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1. Introduction 

This work deals with quantitative reverse stress testing (RST). Unlike regular stress 

testing where extreme scenarios are chosen beforehand so that losses given those 

scenarios can be evaluated, the purpose of RST is to straightforwardly identify the 

scenarios which push portfolio losses exceeding a predefined threshold. For regular 

stress testing, its inherent difficulty lies in selecting scenarios which are both 

sufficiently extreme and sufficiently plausible, yet not subjected to individual’s bias nor 

limited only to historical occurrences. RST here could be considered as a very 

beneficial tool to assist in a scenario selection process. 

One of the main challenges of RST is portfolios in general are sensible to multiple 

risk factors. For a single risk factor portfolio, it is rather clear in which direction, and 

even by how much to stress the factor to get an adverse outcome. However, a multiple 

risk factor portfolio requires more advanced multivariate analysis in order to identify 

the sensible combinations of stresses applying to each factor, which in concurrence, 

result in portfolios having large losses. 

The role of RST has been emphasized consultatively by many authorities (Financial 

Services Authority 2009; Committee of European Banking Supervision 2009). 

However, there is still no industry standard of how the RST should be conducted, even 

the number of published literatures on this topic is very limited. We observe the fact 

that the more realistic the framework is to the real-world situations, the more 

conceptually and mathematically challenging.  

Among the recent publications on RST, Glasserman et al. (2015) presented a data-

driven framework to identify the most likely scenarios that lead to portfolio losses 

exceeding a given threshold, referred as the most likely loss scenarios. In this 

framework, first the conditional mean of portfolio risk factors (given that associated 

portfolio losses exceeded a predefined threshold) was estimated by nonparametric 

empirical likelihood algorithm. Then, they derived a scaling procedure based on the tail 

decay assuming the joint distribution of risk factors and portfolio losses are elliptically 

contoured, and used it to adjust the confidence regions for the conditional mean to the 

most likely loss scenarios.  Its application is so simple that general practitioners can 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

conveniently apply the procedure to discover the most likely loss solutions from the 

raw data they have collected, without having to figure out the exact extreme joint 

distribution. The concept of conditional expectation is also straightforward enough for 

practitioners to interpret it from their existing data (comparing to let them figure the 

most likelihood directly), while Glasserman et al. (2015) provided the missing pieces 

connecting the conditional expectation to the most likely loss solutions. 

Because we view RST for scenario selection as an exploratory process, reliance on 

a single scenario, even the most likely one, might be misleading and potentially 

overlook the certainty around the critical scenarios. As highlighted in Glasserman et al. 

(2015), the main outcomes of their RST method are not only a single most likely 

scenario, but also the important regions for most likely loss scenarios, where 

importance reflects both the likelihood of the outcome and the severity of the resulting 

loss. Those important regions are derived from the confidence regions of the conditional 

mean. The contours of the regions provide sets of extreme scenarios that are equally 

plausible. 

Our study picked up the most likely loss framework from Glasserman et al. (2015). 

However, because we believe that financial data in real-world are not necessarily be 

elliptically distributed, in this work we put our effort to make use of Glasserman et al. 

(2015)’s framework on general cases where the joint distributions of portfolio risk 

factors do not necessarily be elliptically contoured. 

This study incorporated the concept of copula which brings a benefit from its 

flexibility in modelling dependency, especially in the tail structure, to govern the joint 

dependence structure of our portfolio risk factors. Another major advantage from using 

a copula is that it allows us to alternately derive the representation of the reverse stress 

testing problem in the form of a copula and a marginal function. This representation 

plays an important role for estimating the exact solution of reverse stress testing, which 

in the later stage is used for evaluating the performance of our adapted RST approach. 

The objectives of this study are (1) to adapt Glasserman et al. (2015)’s RST 

framework on non-elliptical data, and (2) to evaluate the performance of our adapted 

RST framework on portfolios having non-elliptical joint distributions. We selected 
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three non-elliptical copulas: Frank copula, Clayton copula, and Gumbel copula from 

Archimedean copula family carrying different dependence characteristics to govern the 

joint distributions of our portfolio risk factors. We generated portfolio risk factors out 

from the assigned copula with student-t marginals, combined them into portfolios, then 

used them as the testing data for our adapted RST.  

To adapt Glasserman et al. (2015)’s RST method, we fitted our testing data with an 

elliptical multivariate t distribution in order to acquire the scaling parameter. We 

evaluate the performance of our adapted RST method by employing simulation to test 

for the coverage percentage (counting how many times the resulting important regions 

we got from our adapted RST method contained the exact solutions to reverse stress 

testing). We assumed that the adapted scaling approach may exhibit some biases in 

particular dependence structures, however, we believed that the directions of biases can 

at least be predicted based on the assumptions we have on the dependence structures. 

Apart from the coverage results, we also concluded our findings on the characteristics 

of the resulting important regions for the most likely loss scenarios which vary with 

copula types and copula’s parameters. Since the shapes of those important regions 

follow their empirical likelihood profiles, we can study the differences in the nature of 

extreme lower-tail dependence structures as produced by the three copulas within our 

most likely loss framework. 

The organization of this report is arranged as follows. Section 2 walks through the 

background of RST and reviews some literatures related to our study. Section 3 

describes the methodology used in this work. Section 4 shows the results of our adapted 

RST method. Section 5 provides our conclusion on this study. 

