650,000g for 30 min. The Simulated Physiological Fluids (SPF) 
separated two type including Simulated Gastric Fluid (SGF) and Simulated Intestinal 
Fluid (SIF) are prepared as previously described (Nobrega, Costa et al. (2016). For this, 

SGF comprised of 3.2 mg/mL pepsin in 0.2% (w/v) NaCl at pH 3.5, and SIF comprised 

of 1 mg/mL pancreatin in 0.2% (w/v) NaCl at pH 8.0 are prepared. Samples are added 

to the pre-warmed solutions at 37 °C and incubated at 37 °C. At specified time 
intervals, samples of microbeads are collected. Entrapment of remaining Nile Red-
labelled the liposomes in pH-responsive microbeads is visualized under the 
fluorescence microscope.  

At the same time, the antibody labelled with Alexa FluorTM 488 Phalloidin is 
represented as 2C10 was entrapped in the pH-responsive microbeads and tested the 
same above step. 
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4. Quantification of encapsulated the liposomes labelled with 
fluorescent dye used in this study 

After microbead dissolution with 5 mL of MBS buffer contained 50 mM 
sodium citrate, 0.2 M sodium bicarbonate, and 50 mM Tris-HCl, pH 7.5, for 10 min 
with shaking at room temperature. The dissolved solution was quantified for Nile Red 
by fluorescence measurement with a fluorescence plate reader at 552 nm/636 nm. 
Vero cell infection of the PED virus was analyzed by Real-Time Polymerase Chain 
Reaction (Real-Time PCR) assay.  

 

5. Production of 2C10 monoclonal antibody 

The 2C10 monoclonal antibody against PED virus is produced from Nicotiana 
benthamiana as previously described (Rattanapisit, Srijangwad et al. 2017). The 2C10 
monoclonal antibody-encoding genes are inserted into the geminiviral vector and 
transduced into Agrobacterium. Transformation of transgenes into plants is mediated 
by Agrobacterium co-infiltration. Proteins are extracted and purified from leaves and 
used for microencapsulation in further experiments. 

 

6. Neutralization assay 

Vero cells are seeded at a density of 5 x 104 cells/well in 48-well plates and 
allowed to grow until 70-80% confluent followed by infection with PED viruses in the 
presence dissolved 2C10 monoclonal antibody-loaded pH-responsive microbeads 
after incubation in simulated physiological fluids at specific time points as indicated 
by the experiment. 

 

7. RNA extraction and reverse transcription PCR 

The total RNAs were extracted according to the manufacturer’s protocol 
RNeasy Mini Kit (Qiagen, Hilden, Germany). The extracted RNA was eluted in sterile 
water. cDNA was synthesized using High Capacity cDNA Reverse Transcription Kit 
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(Applied Biosystem, USA). The manufacturer’s protocol was followed. cDNA was 
diluted before performing real-time PCR reactions. 

 

8. Real-time PCR 

Real-time PCR reaction contained 1x PowerUp SYBR Green Master Mix (7500 
Applied Biosystems, Carlsbad, CA), 900nM forward and reverse primers (Table 1), 2 µL 
of cDNA template and water to a final volume of 20 µL. The Standard PCR protocol 
is performed following the cycling profile: 50 °C for 2 min, 95 °C for 2 min to dual-
lock DNA polymerase, then 40 cycles of denaturation at 95°C for 15 sec and a 
combined annealing/extension step at 60°C for 60 sec. Real-time PCR results are 
analyzed by the 7500 software version 2.0.5 (Applied Biosystems) to express as the 
quantification cycle (Cq) value, in which the lower Cq value is defined as the higher 
virus. 

Table  1; Primer sequences and target region 

Assay 
name 

Primer name Oligonucleotide sequence (5' to 3') Target Reference 

PED PED_N_F CGCAAAGACTGAACCCACTAATTT Nucleocapsid Yu et al. (2015) 
PED_N_R TTGCCTCTGTTGTTACTTGGAGAT 

TBP GAPDH_F GAAATCCCATCACCATCTTCCAGG Glyceraldehyde 3-
phosphate 

dehydrogenase 

Ahn et al. (2008) 
GAPDH_R GAGCCCCAGCCTTCTCCATG 
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EXPERIMENTAL DESIGN 
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Experimental Design 

1. Formulation optimization of a pH-responsive microsphere for the release of 
biopharmaceutical agents in the intestine by using a combination of pH 
sensitive polymers and a timed-release approach.  

