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This study was designed to globally explore and analyze the in vitro differentiation potential and behavior
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CHAPTER |

INTRODUCTION

Importance and Rationale

Surgical reconstruction of bone defects is a significant challenge for orthopedic

surgeon, especially a non-union or fibrous tissue forming in a large bone defect. The

standard method to treat bone defects are bone grafts using autogenic, allogenic, or

xenogenic transplant (1). However, the treatment result is varied and leads to donor

morbidities (2) . From this reason, molecular and cellular studies have been introduced

and intensively studied to solve the problems.

Study of bone tissue engineering comprises various aspects of osteogenic cell

resources, biomaterials and scaffolds, and signaling molecule enhancing

osteogenesis. The previous study found that canine bone marrow-derived

mesenchymal stem cells (cBM-MSCs) exhibited potential in bone engineering for

repairing canine mandibular bone defects (3, 4). Moreover, alternative stem cell source



derived from dental tissues, namely canine dental pulp stem cells (cDPSCs) has been

isolated and investigated. In this regard, stem cells from dental pulp showed the desired

abilities of osteogenic differentiation and bone tissue regeneration (5). Thus, the

properties of stem cells derived from bone marrow and dental pulp suggest the

possibility of application in bone defect regeneration. However, studies regarding

osteogenic differentiation potential of cBM-MSCs and cDPSCs are still lacking. This

creates a gap in the research establishing MSC-based bone tissue engineering in

veterinary practice.

Systems biology is one of the most powerful biological disciplines and it has

already contributied to a radical transformation to the field of of molecular life science

and biomedicine. It provides a global and less biased view of bone tissue engineering.

The large-scale analysis of proteins by mass spectrometry-based proteomics has been

continuously developed continuously for deep biology researches. Many studies

demonstrated the importance of proteomics on bone tissue engineering, by which

proteomics experiments and computational analyses thoroughly explain the signaling



dynamics and the internal cellular responses (6, 7). However, the veterinary field still

lacks studies regarding extensive clarification of osteogenic differentiation paths of

cBM-MSCs and cDPSCs toward osteogenic lineages. Thus, this study aimed to globally

explore and analyze the in vitro differentiation potential and behavior of cBM-MSCs and

cDPSCs toward osteogenic lineage using the systems biology approach.

Objectives of the study

Regarding the lacked knowledge described above, this study was directed to

elucidate the potential and behavior of two important cMSCs (cBM-MSCs and cDPSCs)

on the differentiation toward osteogenic lineage in vitro. In addition, the crucial of

osteogenic-regulating pathways in vitro were evaluated.



Objective 1) “To isolate and characterize canine bone-marrow derived mesenchymal

stem cells (cBM-MSCs) and canine dental pulp stem cells (cDPSCs) using for

veterinary bone tissue engineering establishment’. Strategies: 1a) To isolate canine

bone-marrow derived mesenchymal stem cells (cBM-MSCs) and canine dental pulp

stem cells (cDPSCs). 1b) To characterize canine bone-marrow derived mesenchymal

stem cells (cBM-MSCs) and canine dental pulp stem cells (cDPSCs) using for veterinary

bone tissue engineering establishment.

Objective 2) “To globally explore and analyze the in vitro differentiation potential and

behavior of canine bone-marrow derived mesenchymal stem cells (cBM-MSCs) and

canine dental pulp stem cells (cDPSCs) toward osteogenic lineage using systems

biology approach”. Strategies: 2a) Preliminary comparison of an in vitro osteogenic

differentiation potential by canine bone-marrow derived mesenchymal stem cells (cBM-

MSCs) and canine dental pulp stem cells (cDPSCs). 2b) Globally explore, analyze, and

compare the in vitro osteogenic differentiation potential and behavior of canine bone-



marrow derived mesenchymal stem cells (cBM-MSCs) and canine dental pulp stem

cells (cDPSCs).

Objective 3) “To confirm the selected potential osteogenic-regulating pathways that
govern the in vitro osteogenic differentiation paths by canine bone-marrow derived
mesenchymal stem cells (cBM-MSCs) and canine dental pulp stem cells (cDPSCs)".

Strategies: 3a) Selection of potential osteogenic-regulating pathways that govern the in
vitro osteogenic differentiation path by canine bone-marrow derived mesenchymal stem
cells (cBM-MSCs) and canine dental pulp stem cells (cDPSCs). 3b) Confirmation of the
selected potential osteogenic-regulating pathways that govern the in vitro osteogenic
differentiation path by canine bone-marrow derived mesenchymal stem cells (cBM-

MSCs) and canine dental pulp stem cells (cDPSCs).

Keywords (Thai): taasiundadiiuladainlanszangis  wadfuniiadiduladain

Hadlelulnsslszamifugiia nadasuudasdugadnizgn I9nendesuy



Keywords (English): canine bone-marrow derived mesenchymal stem cells (cBM-

MSCs), canine dental pulp stem cells (cDPSCs), osteogenic differentiation, systems

biology

Hypothesis

Canine bone-marrow derived mesenchymal stem cells (cBM-MSCs) and canine dental

pulp stem cells (cDPSCs) possess distincts in vitro osteogenic differentiation potential

relying on their unique osteogenic differentiation paths.



CHAPTER I

LITERATURE REVIEW

Bone tissue engineering in veterinary medicine

Currently, the repair critical-sized bone defects in animal cases is challenging

for the veterinary orthopedic surgeon. Autogenous bone graft is the gold standard to

treat critical-sized bone defects. In this regard, iliac crest is regularly considered as a

bone harvesting site. However, critical complications in autogenous bone graft have

been reported, including donor site morbidity, chronic pain, and the risk of infection (8,

9). Although the various technical reports have suggested the possibility of employing

allograft and xenograft, the risks of recipient infection and immunogenicity are still

widely debated. Therefore, bone tissue engineering (BTE) has been introduced and

developed to synthesize the biomimetic bone tissue. The fundamental components of

BTE are osteogenic cell resources, signaling molecules, and bioactive scaffold. All of

the three core elements propose to develop the bioactive and biomimetic bone tissue.



Nowadays, the promising future of BTE research is attractive for the researcher

to deeply explore its probable use in humans and animals. In the veterinary field, BTE

has implemented progressively both in vitro and in vivo. The previous studies reported

the success for bone regeneration by using the tissue-engineered scaffold (10, 11).

Moreover, the advancement of enhancing molecules has been evolved from the last

decade (12, 13). In addition, the isolation of osteogenic stem cells from several parts of

the body are employed to provide a regenerative regimen with promising innovations.

Due to their ability to differentiate toward several cell types, ESCs and induced

pluripotent stem cells (iPSCs) are attractive for osteogenic cellular therapies. However,

ESCs and iPSCs require the issue for collecting and the trouble for culture condition. In

addition, the ability of ESCs and iPSCs are lacking to dedicate the differentiation

pathway resulting the tumorigenicity that is the critical consideration of ESCs and iPSCs.

Then, the MSCs from adult tissue are prospects and interesting to address and

overcome these problems.



MSC-based bone tissue engineering

To obtain an efficient MSC-based tissue engineering, three main components

are experimentally optimized i.e. scaffolds, osteogenic cells, and signaling or enhancing

molecules (14). In this regard, osteogenic cell resources are of attention. Adult stem

cells (ASCs), which are derived from mature tissues, are of interest due to their

plasticity and availability. Normally, the standard of osteogenic cell source is BM-MSCs

that are multipotent cells isolated from bone marrow aspiration and found in multiple

species including humans, mouses and canines. The characterization of human BM-

MSCs have been illustrated as CD10+, CD13+, CD29+, CD44+, CD59+, CD71+,

CD73+, CD90 (Thy1)+, CD105+, CD106 (VCAM)+, CD146+, CD166 (ALCAM)+, STRO-

1+, CD11a-, CD14-, CD19-, CD31 (PECAM)-, CD34 (C-18)-, CD45-, CD48-, CD135-,

and HLA-DR- (15-17). To compare with canine resources, the previous studies found

that canine BM-MSCs (cBM-MSCs) express stemness markers (e.g. Rex1, Nanog, and

Oct3/4, etc.) and surface markers (e.g. CD44, CD73, CD90, CD105, CD146, and STRO-

1, etc.) referring to their characteristics of MSCs (18, 19). In addition, cBM-MSCs
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exhibited potential property for bone tissue engineering, as illustrated in canine

mandibular bone defects repair (3). As previously described, cBM-MSCs have been

proposed as a potential cell resource for using in MSC-based bone tissue engineering

(14). However, bone marrow collecting technique is considered as an invasive protocol

that may cause donor morbidity (20).

To address the problem, other MSCs types have been introduced as the

candidates for a replacement technique. Among these, alternative stem cell sources

derived from dental tissues have been isolated and investigated. The previous studied

illustrated that human dental-MSCs including human dental pulp stem cells (hDPSCs),

human periodontal ligament stem cells (hPDLSCs), and stem cells from human

exfoliated deciduous teeth (SHED) can be isolated (21). Remarkably, human dental-

MSCs showed the ability to self-renewal and potential to differentiate toward osteogenic,

chondrogenic, adipogenic, pancreatic, and neurogenic lineages (21-24). Currently,

canine dental pulp stem cells (cDPSCs) are another interesting resource due to their

properties in self-renewing, multipotentiality, cell availability, and tissue accessibility
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(25). Besides, extraction of tooth due to minor dental problems and use them as cell

resource are clinically practical (26). In aspect of canine-derived cells, cDPSCs showed

the differentiation potential toward osteogenic, odontogenic, adipogenic, and

neurogenic lineages in vitro. Additionally, the expression of cell surface marker of

cDPSCs reported different from hDPSCs. These cells also expressed mesenchymal

stem cell surface protein markers e.g. STRO-1" (relative low), CD73", CD45 and CD90"

(relative low), while Nanog and CD746 were detected in mRNA level (27). Moreover, the

previous result demonstrated that stem cells from canine dental pulp have the potential

to generate bone tissue (5). Thus, this preclinical study of cBM-MSCs and cDPSCs

could pave the way for MSC-based tissue engineering in orthopedics and oral

maxillofacial reconstruction for clinical application and suggested the possibility of

application in bone defect regeneration.