 This could be achieved by varying types and concentrations of precursors 
(polymers and lipid components) based on transit time through the small intestine. 

The stability and release profile of biopharmaceutical agents (labelled with 
fluorescent dye) from the different formulation of microbeads will be determined in 
simulated physiological fluids. Samples of microbeads will be collected and analyzed 
at specified time intervals associated with gastrointestinal transit time. 
 
2. Application of the pH-responsive microsphere for efficient and targeted 

delivery of two  
 biopharmaceutical agents. We propose to use a pH-responsive microsphere 

system for two biopharmaceutical agents in order to control PEDV infections.    
These include  

a. live attenuated PED viral particles as a potent vaccine for the prevention 
of PED 

b. 2C10 monoclonal antibody as PEDV prophylaxis for the control of PEDV 
infection 
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CHAPTER IV RESULTS 
RESULTS 

 

1. Formulation of Sodium Alginate-Calcium Chloride-chitosan to be 
pH-responsive microbeads 

In this study, there were two types of nanoparticles including live attenuated 
PED virus, represented as viral particles, and the 2C10 monoclonal antibodies. For 
the formulation of the microbeads, one bead will encapsulate a single type of 
nanoparticle. Thus, the microbeads were prepared two times, starting with the 
microbeads encapsulating PEDV.       
 First of all, we constructed the microbeads using a mix of Sodium with the 
nanoparticle on the stirrer shown in Figure 7A. Then, the sample was added into a 
syringe, as in Figure 7B, after which a syringe pump was used to control the size and 
volume of microbeads and for dropping in Calcium Chloride-Chitosan, as in Figure 7C. 
After getting the microbeads, it was washed by DI water three times. Finally, the 
microbeads were dried on filter paper and stored at 4 °C. The colours of the 
microbeads depended on the colour of the nanoparticle, as seen in Figure 7D. 
Simultaneously, the microbeads encapsulating 2C10 monoclonal antibody were 
produced by following the process production for microbeads, as described 
previously.  
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Figure  7; Formulation of Sodium Alginate-Calcium Chloride-chitosan 
microbeads. 

Sodium alginate a mix of the nanoparticles on the stirrer (A), the solution was 
added into a syringe and put on a size-30 needle (B). The syringe was brought on the 
syringe pump to drop into Calcium Chloride-Chitosan (C). The colour of the 
microbeads was turbid (D). 
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2. Physical characterisation of Sodium Alginate-Calcium Chloride-
Chitosan microbeads  

The environment around the microbeads, such as pH value, has effects on 
metamorphism. Therefore, the microbeads were measured by Digital Vernier to 
observe the diameter size of the alginate-chitosan microbeads; the sample of 
microbeads was prepared using 30 beads. It was found that the diameter size 
distribution of the microbeads was mostly between 1.5 - 1.6 mm, which is more than 
70% and there is an average size of about 1.57 ± 0.078 mm, as shown in Figure 8. 

 

Figure  8; The diameter size distribution of microbeads mostly between 
1.5-1.6 mm as measured in size by Vernier. 

 
After the alginate-chitosan microbeads were checked for diameter size, the 

morphology of the surface for alginate-chitosan microbeads was investigated under 
SEM at different magnifications. The SEM exhibited images of the morphology of the 
microbeads under a magnification of x200 and x800, which found that the surface of 
the microbeads involved a network structure and spherical shape (Fig. 9A); the 
microbead has a distribution comprising many small and compact pores (Fig. 9B). 
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Furthermore, we observed inside the pores at 50,000x magnification (Fig. 9C) and 
found the nanoparticles were kept in microbeads. 

 

Figure  9; Scanning electron microscopy showing the characteristics for 
the surface of alginate-chitosan microbeads at different magnifications.  

(A) x200, (B) x800, and (C) x50,000. 
 
Subsequently, the aspect of nanoparticles within microbeads was checked 

and images recorded inside of microbeads by TEM. We found that nanoparticles 
were contained in the microbeads, as shown in Figure 10. From observation, the 
nanoparticles showed both a single-particle form (Fig. 10A) and a multiparticle form 
(Fig. 10B) in one microbead. 

Figure  10; The nanoparticles were investigated under TEM.  

The nanoparticles in (A) single-particles form and (B) multiparticle form 
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Finally, to investigate the morphology of the alginate-chitosan microbeads 
using testing by SPF, the samples were soaked in SGF for 1, 2, 3, and 24 hours and 
the images were recorded with a miniscope and were measured by Digital Vernier. 
The result of the diameter size change as shown in Figure 11 and from Figure 12, the 
size of the microbeads soaked for 24 hours were smaller compared to those soaked 
for 1 hour. Subsequently, the samples were tested with SIF for 1 and 2 hours. It was 
found that the microbeads had clear swelling, and the outside surfaces of the 
microbeads were more fragile.  
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3. Study of nanoparticles release behaviour for Alginate-Chitosan 
microbeads in Simulated Physiological Fluids (SPF)  

Preliminarily, we investigated the nanoparticles labelled with Nile red, which 
were encapsulated by alginate and soaked in SGF. It was found that the alginate 
microbead could retain nanoparticles, but not enough for a long duration (figure 19 
in appendixtrtion). Therefore, the alginate-chitosan in this study was tested for the 
encapsulation of the microbeads. To observe the nanoparticles release behaviour of 
the microbead when the nanoparticles encapsulation labelled with Nile red, which 
represented viral particles, the microbead was brought for testing with SGF and SIF, 
respectively.  

The nanoparticles labelled with Nile red were encapsulated by microbeads 
and observed as well as recorded images under a fluorescent microscope at 0 hours. 
The microbeads were then soaked in SGF at 1 hour, 2 hours, and 3 hours to observe 
and record images each hour. We found that the size of the microbead each hour 
was smaller when compared with at 0 hours, but still glowing. Then, it was soaked in 
SIF for 1 hour, 2 hours, and found that almost the entire microbead was dissolved 
into a solution; some nanoparticles were entrapped in alginate-chitosan debris, as 
shown in Figure 13. Moreover, we found the nanoparticles that were entrapped 
could still glow. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
31

  

Fig
ur

e 
 1

3;
 T

he
 m

icr
ob

ea
d 

wa
s o

bs
er

ve
d 

to
 re

le
as

e 
be

ha
vio

ur
 u

nd
er

 a
 fl

uo
re

sc
en

t m
icr

os
co

pe
 w

he
n 

te
st

ed
 w

ith
 

sim
ul

at
ed

 p
hy

sio
lo

gic
al

 fl
ui

ds
.  

Th
e 

m
icr

ob
ea

d 
wa

s r
ec

or
de

d 
as

 a
n 

im
ag

e 
at

 0
 h

ou
rs 

an
d 

wh
en

 it
 w

as
 so

ak
ed

 in
 S

GF
 a

t 1
 h

ou
r, 

2 
ho

ur
s, 

an
d 

3 
ho

ur
s, 

af
te

r w
hic

h 
it 

wa
s d

iss
ol

ve
d 

in 
SIF

 a
t 1

 h
ou

r, 
2 

ho
ur

s. 
Sc

ale
 b

ar
 =

 5
00

 µ
m

. 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 32 

Meanwhile, we encapsulated antibodies labelled with fluorescent (Alexa 
Fluor™ 488 Phalloidin) to represent 2C10 monoclonal antibodies against PEDV, after 
which the microbead was tested in SGF and SIF, respectively. Before the microbead 
was tested with a solution, it was recorded as an image both under Bright-field and a 
fluorescent microscope at 0 hours. After that, it was taken to soak in SGF for 1 hour, 
2 hours, and 3 hours to observe and record images each hour. We found that the 
size of the microbead decreased when compared with 0 hours. Next, the microbead 
was dissolved in SIF for 1 hour and 2 hours then observed under a fluorescent 
microscope, which found that the microbead was dissolved; most of it had become 
a solution. Some parts could not be dissolved and had nanoparticles trapped inside 
but were able to glow, as in Figure 14.  