However, studies regarding osteogenic differentiation potential by cBM-MSCs

and cDPSCs are still lacking. This makes an unmet gap of knowledge for establishing

MSC-based bone tissue engineering in veterinary practice. Thus, a differentiation
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potential toward osteogenic lineage by cBM-MSCs and cDPSCs will be extensively

explored and compared to distinguish the possibility for clinical application in bone

tissue regenerative therapy. The result will fulfill knowledge regarding stem cell-based

treatment for bone tissue regeneration in both pre-clinical and clinical approaches.

Systems Biology platform for bone tissue engineering

Systems biology has emerged from integration omics approach and developed

into an approach of understanding the biological system (28). Generally, the theory of

systems biology has been purposed to resolve a challenging biological solution that

requires the development of new technologies in order to explore the new data type.

Currently, progress in systems biology approach is often driven by advanced omics

technology. The high-throughput experimental techniques are genomics,

transcriptomics, proteomics, and metabolomics. These tools can be combined with

computer-based bioinformatics equipment to quickly describe and analyze large-scale

data or detect molecular interactions of DNA, mRNA, protein, and metabolite levels.
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Building on the previous studies, systems biology and the interdisciplinary fields

of tissue engineering have been developed independently. For the past two decades,

high-throughput methods have been used to analyze the relevant components on bone

development and BTE. Recently, the large-scale analysis of proteins by mass

spectrometry-based proteomics have been developed continuously for deep biology

researches. Many studies demonstrated the importance of proteomics on BTE, as

proteomics experiments and computational analyses help thoroughly explain the

signaling dynamics and the internal cellular responses (6, 7). Moreover, this technology

has elucidated biological functions for the newly identified proteins in the cellular context

(7). However, the veterinary field still lacks studies regarding extensive clarification of

osteogenic differentiation paths of MSCs toward osteogenic lineages. Thus, to fulfill the

information in this regard and to evaluate the possibility of MSCs for clinical application

in veterinary bone tissue regenerative therapy, a differentiation potential toward

osteogenic lineage by cBM-MSCs and cDPSCs will be extensively explored and

compared, which may provide a more global view of bone regulatory networks and
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leading to more understand the interaction during osteogenesis to develop the

strategies for establishment of bone tissue engineering.

Signaling transduction and bone tissue regeneration

Bone formation or osteogenesis have involved of the two major pathways. First,

Intramembranous ossification is the direct conversion of mesenchymal stem cells toward

bone tissue that occurs in craniofacial region. In another pathway, the mesenchymal

stem cells differentiate toward cartilage and replaced to form bone tissue called

endochondral ossification (29). Both pathways are related with various factors that have

been illustrated as the key factors influencing the differentiation potential of MSCs in

vitro and in vivo. Among those, signaling transductions have been widely studied and

proposed as interesting key processes toward osteogenic differentiation. Generally,

there are various steps of MSCs during differentiation toward osteogenic lineage starting

from multipotent mesenchymal stem cells, osteoprogenitor cells, preosteoblast, early

osteoblast, late osteoblast, mature osteoblast, and osteocyte, respectively, that various
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signaling pathways are also critical and integrated during osteogenic differentiation. The

important osteogenic signaling pathways including Wnt signaling, Notch signaling,

transforming growth factor (TGF)-beta receptor complex, and bone morphogenetic

protein (BMP)-2 signaling, etc. are still extensively explored for advancement of

veterinary orthopedics research. In this regard, the attractive signaling pathways are

Wnt signaling and Notch signaling that are highly influential during bone formation.

Wht signaling pathway

Wnt signaling has been widely studied and proposed as one of interesting key

pathway. Interestingly, Wnt signaling protein is related to bone tissue development

during embryogenesis as described in various studies (30, 31). Wnt signaling directly

enhances endochondral ossification, especially the differentiation of osteoblast and

development of axial and appendicular skeletons (31).

There are two pathways of the Wnt pathway including the canonical pathway

and the noncanonical pathway. Regarding Wnt signaling cascade, this complex
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pathway is activated by the binding of Wnt protein ligand family to a membrane-bound,
seven-pass transmembrane spanning receptors termed frizzled (Fz) receptors (32, 33).
For canonical pathway, this pathway is also called the Wnt/B—catenin pathway starting
by binding of Wnt ligand with Fz receptors. Next, the signal transduction triggers the
translocation of cytoplasmic negative Wnt regulator to bind a destruction complex of B—
catenin e.g. axin, glycogen synthase kinase (GSK)—SB, and adenomatosis polyposis coli
(APC) (34). These inhibit B—catenin phosphorylation and degradation by proteasome, so
the level of nucleus-accumulated B-oatenin is increased (33). B—Catenin acts as a co-
activator of gene transcription factors e.g. T-cell factor/lymphoid enhancing factor
(TCF/LEF) (35). For noncanonical pathways, two major pathways are the Wnt-planar cell
polarity pathway (Wnt-PCP pathway) and the Wnt-calcium pathway (Wnt-Ca2+pathway).
Non-canonical pathway involves various signaling molecules e.g. G-protein, RhoA/Rho-
associated protein kinase (15), and inositol-1,4,5-trisphosphate (IP3)-dependent
intracellular calcium etc. (36). These regulate cell cytoskeleton, adhesion, and migration

(37).
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To explore Wnt signaling pathway, many Wnt regulators are employed. Secreted

frizzled-related proteins (sFRPs) and Dickkopf (DKK)-1 are used as Wnt negative

regulators (38). Cysteine-rich domain of sFRPs is used to block the binding of Wnt

ligands with Fz receptor or co-receptor LRP5/6 on membrane surface (39). DKK-1

inhibits Wnt pathway by formation of a complex of Wnt ligands, LRP5/6, and Kremen

(Krm) (40). These lead to Wnt ligand destruction (33, 38).

Notch signaling pathway

Notch signaling pathway is a regulation signaling pathway of cell-to-cell signal

transduction and communication. This signaling is important for cell proliferation,

migration and apoptosis. Notch signaling is started when Notch ligands bind with their

receptors, then the Notch intracellular domain (NICD) is cleaved and released. Next, the

NICD translocate from the cellular membrane to the nucleus to bind CSL family and

regulates downstream targets. Lately, various studies have illustrated that Notch

signaling also plays a crucial role in the process of skeletal remodeling. Moreover,
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Notch signaling showed the potential to activate of BMP-9 via BMP/Smad pathway and

enhanced the osteogenic gene expression (41). In addition, previous study showed

enhancing of Jagged/Notch signaling had relatively involved to increase the osteogenic

differentiation potential of human BM-MSCs and human periodontal ligament stem cells

(42, 43). However, the knowledge of how to differentiate toward osteogenic lineage from

this signaling is still lacking in animal stem cells to.

Although, the evidences suggest the possibility of MSC-based tissue

engineering for bone tissue regeneration and support an importance of signaling

pathways in osteogenic differentiation, the information regarding comparative

osteogenic differentiation potential between cBM-MSCs and cDPSCs is still lacking and

necessary for establishing the practical therapeutic regimen.

Thus, the objectives of the study are pointed out into main aspects which

comprise of exploring and analyzing the in vitro differentiation potential and behavior of

cBM-MSCs and cDPSCs toward osteogenic lineage using the systems biology

approach.
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The obtained results will fulfill the gap in knowledge regarding MSC-based bone

tissue engineering and its establishment in veterinary practice.

Conceptual Framework

cMSCs Biomaterials and

Signaling molecules
8 & (cBM-MSCs and cDPSCs) scaffolds

Systems Biology
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v Signaling on Osteogenic differentiation ik

N

cMSC-based bone tissue engineering
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CHAPTER Il

METHODOLOGY

Materials and methods

Cell isolation, culture, and expansion

This study was approved by the Institutional Animal Care and Use Committee

(IACUC), Faculty of Veterinary Science, Chulalongkorn University (Animal Use Protocol

No0.1531038). For cBM-MSCs isolation, canine bone marrow was obtained from healthy

dog aged 3-10 years old. The obtained bone marrow was washed with Hank’s Balanced

Salt Solution (HBSS, Thermo Fisher Scientific, USA). The mixture was centrifuged at 300

g for 15 minutes and 1,000 g for 5 minutes. Pellet was gently resuspended and seeded

onto T-75 culture flasks (Corning, USA) and maintained in Dulbecco’s Modified Eagle

Medium/F12 (DMEM/F12) (Invitrogen, USA) supplemented with 10% fetal bovine serum

(FBS, Invitrogen, USA), 1% Glutamax (Thermo Fisher Scientific, USA), and 1%

Antibiotics-Antimycotic (Thermo Fisher Scientific, USA). Cells were incubated in 5%
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CO, and 95% air at 37 °c with every 48 hours media substitution. Cells were subcultured

when 90% confluence reached. For cDPSCs isolation, cells were obtained from healthy

permanent teeth of dog aged 3-10 years old with aseptic technique, the pulp tissue was

collected and cultured in DMEM supplemented with 10% fetal bovine serum (FBS,

Invitrogen, USA), 1% Glutamax (Thermo Fisher Scientific, USA), and 1% Antibiotics-

Antimycotic (Thermo Fisher Scientific, USA). Cells were incubated in 5% CO, and 95%

air at 37°C with every 48 hours media substitution. Cells were subcultured when 90%

confluence reached. cBM-MSCs and cDPSCs in passage 2-5 were used for the

experiments.