The method and result of the experiments mentioned above cannot, 
however, confirm the efficacy of the nanoparticles. Hence, the live attenuated PEDV 
and 2C10 monoclonal antibodies were tested by real-time RT-PCR in the next step. 
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4. Quantification of encapsulated the liposomes labelled with 
fluorescent dye used in this study  

To predict the number of the liposomes in microbeads, the liposomes 
labelled with fluorescent dye were encapsulated by sodium alginate. Then, the 
microbeads (5 beads) were brought to dissolve with a Microbead Broken Solution 
(MBS) and then analysed with a microplate reader under fluorescent intensity mode. 
It was found that the experimental group, after testing 3 times, had particles 
approximately 0.0005306  g or 0.5306 ng when compared with the stand curve of 
Nile Red (Figure 18 in appendixtrrion).  

 

5. The efficiency of nanoparticles encapsulated by pH-responsive 
microsphere with Real-Time PCR after testing with simulated 
physiological fluids 

To determine the efficiency of nanoparticles encapsulated by pH-responsive 
microsphere, the microbeads were tested with SPF then RNA extraction and reverse 
transcription PCR. Both cDNA of live attenuated PED virus and 2C10 mAb were 
analysed by real-time RT-PCR, for which the PED and TBP primer were used for 
finding the amount of RNA viral after testing and calculating the %ratio of PEDV: TBP. 
 The results of the live attenuated PED virus found that, when the 
unencapsulated group was tested with SGF, the cDNA of viral cannot be detected by 
the primer of PED virus. Therefore, it cannot calculate the quantity of cDNA after 
testing with SGF. Meanwhile, the encapsulated group that can be detected, and the 
quantity of cDNA can be calculated, as shown in Figure 15.  
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Figure  15; The viral particles were tested with SGF and evaluated by 
Real-Time PCR.          

The unencapsulated group is viral particle delivery by not using 
encapsulation. Thus, it cannot detect the cDNA of PEDV. The encapsulated group is 
viral particle delivery by using encapsulation, which can be detected for RNA. 

Simultaneously, for the tests with SIF of both unencapsulated group and 
encapsulated group, the primer of PEDV can be detected cDNA of viral. While it can 
be calculated for %ratio between PEDV: TBP and found that the primer can be 
detected for RNA of the encapsulated group more than cDNA of the unencapsulated 
group, as shown in Figure 16.  
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Figure  16; The viral particle was tested with SIF and evaluated by Real-
Time PCR.  

The cDNA of both the unencapsulated group and the encapsulated group 
were detected by the primer of PEDV and it can be calculated for %ratio between 
PEDV: TBP found that the viral of the encapsulated group has more than the 
unencapsulated group. 

In addition to the experiment between viral particles and simulated 
physiological fluids, the 2C10 mAb were tested with SGF to confirm the efficacy of 
nanoparticle delivery. The 2C10 monoclonal antibodies, both the unencapsulated 
group and the encapsulated group, were tested by soaking SGF and then taking 
dissolved samples for incubation with PEDV in the Vero cell.   
 Efficacy was tested by the primer of the PEDV. The result of the 2C10 
monoclonal antibodies found that the primer could detect cDNA of PEDV in the 
unencapsulated group. Thus, it can be calculated for %ratio between PEDV: TBP, but 
it cannot detect PEDV in the encapsulated group. Because the 2C10 antibody of the 
unencapsulated group touches directly with SGF, the 2C10 antibody was destroyed 
by the low pH of SGF. Meanwhile, the 2C10 of the encapsulated group used 
encapsulation for delivery. Therefore, the 2C10 antibody can be neutralized for 
PEDV. Accordingly, the primer cannot be detected for PEDV (Figure 17). 
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Figure  17; The 2C10 monoclonal antibody were tested with SPF and 
evaluated by Real-Time PCR.  

The unencapsulated group of 2C10 monoclonal antibody cannot be 
neutralized for PEDV. Therefore, the primer of PEDV can be detected for PEDV. 
Meanwhile, the encapsulated group of 2C10 antibody can be neutralized for PEDV. 
Therefore, it cannot be detected for PEDV. 
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CHAPTER V DISCUSSION ANDCONCLUSION 
DISCUSSION AND CONCLUSION 

 
Over several years, biologics have continued to develop owing to there being 

more interesting properties for conventional drugs such as low toxicity and high 
specificity (Oo and Kalbag 2016).  Nevertheless, biologics are macromolecular. Hence, 
there are still weak points including sensitivity to heat, easy destruction by strong pH, 
and degradation by enzymes.  

Oral drug delivery is a widespread platform for drug delivery due to there 
being several advantages including being low-cost, pain-free, non-invasive and having 
a modified surface of particle to enhance a specific target. The gastrointestinal tract 
involves various factors that influence oral drug delivery, especially a strong acid 
environment, and digestive enzymes are an important barrier for biologics due to the 
strong acidity, which has a serious impact on absorption. Therefore, a major property 
of oral drug delivery is stability in an acidic environment to enhance absorption in 
the intestine (Sahoo, Bandaru et al. 2021). 

Microencapsulation has been used in various industries such as food 
processing, which can protect the oxidation of oil (Carneiro, Tonon et al. 2013), 
nutrients preservation, and transport (Choi and Kwak 2014). In the pharmaceutical 
industry, insulin is one of the drugs used for oral drug delivery, which has been 
reported to use microencapsulation to protect the drug from exposure to the 
enzymes in the  gastrointestinal tract (Cárdenas-Bailón, Osorio-Revilla et al. 2013).  

We are interested in microencapsulation techniques for oral drug delivery and 
would like to apply them in this work, which uses nanoparticles-in-microspheres with 
a process similar to microencapsulation; it is a mild condition for sensitive biologics 
((Ma, Pacan et al. 2008, Chávarri, Marañón et al. 2010). Biologics were encapsulated 
via microspheres, in which the material of microspheres should have good 
biocompatibility and biodegradability, similar to Alginate-Chitosan (Murano 1998). 
Actually, alginate is prominent in food processing and oral drug delivery; it can 
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protect biologics from digestive enzymes and releases to the target site (Ma, Pacan et 
al. 2008). Meanwhile, alginate is a chelating agent that is rather sensitive with an 
acidic agent. When coating alginate by chitosan, however, it can decrease the 
porosity of alginate (Chávarri, Marañón et al. 2010).  

Preliminarily, the nanoparticles use cinnamon oil and encapsulate it by 
alginate microbeads. The microbeads were prepared using various concentrations. 
We found that size and entrapment efficacy was increased when the concentration 
was increased. In this study, we would like to formulate microbeads for the PEDV 
and monoclonal antibodies, both kinds have a nm level size. We choose a 
concentration of 2% sodium alginate plus 1% chitosan because the formula as 
mentioned can be mixed homogeneously with nanoparticles better than 2.5% 
sodium alginate and it is a suitable qualification. Further, it provides the distribution 
of diameter size of microbeads between 1.5-1.6 mm, which is more than 70%. This 
size can protect the core of the microbeads better than small size (Tang, Huang et 
al. 2015). Moreover, it has been reported that they used 2% sodium alginate and 1% 
chitosan for the formulation of microbeads because it is a formula appropriate for 
oral delivery (Li, Jin et al. 2007).  

When observing the surface of alginate-chitosan microbeads under SEM, the 
SEM showed the structure of alginate-chitosan was a network with varying porosity. In 
the report (Ma, Su et al. 2020), the role of porosity is to exchange nutrients and 
oxygen between nanoparticles in the hydrogel with capillaries. Previously in this 
study, it was reported that the pore size of alginate gel was approximately 5 nm 
(Boontheekul, Kong et al. 2005, Lee and Mooney 2012). The 2C10 monoclonal 
antibody (Steinbock, Krishnan et al. 2014) and viral particles PED virus (Pensaert and 
De Bouck 1978, Yang, Kim et al. 2018) have bigger sizes than the pores of alginate-
chitosan gel. In summary, the alginate-chitosan microbeads were tested with 
simulated physiological fluids (SPF), which found that the strong pH and enzymes 
influenced the contraction and swelling of the microbeads (Ling, Wu et al. 2019). 
Hence, the structure of alginate-chitosan shrinks and the pore size of the microbead 
is reduced, leading to nanoparticle protection from the strong pH and enzymes. 
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Therefore, those can be trapped in microbeads. Meanwhile, the TEM demonstrated 
the ability to detect nanoparticles in two forms, both single-nanoparticles and multi-
nanoparticles. This was examined and confirmed that our microbeads have a 
nanoparticle (Figure 10). 