Osteogenic differentiation

The osteogenic differentiation protocol was performed according to previously

published reports (24, 44). Briefly, cells were seeded onto 24-well culture plate

(Corning, USA) in a concentration of 3.5 x 10" cells/well and maintained in osteogenic

induction medium for 14 days with routine 48-hour substitution. Osteogenic medium was



22

growth medium supplemented with 50 mg/mL ascorbic acid, 100 nM dexamethasone,

and 10 mM B—glycerophosphate. Cells cultured in growth medium were utilized as the

control.

Alkaline phosphatase activity

The alkaline phosphatase (ALP) activites were measured 14 day after

osteogenic induction. Cells in 24-well plates were gently washed with warm phosphate

buffered solution (PBS). The cell layers were lysed with 0.1% Triton X-100, 1 M Tris-HCI

500 L and 5 mM MgCl,. The lysate samples were incubated with 2 mg/mL of p-

nitrophenol phosphate (Thermo Fisher Scientific, USA), 0.1 M of 2-amino-2-methyl-1-

propanol (Sigma, USA), and 2 mM of MgCl,. The samples were incubated for 15 mins at

37°C, and 50 mM of NaOH were added to stop the reaction. The absorbances were

read immediately after incubation at a wavelength of 410 nm. Protein concentrations

were measured using Qubit according to manufacturer’s protocol (Invitrogen, USA). The

enzyme activities were expressed as U/mg protein
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Von Kossa staining

After 14-day osteogenic induction, cells seeded in the well plates were gently

washed with warm PBS and fixed in 500 yl methanol for 10 min. Next, cells were gently

washed with distilled water and incubated with 1% silver nitrate solution under UV light

for 30 min. After several washes using distilled water, unreacted silver was removed with

5% sodium thiosulfate for 5 min, and the cells were rinsed with distilled water. Images of

the black stain in the plate was obtained using an inverted microscope.

Protein extraction and in-solution digestion

Cells were washed with 1X PBS, All Samples were lysed with lysis buffer

containing the protease inhibitor (Thermo Fisher Scientific, USA) and 5% sodium

deoxycholate (SDC). Samples were homogenized by sonicator. Protein concentrations

were measured using BCA Protein Assay (Thermo Fisher Scientific, USA). Protein

samples (400 ug per sample) were mixed in 100 mM TEAB (Thermo Fisher Scientific,

USA) and incubated at 56°C at 300 rpm for 1 hr. Next, these samples were alkylated



24

with lodoacetamide (IA) in a dark room for 30 mins, mixed with 200 mM TCEP, and

added cold methanol, and incubated overnight at -20°C. After that, the samples were

centrifuged at 8,000 rpm for 10 mins and resuspended with 100 mM TEAB. The protein

samples were incubated with trypsin at a ratio of 1:50 at 37°C for 16 hrs. The quantity of

tryptic peptides was measured with the Pierce Quantitative Fluorometric Peptide Assay

(Thermo Fisher Scientific, USA). The peptide samples were collected at -80°C.

In-solution dimethyl labeling and fractionation

The digested samples were reconstituted in 100 mM TEAB. The peptide

samples of control group (cBM-MSCs and cDPSCs) and osteogenic induction groups

(cBM-MSCs and cDPSCs) at day 7 and 14 were labeled with formaldehyde isotope

including light reagents (formaldehyde and cyanoborohydride, medium reagents

(formaldehyde-d2 and cyanoborohydride), and heavy reagents (deuterated and 13C-

labeled formaldehyde and cyanoborodeuteride), respectively, at room temperature for

an hour. Each isotope labeled sample was quenched by adding ammonia solution and
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formic acid. Three labeled-peptide samples were mixed. To reduce complexity, the

complex mixture samples were separated into 10 fractions using the Pierce High pH

Reversed-Phase Peptide Fractionation Kit (Thermo Fisher Scientific, USA). Elution

samples of each fraction were evaporated the liquid content to dryness using vacuum

centrifugation. Dry samples were re-suspended in formic acid before LC-MS/MS

analysis.

LC-MS/MS and analysis

Before MS injection, the fractionated peptides were resuspended to a final

volume of 15 pl in 0.1% formic acid (12) (Sigma, USA). The samples were analyzed by

an EASY nLC1000 system (Thermo Fisher Scientific, USA) connected to a Q-Exactive

Orbitrap Plus mass spectrometer (Thermo Fisher Scientific, USA) supplied with a nano-

electrospray ion source (Thermo Fisher Scientific, USA). Next, the peptide samples were

eluted in 5-40% acetonitrile for 70 mins and 40-95% acetonitrile for 20 mins in 0.1% FA

by using flow rate 300 nl/min. The full MS1 scan procedures employed a resolution at
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70,000 and MS2 scan at 17,500. To select the target peak, range from 350 to 1,400 m/z

from MS scan was identified by using Proteome Discoverer™ Software 2.1 (Thermo

Fisher Scientific, USA). The measures were set including digestion enzyme (trypsin),

maximum miss cleavage (45), maximum modification (4), fixed modification

(carbamidomethylation of cysteine, +57.02146 Da), dimethylation of N-termini and lysine

(light, +28.031300 Da, medium, +32.056407 Da and heavy, +36.075670 Da), and

variable modifications (oxidation of Methionine, +15.99491 Da). The relative MS signall

intensities of dimethyl labeled peptides were analyzed by Proteome Discoverer™

Software. The mean and standard deviation of fold change from five replicates were

calculated to Log2 value of the normalized ratio.

Bioinformatics

The listed proteins were implemented to analyze by the online resource

database  for  annotation, Reactome (https://reactome.org/) and DAVID

(https://david.ncifcrf.gov/). These databases provided intuitive bioinformatics tools to



https://reactome.org/
https://david.ncifcrf.gov/

27

categorize and interpret the proteins from the control group and osteogenic induction on

day 7 and 14. The analyzed results are shown as acknowledgement of pathway-relating

proteins expressed by cBM-MSCs and cDPSCs during osteogenic differentiation.

Level expression of protein expression

On day 7 and 14 post-induction, the protein expression levels were calculated as

Log2 normalized ratio, by normalizing with undifferentiated control group (day 0). The

relevant proteins were excluded when they were found in less than 3 from 5 replicates.

Then, the mean and standard deviation of fold change across all 5 biclogical replicates

were determined. The levels of candidate protein expression were reported as fold-

change number and color scale reflecting protein upregulation (red) and

downregulation (blue).



28

Hierarchical Clustering

The significant protein calling was performed by Instant Clue Software. The

proteins were clustered and showed as the heatmap or cluster map with Row

Dendrogram describing the performed clustering and Column Dendrogram describing

the experiment groups. Color scale was used for reflecting upregulation and

downregulation of protein after osteogenic induction at day 7 and 14, by normalizing the

data with the undifferentiated control (day 0).

Validation assay for potential signaling

To validate the relevance of potential signaling on osteogenic differentiation

potential by cBM-MSCs and cDPSCs, specific inhibitors regarding each signaling

pathway were employed at day 14 post-induction including Wnt canonical inhibitor (Dkk-

1, 100 ng/ml), Notch inhibitor (DAPT, 25 uM), TGF-beta receptor complex inhibitor (SB-

431542, 4 uM), and BMP-2 signaling inhibitors (noggin, 0.2 pg/ml and dorsomorphin, 4
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KM ). Semi-quantitative evaluation of matrix mineralization by Von Kossa staining was

utilized at day 7 and 14 post-induction, and it is compared with osteogenic control.

Statistical analyses

To statistically analyze ALP activity and gene expression, four biological

replicates were used for particular cells (n=4). The statistical analysis was performed

using SPSS Statistics (IBM, USA). To compare two independent groups, the Mann

Whitney U test was employed. Statistical difference was recognized when p-value <

0.05.

To statistically analyze proteomics data, five biological replicates were used for

particular cells (n=5). The mean and standard deviation of fold change from five

replicates in each cell were presented as Log2 value of the normalized ratio. The

significant proteins were called when they expressed at least 3 from 5 replicates.

Significant difference between groups was determined by Mann-Whitney U test and

unpaired f-tests with p-value < 0.05.
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CHAPTER IV

RESULTS AND DISCUSSION

Isolation and characterization of cBM-MSCs AND cDPSCs

The isolated cBM-MSCs and cDPSCs were characterized by the expression of mRNA

relating stemness marker, proliferative marker, and MSC-related marker (Fig 1A and B).

The results presented that cBM-MSCs and cDPSCs expressed mRNA markers relating

stemness property (Rex? and Oct4), proliferative marker (Ki67), and MSC-related

marker (CD44, CD73, and CD90), while hematopoietic cell marker (CD45) was not

detected. mMRNA markers were differently expressed between the cBM-MSCs and

cDPSCs.
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Figure 1 Characterization of the isolated cBM-MSCs and cDPSCs. The isolated cBM-

MSCs (A) and cDPSCs (B) were characterized for the expression of mRNA related

stemness marker, proliferative marker, and MSC-related marker (n=4). Relative mRNA

expression was normalized with the reference gene, Gapadh.