 The above experiment cannot, however, predict the number of 
nanoparticles. Thus, we used nanoparticles labelled with Nile red to predict the 
number by fluorescence intensity. The result of taking the microbeads (5 beads) to 
dissolve with the MBS solution and compare with the Nile Red standard curve found 
that the number of nanoparticles that could be predicted was approximately 0.5306 
ng (Table 5). 
 As mentioned above, we would like to observe the nanoparticle release 
behaviour of microbeads when exposed to simulated physiological fluids, which 
simulated gastric fluids and simulated intestinal fluids as popular for the 
gastrointestinal tract model. As shown in Figures 5 and 6, the microbeads 
encapsulated nanoparticles labelled and colour. When soaking in SGF, it was found 
that both types of labelled and coloured nanoparticles were retained by the 
microbeads because it still glows, even after being incubated in SGF for three hours. 
Further, the shape of the microbeads remained spherical, but shrunk when 
compared at zero hour by the protonation of chitosan (Ling, Wu et al. 2019). 
Subsequently, the microbead was soaked in SIF to discover that the microbead 
swelled up. Further, the positive charge of chitosan changed to a negative charge  
((Li, Jin et al. 2007, Ling, Wu et al. 2019) and mostly dissolved into a solution. It also 
releases the nanoparticles to SIF, but some nanoparticles stay trapped with the 
remains of alginate. This result confirmed that Sodium Alginate-chitosan is an 
appropriate material and can be a carrier for oral drug delivery (Li, Jin et al. 2007). 

It is well known that PEDV can destroy villi enterocytes within the intestinal 
tract (Cárdenas-Bailón, Osorio-Revilla et al. 2013) and 2C10 monoclonal antibody is 
used against PEDV; both of them have the same target area. From the above results, 
we obtained the microbeads for use to deliver our nanoparticles. Meanwhile, the 
methods mentioned above cannot confirm the efficacy of nanoparticles. Therefore, 
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real-time RT-PCR was used to analyse the nanoparticles after RNA extraction. We 
used two types of nanoparticles including viral particles and the 2C10 mAb against 
PED virus. The results of viral particles showed we can confirm that microbeads 
retain the efficacy of viral particles from SGF. At the same time, for SIF, we can 
detect cDNA both two groups, but the encapsulated group can detect more non-
encapsulated groups. Moreover, the 2C10 monoclonal antibody was delivered when 
tested with SGF. We can confirm its efficacy and ability to neutralize PEDV. Therefore, 
the primer cannot detect cDNA of PEDV, but unencapsulated group can detect RNA. 
This means the 2C10 antibody was destroyed by SGF. However, we can increase the 
%ratio of PED/TBP by adding several microbeads in each group. 

 In conclusion, the gastrointestinal environment will often decrease the 
efficacy of oral drug delivery, in which the main factors include the enzymes and 
acidity in the stomach. In this study, the development of oral drug delivery will assist 
in more effective treatment. We used PEDV to represent oral vaccine delivery and 
2C10 monoclonal antibodies from plants to represent oral drug delivery. From all 
the results, we can summarize that alginate alone is not efficient enough to be used 
in the oral drug delivery system (figure 19 in appendixtrtion). At the same time, 
alginate-chitosan is efficient enough to retain the nanoparticles and can thus protect 
the nanoparticles from contact with strong acid. More importantly, alginate-chitosan 
has good biocompatibility. Furthermore, alginate-chitosan could release 
nanoparticles at the target area when tested with simulated intestinal fluids. In the 
future, we hope that this model for oral drug delivery system development will be 
able to be used as an alternative for the most effective treatment. 
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APPENDIX 
 

TABLES AND FIGURESS OF EXPERIMENTAL RESULTS 
 

Table  2; The mane size and the entrapment efficacy of 
microbeads in different concentrations. 

 
Values are means of the triplicate experiments ± SD. 

 
Table  3; The size of pH-responsive microbeads (30 beads) was 

measured by Digital Vernier. 

% Alginate Solution Mean Size (mm.) (±S.D.) Entrapment efficacy (%EE) 

1.0 1.66±0.115 86.15 

1.5 1.83±0.086 89.48 

2.0 1.98±0.039 95.07 

2.5 2.15±0.007 96.13 

Number 

microbeads 
      mean S.D. 

1 1.67 1.64 1.61 1.64 0.0783 

2 1.72 1.71 1.69 1.70666667 0.0783 

3 1.55 1.52 1.54 1.53666667 0.0783 
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4 1.73 1.75 1.71 1.73 0.0783 

5 1.55 1.54 1.54 1.54333333 0.0783 

6 1.55 1.57 1.58 1.56666667 0.0783 

7 1.61 1.63 1.6 1.61333333 0.0783 

8 1.6 1.58 1.59 1.59 0.0783 

9 1.56 1.51 1.55 1.54 0.0783 

10 1.55 1.54 1.53 1.54 0.0783 

11 1.67 1.65 1.67 1.66333333 0.0783 

12 1.72 1.73 1.66 1.70333333 0.0783 

13 1.55 1.52 1.54 1.53666667 0.0783 

14 1.54 1.5 1.55 1.53 0.0783 

15 1.42 1.46 1.49 1.45666667 0.0783 

16 1.55 1.57 1.58 1.56666667 0.0783 

17 1.61 1.6 1.61 1.60666667 0.0783 

18 1.53 1.55 1.52 1.53333333 0.0783 

19 1.56 1.61 1.58 1.58333333 0.0783 

20 1.45 1.44 1.44 1.44333333 0.0783 

21 1.67 1.61 1.65 1.64333333 0.0783 
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Values are means of the triplicate experiments ± SD. 
 

Table  4; The concentration of Nile Red was tested under 
microplate reader. 

 
Content Blank corrected based on Raw Data (Em spectrum) 

wavelength(nm) 636 

Blank B 0 

0.0001 ug 1482 

0.0002 ug 4313 

22 1.72 1.73 1.69 1.71333333 0.0783 

23 1.55 1.52 1.54 1.53666667 0.0783 

24 1.61 1.59 1.63 1.61 0.0783 

25 1.45 1.42 1.49 1.45333333 0.0783 

26 1.55 1.57 1.58 1.56666667 0.0783 

27 1.51 1.53 1.51 1.51666667 0.0783 

28 1.57 1.55 1.52 1.54666667 0.0783 

29 1.44 1.45 1.44 1.44333333 0.0783 

30 1.56 1.54 1.53 1.54333333 0.0783 
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0.0004 ug 6261 

0.0006 ug 7845 

0.0008 ug 10183 

0.0010 ug 12297 

 
 

Table  5; The nanoparticles labelled with Nile Red encapsulated 
was soaked and measured under microplate reader. 

 

Content 
Blank corrected based on 

Raw Data (Em spectrum) 

Concentration of Nile Red (μg) 

(Compare with Stand curve) 

wavelength(nm) 636   

Blank B 0 0 

Alginate Nanoparticles Nile Red (1) 6596 0.0004214 

Alginate Nanoparticles Nile Red (2) 7878 0.00060252 

Alginate Nanoparticles Nile Red (3) 7425 0.00056788 

mean   0.0005306 
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Figure  18;The standard curve of concentration of Nile Red was 

evaluated under microplate reader 
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Figure  19; The test liposome labelled Nile Red encapsulated by 

alginate microbeads and alginate-chitosan microbeads. 

Figure  20; The PED standard curve for Real-Time RT-PCR. 

 

Figure  21; The PED standard curve for Real-Time RT-PCR. 
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