32

Different osteogenic differentiation potential by canine MSCs derived from bone marrow

and dental pulp

Although, as illustrated in Figure 2, both cBM-MSCs and cDPSCs were able to

differentiate toward osteogenic lineage in vitro, the differentiation potential of them was

distinct in regard of ALP activity (Fig 2A) and matrix mineralization (Fig 2B). cDPSCs

showed superior ALP activity and mineralized nodule formation as detected by Von

Kossa staining at day 14 post-induction. Additionally, osteogenic mRNA marker

expression analyses illustrated that cBM-MSCs significantly upregulated Osx, while

cDPSCs significantly upregulated Runx2, Alp, Opn, Ocn, and Osx, at day 14 post-

induction (Fig 2C). These finding preliminarily suggested a different superior osteogenic

differentiation potential of cDPSCs compared with cBM-MSCs in vitro.
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Figure 2 An in vitro osteogenic differentiation by cBM-MSCs and cDPSCs. ALP activity

(A), Von Kossa staining (B), and osteogenic mRNA marker expression (C) of the cBM-

MSCs and cDPSCs at day 14 post-osteogenic induction were investigated (n=4). The

result of ALP activity was normalized with undifferentiated cells. Relative mRNA

expression was normalized with the reference gene, Gapdh, and undifferentiated

control. Bars indicate the significant difference between groups (p-value < 0.05).
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Different protein expression pattern upon an in vitro osteogenic differentiation

To thoroughly understand the potential mechanisms underlying a different

osteogenic differentiation, global protein expression pattern of the cells undergone

osteogenic induction was analyzed using proteomics platform and bioinformatics

analysis at day 7 and 14 post-induction. As shown in volcano plot, protein expression

patterns of the cells upon osteogenic induction were differently distributed (Fig 3). Trend

of protein upregulation upon osteogenic induction at day 7 and 14 was found in cBM-

MSCs, while trend of protein expression by cDPSCs during osteogenic induction was

slightly toward downregulation at day 14.

Heatmaps with Row and Column Dendrogram of the significant proteins

expressed during an in vitro osteogenic induction by the cells at day 7 and 14 were

showed in Figure 4. 2-D clustering analysis revealed 5 different clusters for each cell.

For osteogenic cBM-MSCs, 2 clusters (cluster 1 and 2) were related to downregulated

proteins at both day 7 and 14, while cluster 3 and 4 suggested trend of upregulation
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(Fig 4A). For osteogenic cDPSCs, trend of protein upregulation in both day 7 and 14

was found in cluster 1 and 2, whereas cluster 5 showed downregulation at both

timepoint. Interestingly, cluster 3 showed a contrasting trend of protein expression

characterized by first a upregulation then followed by a downregulation (Fig 4A).

According to the Four-Circle Venn Diagram, there were 359 and 201 identifiable proteins

expressed by cBM-MSCs and ¢DPSCs during an osteogenic induction, respectively.

However, only 10 proteins overlapped. The result showed that there were numerous

proteins uniquely expressed by each cell at specific timepoint: 163 and 58 proteins

were uniquely expressed by osteogenic cBM-MSCs at day 7 and 14, respectively; and

47 and 86 proteins uniquely expressed by osteogenic cDPSCs at day 7 and 14,

respectively (Fig 4B). These suggested a distinct protein expression pattern by cBM-

MSCs and cDPSCs at each timepoint during an in vitro osteogenic differentiation.
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Figure 3 Volcano plots of expressed proteins by cBM-MSCs and cDPSCs upon an in

vitro osteogenic differentiation.Volcano plots reflecting the distribution of expressed

proteins by osteogenic cBM-MSCs and cDPSCs at day 7 and 14 post-induction were

illustrated. The results were represented as -log p-value and fold change. Red lines

indicate p-value < 0.05.
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Figure 4 Heatmaps and Four-Circle Venn Diagram of expressed proteins by cBM-

MSCs and cDPSCs upon an in vitro osteogenic differentiation. Heatmaps with

Dendrogram (A) were illustrated for showing the clustering of significant expressed

proteins by cBM-MSCs and cDPSCs upon an in vitro osteogenic differentiation at day 7

and 4 post-induction. Color scale represents fold-change of protein upregulation (red) or

downregulation (blue). Four-Circle Venn Diagram (B) illustrated the number of proteins

expressed by cBM-MSCs and cDPSCs upon an in vitro osteogenic differentiation at day

7 and 4 post-induction.
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Quantitative proteomics analysis of cBM-MSCs and cDPSCs upon an in vitro osteogenic

differentiation

Based on the protein analyses using the online resource for annotation and the

pathway database, DAVID and Reactome, the quantitative protein expression profile in

each category was illustrated as a heatmap with row and column dendrogram. The

heatmaps provided a comparison of significant identifiable proteins expressed by cBM-

MSCs and cDPSCs during an in vitro osteogenic differentiation at day 7 and 14 post-

induction, respectively.

Signaling pathways

Proteins involving signaling pathways were analyzed based on three categories

including kinase signaling cascades, development signaling pathways, and

miscellaneous signaling. Different trends of signaling protein expression by each cell at

specific timepoint were found. For kinase signaling cascades, quantitative expression of

proteins involving receptor tyrosine kinases (RTKs), G-protein-coupled receptors
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(GPCRs), mitogen-activated protein kinase (MAPK) family, and non-receptor tyrosine

kinases (non-RTKs) were analyzed (Fig 5A). Some of proteins involving RTKs were

upregulated in both cells (CAV1, ATP6VOD1, and FN1). Interestingly, FN1 was strongly

upregulated in osteogenic cDPSCs, while CAV1 was dominantly expressed in

osteogenic cBM-MSCs. Downregulated RTK-related proteins were mostly different

between osteogenic c¢cBM-MSCs (COL5A2, YES1, COL11A, and SH3KBP1) and

osteogenic cDPSCs (ACTB, CD37, YWHAB, PRKACB, SH3KBP1). For GPCR-related

proteins, LRP1 was downregulated, while ECE1 was upregulated in both cells. Some

unigue proteins were also upregulated (ROCK1, APOB, NRAS, and PRKAR2A) or

downregulated (PRKACB, PSAP, and ANXA1) by each of cell. For MAPK family and non-

RTKs, there were many unique proteins that were upregulated (CAMK2G, PSMA?,

PSMD4, PSMD9, NRAS, CAMK2D, PSMC2, PSMD13, and PSMA5) or downregulated

(SEPT7, ACTB, PSMD6, YWHAB, VCL, PRKACB, TLN1, and PSMB6) by each cell in

each timepoint (Fig 5A).
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The quantitative profile of protein involved in developing signaling pathways

revealed the distinct expression pattern between cBM-MSCs and cDPSCs during

osteogenic induction (Fig 5B). SERPINE1, a protein in TGF-beta receptor complex, was

upregulated in osteogenic cBM-MSCs, but downregulated in osteogenic cDPSCs.

Notch-related proteins were also expressed in different fashion. Most of them were

upregulated in osteogenic cBM-MSCs (ATP2A2, YWHAZ, PSMD4, PSMD9, PSMC2,

PSMD13, ACTA2, and PSMA5), but downregulated in osteogenic cDPSCs (YWHAZ,

PSMD6, ACTA2, and PAMBS6). These trends were also found in Wnt-, hippo-, and

hedgehog-related protein expression. Set of upregulated proteins were mostly found in

cBM-MSCs that had undergone osteogenic induction, whereas most of identified

proteins in cDPSCs were downregulated (Fig 5B).

Further analysis on miscellaneous signaling showed that the correlated

upregulation pattern only occur in integrin signaling-related proteins, FN1, while TLN1

downregulation and FGB upregulation were found in osteogenic cDPSCs (Fig 5C). Other

proteins relating with Rho GTPases, nuclear receptors, mTOR signaling, and death
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receptor were contrastingly expressed between the two osteogenic cells as illustrated

by the downregulation of all identifiable proteins in osteogenic cDPSCs and the

upregulation of the most proteins in osteogenic cBM-MSCs. There was only DYNC1H1

that showed constant downregulation in both cells (Fig 5C).
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Figure 5 Quantitative proteomics analysis for expressed proteins involving signaling

pathways by cBM-MSCs and cDPSCs upon an in vitro osteogenic differentiation.

Heatmaps were illustrated for providing a comparison of significant proteins expressed

by cBM-MSCs and cDPSCs upon an in vitro osteogenic differentiation at day 7 and 14

post-induction. Intensifying color scale represents fold-change of protein upregulation

(red) or downregulation (blue). Proteins involving kinase signaling cascades (A),

development signaling pathways (B), and miscellaneous signaling (C) were indicated.
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Cellular components and processes

Additional analyses on cellular component- and process-related proteins

included extracellular matrix (ECM) organization, cell cycle, DNA replication, gene

expression, organelle biogenesis, metabolism of RNA, cell-cell communication, and

cellular response to external stimuli. Analyses on ECM organization revealed that almost

collagen formation-related proteins were downregulated in both cells upon an

osteogenic induction, especially COL1A2, COL5A2, COL1A1, PLOD2, P4HA1, and

P4HAZ2. Interestingly, COL4A1 was predominantly upregulated in osteogenic cDPSCs

(Fig 6). Almost identifiable proteins relating to fibronectin matrix formation, elastic fiber,

and laminin interactions were upregulated in both cells like ITGA5, FN1, and VTN.

However, further analyses on proteins corresponding with non-integrin membrane-ECM

interactions, ECM proteoglycans, degradation of the ECM, and integrin cell surface

interactions showed a distinct expression patterns between two cells. Most of relevant

proteins in osteogenic cDPSCs were upregulated (COL4A1, VTN, FN1, PLG, and FGB),



44

while those in osteogenic cBM-MSCs seemed to be downregulated (COL5A2, COL1A1,

and A2M) (Fig 6).

Analyses on cell cycle-related proteins demonstrated a trend of active cell

cycle in osteogenic cBM-MSCs, but not in the osteogenic cDPSCs (Fig 7A). Most of

identifiable proteins connected to cell cycle checkpoints, cell cycle (mitotic),

chromosome maintenance, and meiosis were predominantly upregulated in osteogenic

cBM-MSCs (YWHAZ, PSMD4, PSMD9, PSMC2, PSMD13, UBE2V2, RPA1, PSMAS5,

PCNA, and NPM1), whereas those in osteogenic cDPSCs were downregulated (YWHAZ,

PSMD6, YWHAB, YWHAH, PSMB6, KIF2B, TUBB6, and NUDC) (Fig 7A). Additional

analyses on identifiable proteins involving DNA replication (M/G1 transition and

synthesis of DNA), gene expression (RNA polymerase | transcription, RNA polymerase

transcription termination, and epigenetic regulation), and metabolism of RNA (capped

intron-containing pre-mRNA processing, capped intronless pre-mRNA processing,

mRNA stability, deadenylation-dependent mRNA decay, nonsense-mediated decay,

rRNA processing in mitochondria, and tRNA processing on mitochondria) illustrated the
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trend of upregulation in osteogenic cBM-MSCs (PSMC2, PSMD13, RPA1, PSMD4,

PSMAS5, PSMD9, PCNA, PSMD3, PSMC6, CAVIN1, SRSF6, DDX39B, SRSF3, RBM8A,

PABPN1, NA, TRA2B, RBMX, PABPN1), but illustrate the trend of downregulation in

osteogenic cDPSCs (PSMB6, PSMD6, ACTB, TRA2B, YWHAZ, YWHAB, and HSD17B10)

(Fig 7B, C, and E). Interestingly, analyses on organelle biogenesis-related proteins

revealed an upregulation of proteins involving mitochondrial biogenesis in osteogenic

cBM-MSCs (NA, SIRT5, ATP5B) and downregulation of proteins involving cilium

assembly in both osteogenic ¢cBM-MSCs and cDPSCs (TUBB6, DYNC1H1, and

TUBB2A) (Fig 7D).

Proteins relating to cell-cell communication (cell junction organization and

nephrin family interactions) and cellular responses to external stimuli were further

analyzed. The results showed a trend of upregulation in osteogenic cBM-MSCs

(FERMT2, ILK, IQGAP1, CAMK2G, GPX8, IGFBP7, PSMD4, PSMD9, CAMK2D, PSMC?2,

PSMD13, RPA1, and PSMA5), but downregulation in osteogenic cDPSCs (FLNA, ACTB,



46

ACTN3, DCTN1, TUBB6, ERO1A, STIP1, PSMB6, and TXNRD1). DYNC1H1 was

downregulated in both osteogenic cells (Fig 8A and B).
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Figure 6 Quantitative proteomics analysis for expressed proteins involving extracellular

matrix organization by cBM-MSCs and cDPSCs upon an in vitro osteogenic

differentiation. Heatmaps were illustrated for providing a comparison of significant

proteins expressed by cBM-MSCs and cDPSCs upon an in vitro osteogenic

differentiation at day 7 and 14 post-induction. Intensifying color scale represents fold-

change of protein upregulation (red) or downregulation (blue). Proteins involving

extracellular matrix organization were indicated.
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Figure 7 Quantitative proteomics analysis for expressed proteins involving cell cycle,

DNA replication, gene expression, organelle biogenesis, and metabolism of RNA by

cBM-MSCs and cDPSCs upon an in vitro osteogenic differentiation. Heatmaps were

illustrated for providing a comparison of significant proteins expressed by cBM-MSCs

and cDPSCs upon an in vitro osteogenic differentiation at day 7 and 14 post-induction.

The intensifying color scale represents fold-change of protein upregulation (red) or
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downregulation (blue). Proteins involving cell cycle (A), DNA replication (B), gene

expression (C), organelle biogenesis (D), and metabolism of RNA (E) were indicated.
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Figure 8 Quantitative proteomics analysis for

50

expressed proteins involving cell-cell

communication and cellular responses to external stimuli by cBM-MSCs and cDPSCs

upon an in vitro osteogenic differentiation.

Heatmaps provide a comparison of

significant proteins expressed by cBM-MSCs and cDPSCs upon an in vitro osteogenic

differentiation at day 7 and 14 post-induction. The intensifying color scale represents

fold-change of protein upregulation (red) or downregulation (blue). Proteins involving

cell-cell communication (A) and cellular responses to external stimuli (B) were indicated.
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Cellular metabolisms, programmed cell death, and transports

Additional analyses of identifiable proteins were expanded to cover proteins

relating to metabolism, program cell death, transport of small molecules, and vesicle-

mediated transport. For metabolism-related proteins, almost proteins in metabolism of

carbohydrates were downregulated in both osteogenic cBM-MSCs and cDPSCs

(PRKACB, PCK2, NA, ALDOC, PYGB, TPI1, PGLS, PGAM1, VCAN, and TKT), while

proteins in the metabolism of lipids (CPT1A, CAV1, ACAT2, KPNB1, ESYT1, HSD17B4,

PON2, ACADM, and CPNE1), the integration of energy metabolism (SLC25A6,

SLC25A5, IQGAP1, and PRKAR2A), the metabolism of nitric oxide (CAV1 and SPR), the

citric acid (TCA) cycle and respiratory electron transport (CS, DLD, SUCLA2, NDUFSS,

NDUFA2, ETFDH, ACO2, ATP5B, FH, SUCLG2, and UQCRC1), and metabolism of

nucleotides (PAICS, ATIC, ADA, and ADK) were mostly upregulated in osteogenic cBM-

MSCs. Analyses of proteins involving metabolism of vitamins and cofactors showed that

LRP1 and SHMT2 were downregulated in both osteogenic cells. Some of unique
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proteins were upregulated in cBM-MSCs (PC and SPR) and cDPSCs (APOB and IDH1)

(Fig 9A).

For proteins in post-translational protein modification, most of identifiable

proteins were uniquely upregulated in cBM-MScs (ETFB, SEC22B, PSMD3, IGFBP7,

RAB5C, RPS2, CALR, RHOA, USP14, PSMD4, SCFD13, NA, UBE2V2, RPA1, PCNA,

LAMC1, DDX5, PSMA5, COPA, ARCN1, PSMC2, SEC31A, NPM1, RAB10, HGS, PSMD9,

MFGES8, and PSMC6) or cDPSCs (ITIH2, FGG, SERPINC1, AFP, CYR61, DNAJC3,

LMAN1, RAB7A, COPS4, RAB14, LOC477072, APOB, RABBA, PSMA7, and AHSG).

Some proteins were both upregulated in both osteogenic cells (F5, CKAP4, RAB2A,

FN1, and VDAC2) (Fig 9B).

It has been showed in analyses that trend of upregulated proteins by osteogenic

cBM-MSCs is mostly related to the metabolism of amino acids and their derivatives

(RSP3, HSD17B10, RSP15, PSMD3, PSMD4, PSMD9, RPS11, PSMC2, DLD, PSMD13,

SQOR, DLST, NA, RPS4X, PSMC6, and PSMA5), biological oxidations (MAOA, UGDH,

and SULT1C4), translation (GSPT1, RPS11, RPS3, EIF3A, RPS15, EIF3C, PABPC1,
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RPS4X, and EIF3E), unfolded protein response (UPR) (SEC31A, CALR, and ATP6V0D1),

protein repair (PCMT1), surfactant metabolism (CKAP4 and LMCD1), amyloid fiber

formation (MFGE8), and mitochondrial protein import (CS, ACO2, ATP5B, and

SLC25A6). Contrastingly, most of the identifiable proteins in osteogenic cDPSCs were

downregulated and related to metabolism of amino acids and derivatives (HSD17B10,

PSMD6, ALDH9A1, PSMB6, NQO1, and TXNRD1), biological oxidations (CNDP2),

protein folding (TUBB6 and ACTB), UPR (DCTN1 and TLN1), and peptide hormone

metabolism (ERO1A). For proteins in peroxisomal protein import, HSD17B4 was

upregulated in osteogenic cBM-MSCs, while IDH1 was upregulated in osteogenic

cDPSCs (Fig 9C).

It seemed that insulin-like growth factor (IGF) also plays an important role in both

osteogenic cells as illustrated in the upregulation of protein relating to regulation of IGF

transport and uptake by IGF-binding proteins (IGFBPs) (CKAP4, F5, ITIH2, APOB, PLG,

IGFBP7, FN1, AHSG, CYR61, FGG, MFGES, LOC477072, SERPINC1, LAMC1, DNAJCS,
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and AFP). Only CALU and VACN from the proteins relating to regulation og IGF that

were downregulated (Fig 10).

Analyses on proteins that control the programmed cell death revealed an

upregulation trend of apoptotic-related proteins in osteogenic cBM-MSCs (ROCKT,

KPNB1, YWHAZ, PSMD3, PSMD4, PSMD9, PSMC2, PSMD13, PSMC6, PSMAS5, and

DNM1L), while those in osteogenic cDPSCs were mostly downregulated (VIM, YWHAZ,

PSMD6, YWHAB, YWHAH, and PSMB®6) (Fig 11).

Proteins regulating transport of small molecules and vesicle-mediated transport

were further analyzed. For transport of small molecule, most of identifiable proteins in

adenosine triphosphate (ATP)-binding cassette (ABC)-family protein-mediated transport

(PSMC2, PSMD13, PSMD3, PSMC6, PSMD4, PSMAS5, and PSMD9), aquaporin-mediated

transport (PRKAR2A), and mitochondrial calcium ion transport (PHB2) were upregulated

in osteogenic cBM-MSCs, whereas those regulating ABC-family protein-mediated

transport (PSMB6 and PSMD6), aquaporin-mediated transport (PRKACB), and plasma

lipoprotein assembly, remodeling, and clearance (PRKACB) were downregulated in
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osteogenic cDPSCs. Some proteins involving a solute carrier (SLC)-mediated

transmembrane transport (SLC1A5) and plasma lipoprotein assembly, remodeling, and

clearance (A2M) were downregulated in osteogenic cBM-MSCs. Interestingly, proteins

controlling iron uptake and transport (ATP6V1H, ATP6VOD1, LOC477072, and

ATP6V1B2) and ion channel transport (ATP6V1H, ATP1A1, CAMK2G, ATP2A2,

ATP6VOD1, ATP6V1B2, and CAMK2D) were mostly upregulated in both osteogenic cells

(Fig 12A).

For vesicle-mediated transport, identifiable proteins regulating membrane

trafficking were uniquely upregulated in osteogenic cBM-MSCs (COPA, ARCN1,

SEC22B, YWHAZ, RAB5C, SEC31A, ACTR2, RAB10, HGS, MYO1C, SCFD1, and HIP1)

or osteogenic cDPSCs (LMAN1, RAB7A, COPS4, TXNDC5, RAB14, LOC477072, APOB,

and RABG6A). Some of those were also downregulated in osteogenic cBM-MSCs

(TUBB2A, ARPC5, and TJP1) or osteogenic cDPSCs (CLTB, YWHAZ, DCTN1, ACTB,

YWHAB, and YWHAH). F5 and RAB18 were upregulated in both osteogenic cells, while

SH3KBP1, MAP1LC3B, and DYNC1H1 were downregulated in both cells also. For
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protein regulating binding and uptake of ligands by scavenger receptors, LRP1 was

downregulated in both osteogenic cells. CALR was upregulated in cBM-MSCs, and

APOB was upregulated in cDPSCs (Fig 12B).
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proteins involving cellular

metabolisms by cBM-MSCs and cDPSCs upon an in vitro osteogenic differentiation.

Heatmaps provide a comparison of significant proteins expressed by cBM-MSCs and

cDPSCs upon an in vitro osteogenic differentiation at day 7 and 14 post-induction. The
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intensifying color scale represents a fold-change of protein upregulation (red) or

downregulation (blue). Proteins involving cellular metabolisms were indicated as well.
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Figure 10 Quantitative proteomics analysis for expressed proteins involving regulation

of IGF transport and uptake by IGFBPs by cBM-MSCs and cDPSCs upon an in vitro

osteogenic differentiation. Heatmap provides a comparison of significant proteins

expressed by cBM-MSCs and cDPSCs upon an in vitro osteogenic differentiation at day

7 and 14 post-induction. The intensifying color scale represents a fold-change of protein

upregulation (red) or downregulation (blue). Proteins involving regulation of IGF

transport and uptake by IGFBPs were indicated as well.
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Figure 11 Quantitative proteomics analysis for

expressed proteins
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involving

programmed cell death by IGFBPs by cBM-MSCs and cDPSCs upon an in vitro

osteogenic differentiation. Heatmap provides a comparison of significant proteins

expressed by cBM-MSCs and cDPSCs upon an in vitro osteogenic differentiation at day

7 and 14 post-induction. The intensifying color scale represents a fold-change of protein

upregulation (red) or downregulation (blue). Proteins involving programmed cell death

were indicated as well.
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Figure 12 Quantitative proteomics analysis for expressed proteins involving transport of

small molecules and vesicle-mediated transport by cBM-MSCs and cDPSCs upon an in

vitro osteogenic differentiation. Heatmaps provide a comparison of significant proteins

expressed by cBM-MSCs and cDPSCs upon an in vitro osteogenic differentiation at day

7 and 14 post-induction. The intensifying color scale represents fold-change of protein

upregulation (red) or downregulation (blue). Proteins involving transport of small

molecules and vesicle-mediated transport were indicated as well.
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Confirmation of signaling involved an in vitro osteogenic differentiation by cBM-MSCs and

cDPSCs

According to the quantitative proteomics analysis, a set of potential signaling

involved an in vitro osteogenic differentiation by cBM-MSCs and cDPSCs were further

analyzed and validated. Functional validations of the candidate signaling were analyzed

based on mid- and late-state matrix mineralization of the cells upon treatment with

specific signaling inhibitors. Von Kossa staining was used in this regard (Fig 13A and

B).

As previously mentioned, cDPSCs showed a superior in vitro osteogenic

differentiation potential comparing with cBM-MSCs at day 7 and 14 post-induction.

Effects of Wnt signaling on an in vitro osteogenic differentiation were analyzed using

canonical Wnt inhibitor, Dkk-1, which inhibits LRP5/6 interaction with Wnt ligand and

forms a ternary complex with transmembrane protein KREMEN resulting the

internationalization of LRP5/6 (47). The results showed that canonical Wnt interference

will led to a strongly enhanced matrix mineralization by cDPSCs but not cBM-MSCs
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upon an in vitro osteogenic differentiation at day 7 and 14 post-induction. These

confirmed that the different roles of canonical Wnt signaling participated in the

osteogenic differentiation by cBM-MSCs and cDPSCs in vitro.

Further validation on Notch signaling was studied using gamma secretase

inhibitor (GSI), DAPT, which inhibits the formation of Notch intracellular domain (NICD).

The results illustrated the dramatic enhancing effects of Notch interfering on an in vitro

osteogenic differentiation by both cBM-MSCs and cDPSCs at day 14 post-induction. It

could be suggested that Notch inhibition could enhance late-state matrix mineralization

by cBM-MSCs and cDPSCs upon an osteogenic induction in vitro.

Additional validation on transforming growth factor (TGF)-beta was experimented

using selective and potent inhibitor of the TGF-beta/activin/NODAL pathway, SB431542,

which inhibits TGF-beta type | receptor, namely activin receptor-like kinase (ALK) (ALK5,

ALK4, and ALKY), but not bone morphogenetic protein (BMP) type | receptor (ALK2,

ALK3, and ALK6) and components of ERK, JNK, or p38 MAPK pathways (48). The

results showed that TGF-beta/activin/NODAL pathway interfering attenuated matrix
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mineralization by cBM-MSCs, but strongly enhanced matrix mineralization by cDPSCs

upon an in vitro osteogenic differentiation at day 7 and 14 post-induction. These

suggested the contrasting effects of TGF-beta/activin/NODAL pathway manipulation on

mid- and late-state matrix mineralization by cBM-MSCs and cDPSCs upon an

osteogenic induction in vitro.

Another validation on bone morphogenetic protein (BMP) was studied using two

different BMP antagonists, noggin and dorsomorphin. The endogenous BMP antagonist,

noggin, it binds and inactivates members of the TGF-beta superfamily signaling

proteins, such as bone morphogenetic protein 4 (BMP4). Meanwhile, dorsomorphin, a

selective BMP signaling inhibitor, selectively inhibits BMP type | receptors (ALK2, ALKS,

and ALK6) and smad1/5/8 phosphorylation. Interfering of BMP signaling proteins by

using noggin showed that the matrix mineralization by cDPSCs but not cBM-MSCs was

enhanced upon an in vitro osteogenic differentiation at day 14 post-induction. However,

inhibition of BMP signaling and smad1/5/8 phosphorylation by dorsomorphin caused the

suppression of matrix mineralization by both cBM-MSCs and cDPSCs upon an in vitro
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osteogenic differentiation at day 7 and 14 post-induction. These suggested the

relevance and potential of strategic manipulation of BMP signaling on mid- and late-

state matrix mineralization by cBM-MSCs and cDPSCs upon an osteogenic induction in

vitro.

According to the validation study, it could be suggested that potential signaling

derived from the quantitative proteomics analysis was closely related to the osteogenic

differentiation potential of cBM-MSCs and ¢cDPSCs in vitro.
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Osteogenic

Control + DKk-1 +DAPT + SB 431542 + Noggin + Dorsomorphin

cBM-MSCs
Day7

Day 14

Osteogenic

Control + Dkk-1 + DAPT + SB 431542 + Noggin + Dorsomorphin

cDPSCs

Figure 13 Validation assay of potential osteogenic signaling pathways related to an in

vitro osteogenic differentiation potential by cBM-MSCs and cDPSCs. Functional

validation of the potential signaling related to an in vitro osteogenic differentiation by

cBM-MSCs (A) and cDPSCs (B) was analyzed by treatment with specific signaling

inhibitors (canonical Wnt inhibitor: Dkk-1, Notch inhibitor: DAPT, TGF-beta inhibitor:

SB431542 and BMP inhibitors: noggin and dorsomorphin). Semi-quantitative analysis of

matrix mineralization by Von Kossa staining was utilized at day 7 and 14 post-induction.
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Tree diagram analysis of potential signaling

Based on the hierarchical clustering and pathway analysis, tree diagrams of

potential signaling derived from quantitative proteomics analysis and validation study

were illustrated (Fig 14). Tree diagrams represent dynamic changing of particular

signaling components in cBM-MSCs and cDPSCs upon an in vitro osteogenic

differentiation by comparing protein expression level in three consecutive timepoints

(day 7 vs day 0, day 14 vs day 0, and day 14 vs day 7).

To dissect Wnt signaling pathway, Wnt-related signaling components were

categorized as 1) T-cell factor (TCF) dependent pathway or canonical pathway and 2)

beta-catenin independent pathway (planar cell polarity (PCP)/convergent extension

pathway) or non-canonical pathway (Fig 14A). It has been showed that TCF dependent

and beta-catenin independent pathways play a different dynamic pattern in osteogenic

cBM-MSCs and cDPSCs. For osteogenic cBM-MSCs, signaling components of both TCF

dependent and beta-catenin independent pathways were significantly upregulated at

day 7 and maintained until day 14 post-induction (#02), while some of those were only



68

significantly upregulated at day 7 post-induction (#05). However, CAV1, considered as

TCF dependent signaling component, was downregulated at day 7 post-induction and

maintained at that level until day 14 post-induction (#26). Analysis on osteogenic

cDPSCs revealed that most of signaling components of both TCF dependent and beta-

catenin independent pathways were significantly downregulated at day 14 post-

induction comparing with undifferentiated control and not significantly different (#17) or

significantly lower (#18) when compared with day 7 expression level. PSMA7 was

significantly upregulated at day 7 post-induction, but the expression level at day 14 was

significantly downregulated (#06) (Fig 14A). These illustrated a distinct dynamic

expression pattern of Wnt-related signaling components by osteogenic cBM-MSCs and

cDPSCs in vitro.

For Notch signaling pathway analysis, a different expression pattern of Notch

signaling components was illustrated (Fig 14B). For osteogenic cBM-MSCs, most of

Notch-related proteins were significantly upregulated at day 7 post-induction. Some of

those upregulations were maintained until day 14 post-induction (#02) or downregulated
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(#05 and #06). PSMA7, PSMD6, and PSMB6 were unchanged throughout the induction

period (#14). For osteogenic cDPSCs, most of Notch-related components were

downregulated at day 14 post-induction (#17 and #18), and some of those components

were remained unchanged during the induction (#14). PSMA7 was significantly

upregulated at day 7 post-induction but downregulated later (#06) (Fig 14B). These

showed the unique expression pattern of Notch signaling components by osteogenic

cBM-MSCs and cDPSCs in vitro.

According to BMP-related signaling pathway analysis, set of most relevance

signaling pathways were categorized as 1) TGF-beta receptor complex, 2) non-receptor

tyrosine kinase (non-RTK), and 3) hedgehog (Fig 14C). For osteogenic cBM-MSCs,

some of proteins involving hedgehog and non-RTK were significantly upregulated at day

7 and maintained until day 14 post-induction (#02) or slightly decreased (#03). RHOA,

a non-RTK-related protein, was significantly upregulated at day 7 post-induction (#05),

and some of hedgehog-related protein were upregulated at day 7 or 14 post-induction

(#05 and #11). There were TGF-beta receptor complex protein SERPINE1 and some of
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hedgehog-related protein remained unchanged (#14), while hedgehog-related protein

TUBB2A was continuously downregulated (#17). For osteogenic cDPSCs, most of

proteins in non-RTK and hedgehog signaling were remained unchanged (#14) or

downregulated since day 7 (#26) or at day 14 post-induction (#18). PSMA7 was

significantly upregulated at day 7 post-induction but downregulated later (#06) (Fig

14C). These suggested the varied expression pattern of proteins involving BMP-related

signaling pathway by osteogenic cBM-MSCs and cDPSCs in vitro.
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WNT Signaling Pathway NOTCH Signaling Pathway BMP-related Signaling Pathways

Figure 14 Tree diagram analysis for mapping and prediction of the influent proteins

from potential signaling pathways by cBM-MSCs and cDPSCs upon an in vitro

osteogenic differentiation. Tree diagrams of potential signalings derived from

quantitative proteomics analysis and validation assay were illustrated including Wnt

signaling pathway (A), Notch signaling pathway (B), and BMP-related signaling

pathways (C). The diagrams represent dynamic changing of particular signaling

components in cBM-MSCs (green box) and cDPSCs (pink box) upon an in vitro

osteogenic differentiation by comparing protein expression level in three consecutive
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timepoints (day 7 vs day 0, day 14 vs day 0, and day 14 vs day 7). In tree diagram

connections, significant upregulation and downregulation are represented as red and

blue square boxes, respectively, while yellow square box represents non-significant

expression. All episodes are coded (#1 - #27). Numbers in the brackets refer to total

protein numbers expressed by osteogenic cBM-MSCs and cDPSCs for each episode,

respectively.
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Discussion

In the present study, the isolated cBM-MSCs and cDPSCs were successfully

isolated and characterized by verifying mRNA markers relating to stemness property,

proliferative marker, and MSC-related marker. It has been illustrated that cBM-MSCs

and cDPSCs are expressed a different level of those mRNA markers which suggests a

unique characteristic for each cell. Although, several publications have suggested

criterion for characterizing the isolated MSCs, there is still no consensus on cMSCs

characterization (56, 57). In this study, we found that cBM-MSCs and cDPSCs can

express mMRNA markers relating to MSCs, but not hematopoietic cell markers. The

MRNA expression analysis was used instead of flow cytometry analysis due to a

limitation on specific antibody reactivity. It has been reported that MSCs from various

species and sources expressed different level of markers which agree with our findings.

For example, CD44 is an adhesion molecule that can interact with fibronectin,

hyaluronan, selectins, and collagen (58). Some studies presented that CD44 was

apprized to be greatly expressed by MSCs isolated from mice and human (59, 60).
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However, another study found that MSCs sourced from bone marrow naturally lacked

CD44 protein expression (61). These finding suggest varieties of MSC-related marker

expression.

In this study, an in vitro osteogenic differentiation potential by cBM-MSCs and

cDPSCs was thoroughly explored and analyzed. Both cBM-MSCs and cDPSCs showed

their ability to differentiate toward osteogenic lineage; however, cDPSCs exhibited a

marked osteogenic status with higher level of ALP activity and greater mineralization

compared with cBM-MSCs.

Previous studies on ¢BM-MSCs and cDPSCs have focused mainly on their

potential toward osteogenic differentiation, rather than clarifying the exact behavior in

the osteogenic lineage. Bearden et al. (18) studied the osteogenic characteristics of

cBM-MSCs and concluded that these cells are mesenchymal stem cells in their

morphology and they have the potential to differentiate toward osteogenic,

chondrogenic, and adipogenic lineages in different conditions. Dissayanaka et al. (27)

also studied the characteristic of cDPSCs which displayed stem cell-like capability and
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ability to differentiate along the osteogenic, adipogenic, and chondrogenic lineages.

However, the different characterization between cBM-MSCs and cDPSCs in protein

expression which is the functional level during osteogenic differentiation is not clear.

To understand relevant proteins upon osteogenic differentiation of cBM-MSCs

and cDPSCs, global analysis by mass spectrometry was utilized. The present study

successfully used a method of dimethyl labelling with LC-MS/MS-based peptide

sequencing to selectively label, purify, and identify proteins from osteogenic cBM-MSCs

and cDPSCs at day 7 and day 14 post-induction, which were compared to

undifferentiated cells (day 0) following previous study protocol (62). Recently,

quantitative proteomic was also utilized for analysis of osteogenic differentiation of

human MSCs (63). To analyze the data, the volcano plot, heatmaps, and the Four-Circle

Venn Diagram were employed to show the different trends of protein expression

between in vitro osteogenic cBM-MSCs and cDPSCs. Both osteogenic cBM-MSCs and

cDPSCs illustrated a unique protein expression pattern as seen in different protein

expression distribution in the volcano plot, protein clustering in heatmap, and non-
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overlapping expressed protein in Four-Circle Venn Diagram. These suggested an

importance of global analysis on particular conditions or diseases. Previous proteomics

analysis of human osteoarthritis patients identified upregulation of complement proteins

(64). In addition, 1,943, 2,084, and 2,274 of human BM-MSCs proteins were found from

quantitative phosphoproteomics profile after day 1, day 3, and day 7 of osteogenic

induction (65), while cBM-MSCs and ¢cDPSCs found less when compared to osteogenic

human BM-MSCs.

To further analyze significant similarities and differences on expressed proteins

between osteogenic cBM-MSCs and cDPSCs, annotation and pathway databases were

employed. Comprehensive analyses were performed based on insight categories

including signaling pathways, cellular components and processes, cellular metabolisms,

program cell death, and cellular transports. In this study, the results showed that, since

MSCs are the sources of osteoblast precursors, their differentiation is rigorously

controlled by an extremely sophisticated set of signaling molecules and pathways.

Osteogenic paths of both cBM-MSCs and cDPSCs were closely related with Wnt, Notch,
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TGF-beta, and BMP signaling, as confirmed by pathway functional validation. Previous

research has shown that these signaling pathways play an important role in the

differentiation, proliferation, and migration of osteoblasts in humans and animals (66).

However, according to the quantitative proteomics analysis, other potential signaling

pathways that might also play a pivotal role in MSCs osteogenicity, including RTKs,

GPCRs, MAPK family, and non-RTKS.

It has been showed that upregulated RTK-related proteins play a crucial role in

osteogenic path (67). Upregulating of RTK-related proteins including caveolin-1 (CAV-

1), characterized as a putative tumor suppressor, had been reported to induce

osteogenesis (68, 69). Previous study found that ATP6VOD1, a ATPase H' Transporting

VO Subunit D1, colocalized with CAV1, suggesting the possibly related function of both

proteins (70). In addition, fibronectin-1 (FN1) is elaborated in remodeling of the ECM in

several cellular processes, and the proteomic result illustrated a specific regulation of

FN1 in human osteoblastic cells during osteoblast differentiation and the relation to CAV-

1(71, 72). Here we showed that CAV-1, ATP6V0D1, and FN1 were also expressed and
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might regulate cBM-MSCs and cDPSCS during osteogenic differentiation imply the

importance of RTKs on osteogenic path.

Previous proteomic analysis identified LRP1, the low-density lipoprotein-

receptor-related protein 1, that improved fracture healing in old mice and controlled

osteoclast activity (73, 74). However, this result found that LRP1 was downregulated in

osteogenic cBM-MSCs and cDPSCs, but ECE1, endothelin-converting enzyme-1,

become upregulated. The binding of ECE1 to GPCR triggers downstream pathway

resulting in the activation of osteoblastic proliferation and new bone formation (75).

Thus, ECE1 is an attractive GPCR-related target protein to stimulates bone formation of

osteogenic cBM-MSCs and cDPSCs.

In eukaryotic cells, the proteasome (PSM) is a complex molecule constructed

from large proteins, namely proteasome endopeptidase complex subunits, and relates

to ubiquitin pathway which is the mechanisms controlling intracellular proteolysis (76).

Previous research showed that ubiquitin-proteasome pathway involved in osteogenesis

both in vitro and in vivo. It is suggested that inhibition of the proteome process by
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specific inhibitors could enhance bone formation by an activation of BMP-2 expression

(77). In this study, we found that proteins in PSM family were dynamically expressed in

both cBM-MSCs and cDPSCs and closely related to set of proteins relating MAPK family

as well as Notch, Wnt, and hedgehog signaling. Further study on PSM family protein on

osteogenic differentiation of cBM-MSCs and cDPSCs is needed for more understanding

on underlying mechanisms.

Based on cellular component and process analyses, collagen type | alpha 1

(COL1A1) and collagen type | alpha 2 (COL1A2) are proteins which support bone

tissues in the body, and mutations of COL1A1 and COL1A2 are related to osteogenesis

imperfecta (78). However, they were downregulated in cBM-MSCs and cDPSCs during

an osteogenic induction, but integrin subunit alpha 5 (ITGA5), FN1, and vitronectin

(VTN) were upregulated. ITGA5 promotes osteoblast differentiation in human MSCs by

increasing Runx2 expression and activity (79). VIN is a multifunctional glycoprotein

found and involved in various physiological processes and promotes cell attachment in

bone and ECM (80). Though the expression of collagen type IV alpha 1 (COL4A1)
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suggests an underlying molecular mechanisms for osteopenia (81), COL4A1 revealed

that osteogenic cDPSCs were principally upregulated. Thus, further experiments are

necessary to address the difference of ECM organization between osteogenic cBM-

MSCs and cDPSCs.

Further analysis revealed that, among many of the differently expressed

proteins, several proteins of osteogenic cBM-MSCs and cDPSCs involved with

metabolism of carbohydrate were downregulated, while several proteins in metabolism

of lipids were upregulated. Previous study suggested that bone mineral density rises

with body fat mass, and obesity has a protective effect against osteoporosis (82).

However, recent study from rat bone marrow found that low=carbohydrate with high-fat

diets have negative influence during osteogenesis by reducing osteogenic transcription

factors (Runx2, osterix, and C/EBPB) (83). This indicates that osteogenesis from

different cell sources may employ different metabolism for bone formation or resorption.

In addition to proteins in post-translational protein modification, recent studies

have provided some evidence that IGFBP7, an insulin-like growth factor-binding protein
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7, increases the osteogenic differentiation of BMSCs by the Wnt/B—catenin signaling

pathway (84). In addition, the presence of Ras homolog gene family member A, RHOA,

indicated its involvement in cytoskeleton rearrangement of BM-MSCs (85, 86). These

findings suggest that proteins in post-translational protein modification are required for

cBM-MSCs and cDPSCs osteogenic differentiation. Insulin-like growth factors, IGFs,

play a role during fetal development and postnatal growth in several cell types (87).

Upregulated protein related to IGFs including IGFBP7 and FN1 can enhance

osteogenesis of MSCs (88). Therefore, cBM-MSCs and cDPSCs might utilize IGFs for

osteogenic differentiation, which further requires study.

As mass spectrometry-based proteomics is a relatively new tool in veterinary

stem cell research along with the limited information on specific databases, we needed

to validate further a subset of LC-MS/MS observations using secondary validation

method. Therefore, an in vitro functional validation assay using specific osteogenic

signaling inhibitors of selected potential pathways were employed and confirmed

osteogenicity with the semi-quantitative mineralization assay. When cultured in the
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presence of osteogenic stimulation, the potential of mineralization revealed the obvious

differences of the osteogenic regulating pathway between cBM-MSCs and cDPSCs in

their osteogenic paths.

In relation to Wnt and TGF—B signaling, the inhibition of Wnt and TGF—B of cBM-

MSCs and cDPSCs at day 7 and day 14 showed different results. Upon the interference

of Wnt or TGF- B the osteogenicity of cBM-MSCs was inhibited which was indicated by

less mineralized nodules. Some previous studies found that the activation of Wnt and

TGF—B pathways stimulate the differentiation of mouse MSCs and cBMSCs towards the

osteoblastic lineage (89-91). However, after inhibiting Wnt and TGF—B signaling, a

mineralization level of cDPSCs were greater than those of the control and cBM-MSCs on

both at day 7 and 14. Considering the proteomics results which showed downregulation

of Wnt- and TGF-B related proteins together with validation experiment, therefore, the

inhibition of WNT or TGF—B exerts beneficial effects on cDPSCs osteogenic

differentiation, but attenuates this process in cBM-MSCs.
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Recent researches have demonstrated that Notch signaling promotes

osteogenic differentiation of mesenchymal stem cells (41, 92). On contrary, findings of

this study showed the opposite trends with the increase in calcium nodule formation of

cBM-MSCs and cDPSCs when Notch signaling was blocked by DAPT. These results are

consistent with previous findings suggesting Notch signaling has a negative effect on

MSC differentiation (46, 93). These findings suggest that Notch signaling may maintain

cMSCs proliferation but suppresses cMSCs osteogenic differentiation, and suggest that

different Notch receptor subtypes have different influences on osteogenesis

differentiation of cMSCs (94-96).

The importance of BMP signaling have widely recognized and promoted in bone

formation of critical-size bone defects, which is useful in the field of bone tissue

engineering and regeneration (97). Noggin and dorsomorphin, antagonists targeting

BMP signaling, have been reported to negatively regulates BMP activities during

osteogenesis (98, 99). Noggin binds to BMPs with high affinity and blocks BMPs’

binding to the BMP receptor, while dorsomorphin inhibits Smad activation, a
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downstream pathway (99, 100). In this study, the osteogenic cBM-MSCs were

completely inhibited, and the osteogenic cDPSCs were partially inhibited to form

calcium nodules after inhibiting BMP signaling with dorsomorphin. It is expected that

BPM signaling with Smad dependent were the principle pathway of cBM-MSCs and

cDPSCs to differentiate toward osteogenic lineage. In contrast, this result showed a

increasing rate of mineralization of cDPSCs after treatment with noggin, suggesting that

noggin facilitates osteogenic differentiation of cDPSCs, but does not affect cBM-MSCs

to form mineralized nodule. Recent study showed noggin significantly increases ALP

activities and simplifies osteogenic differentiation (101). Collectively, this study

suggested that osteogenic differentiation of cBM-MSCs and cDPSCs mainly utilizes

Smad pathway, but both may play a different role in BMP ligands.

To further map the candidate signaling on osteogenic differentiation potential,

tree diagrams were employed to present Wnt, Notch, and BMP-related signaling

pathways. Wnt signaling comprises two well-known pathways, canonical and non-

canonical, which can modulate bone formation by activation from Wnt ligands (102).
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This study showed a trend of upregulated proteins in both canonical and non-canonical

Wnt signaling by osteogenic cBM-MSCs. Previous report showed supporting evidence

that BM-MSCs utilized canonical and non-canonical Wnt signaling for regulating

osteogenic differentiation (103). In contrast, at present, it is difficult to propose a clear

model of how WNTs act on osteogenic cDPSCs. As discussed in detail on cBM-MSCs,

several lines of evidence suggest that regulation and activation of Wnt signaling in

osteoblasts is important for bone formation. Therefore, it is not unexpected that we

would find the downregulation of protein related canonical and non-canonical Wnt

signaling pathway for osteogenic cDPSCs, while cDPSCs showed osteogenic potential

higher than cBM-MSCs. Some previous studies presented osteoblastic bone formation

was not affected in mice after deletion of B-catenin in osteoblast (45). Thus, knowledge

about the function of Wnt signaling has been broadened that it had different influence

between on osteogenic cBM-MSCs and on cDPSCs, and further experiment for

clarifying role of Wnt signaling on cMSCs osteogenic differentiation is indeed required.
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Next, Notch signaling was another potential pathway involving osteoinductive

effects on osteoblasts (104). Here, the tree diagram indicated Notch-related proteins of

osteogenic cBM-MSCs that were significantly upregulated, while cDPSCs were

downregulated. In addition, Notch signaling may interact with other signaling pathways

such as Wnt and BMP to regulate skeletal development and homeostasis. One study

showed that the expression of NICD blocked the differentiation of osteoblast precursors

(105). Therefore, cBM-MSCs and cDPSCs were mapped with different pattern behavior

of proteins in Notch signaling. Finally, due to the interesting result of the inhibition for

BMP signaling of osteogenic cBM-MSCs and cDPSCs, we mapped and focused on

BMP-related proteins. Proteins at day 7 and day 14 were expressed differently between

cBM-MSCs and cDPSCs. Some studies showed the relation between hedgehog and

BMP signaling (106, 107), BMP cross-talk with the RhoA (108), and BMP Signaling

involving TGF—B (109). Interestingly, almost protein expression in hedgehog of

osteogenic cBM-MSCs were upregulated, but cDPSCs were downregulated. Previous

study showed that inhibition of hedgehog was a cause of lasting bone defects in mice
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(110), whereas osteogenic cDPSCs presents an interesting osteogenic protein involving

hedgehog which were downregulated. Thus, the behavior involving BMP-related protein

for osteogenic differentiation of previous study appears to be specific for osteogenic

cBM-MSCs but would not be expected to relate in osteogenic cDPSCs.
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CHAPTER V

CONCLUSION

In conclusion, our study utilized an in vitro model of osteogenic differentiation,

high-throughput quantitative proteomics, and a validation assay of candidate osteogenic

signaling to obtain a comprehensive understanding of protein behavior upon osteogenic

differentiation of cBM-MSCs and cDPSCs. To our knowledge, this study is the most

comprehensive proteomics-based analysis of osteogenic cDPSCs and cDPSCs to date.

The results of the present study indicated numerous different behaviors between cBM-

MSCs and cDPSCs toward osteogenic lineage. These findings revealed the confirmation

of regulating osteogenic signaling pathways to support the mass spectrometry analysis.

This study data is useful for understanding of cMSCs osteogenic path and suggests the

trend of MSC-based bone tissue engineering used for bone regeneration, concentrating

on cBM-MSCs and cDPSCs application.
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