 

2. Background and literature review 

2.1 Regular stress testing and reverse stress testing 

Apart from maximizing return, what typical investors would expect from their 

investment is, if losses are to be unavoidable then they shall be under control, or if 

possible, be bounded at some acceptable levels. This firmly establishes one of the major 
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goals in investment portfolio management, where several risk management strategies 

have been studied and developed through decades, and a number of them have been 

practically employed across the worldwide banking and investment industry. Among 

those practices, stress testing is one of the very popular and most powerful tools, which 

could help to give an insight of how a portfolio will fare during bad time or crisis 

periods. Because of its simplicity in both how it can be performed and how it can be 

interpreted, stress testing has been using as a standard convention nowadays for risk 

management practice in investment firms and financial institutions. 

In general practice of a regular stress testing, portfolio managers or risk managers 

will shock their portfolios with some extreme values or off-base rates to see how their 

portfolio values fluctuate with those predefined assumptions. Those assumptions, or 

what so-called ‘scenarios’, might be based on what exactly used to happen in the past, 

for example, fluctuation of macroeconomic factors during the European sovereign debt 

crisis between 2009 to 2011. Also, those assumptions could arrive from individual 

beliefs, on what they might inherently foresee in the upcoming future. For instance, 

portfolio managers may have their own views on the movement of federal funds rates, 

therefore they might want to see their portfolios be stressed based on those views. 

 Even though current practice of stress testing could provide a decent perception for 

risk assessment, there are a number of things to be concerned. A critically important 

challenge lies on how to design appropriate input scenarios. We see that selection of 

input scenarios is extremely severe for the performance of stress testing as a regular 

stress testing can only be used to foresee how the portfolio values will fare within the 

sets of the given inputs. If the sets of inputs entirely rely on the historical data, 

apparently the outputs are likely to underestimate in forecasting overall portfolio risk. 

Naturally, it is because there were very few occurrences of extreme events by its 

definition. On the other hand, if the sets of input scenarios largely involve personal 

judgments, it would then largely rely on individual’s experience, and also be likely 

subjected to biases. Therefore, it is better if we can come up with a standard way to 

suggest what scenarios should we pick as the inputs of a regular stress testing. 
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Reverse Stress Testing 

Recently, reverse stress testing (RST) has been developed to straightforwardly 

identify scenarios that lead to severe losses. Hence, it might be considered as a very 

beneficial tool to assist in scenario selections for the inputs of a regular stress testing. 

Regardless its benefits and increasing demands from the industry, there are only few 

academic studies and the current body of literature on RST is still sparse.  

A discussion on qualitative approach for RST presented by Grundke (2012) 

concluded that qualitative approach alone would not work but at least requires support 

from quantitative elements. Early studies on quantitative RST conducted on simply 

structured portfolios with one or two risk factors, for example, Liermann and Klauck 

(2010). Conceptually, McNeil and Smith (2012) introduced the perception of 

identifying the most plausible scenario, which is called the most likely ruin event. Many 

studies rather focused on identifying the worst (in the sense of expected losses for a 

given portfolio) scenario from a set of scenarios with a given plausibility, for example, 

Breuer et al. (2012); Breuer and Csiszar (2012). 

Recent literatures on methods and algorithms for identifying RST scenarios 

includes Grundke (2012), Kopeliovich et al. (2015), Flood and Korenko (2015), and 

Glasserman et al. (2015). Grundke (2012) proposed a framework for a fixed-income 

portfolio having an exposure to macroeconomic risk factors. Kopeliovich et al. (2015) 

used principal components of portfolio risk factors to generate candidate scenarios 

leading to the equal loss. Later, those scenarios are chosen to match with possibility 

and given constraints. The authors pointed out that selecting only a single scenario or 

the most plausible one might disregard important information which would affect 

portfolio risk assessment. Flood and Korenko (2015) suggested an algorithm based on 

eigenvectors of the variance-covariance matrix for elliptical jointly distributed risk 

factors to generate equally possible scenarios. This approach allows for a flexible loss 

function; however, it might overlook some severe but less likely scenarios as the 

possibility of a scenario is set and not the loss level. 
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2.2 Reverse stress testing on elliptically distributed portfolio 

Among on those recent development in RST studies, Glasserman et al. (2015) came 

up with a data-driven lightly-parametric framework which can robustly identify ‘the 

most likely scenarios’ that lead to portfolio losses exceeding a given threshold. The 

central idea of this approach is the scaling procedure which derives asymptotically 

exact scaling multipliers when the joint distribution of market factors and portfolio 

value falls within a broad family of elliptically contoured distributions.  

Figure  1. Glasserman et al. (2015)’s illustration of an example portfolio having 

exposure to weekly returns of FTSE100 index and S&P500 index. The blue lines 

indicated confidence regions of conditional mean, while the red lines indicate 

important regions for the most likely loss scenario. 

 

In this scaling framework, first the conditional mean of risk factors (given portfolio 

having large loss) is estimated by employing nonparametric empirical likelihood (EL) 

in the sense of Owen (2001). Importantly, this EL estimator can provide confidence 

regions of conditional mean, and does not rely on significant assumptions about the 

conditional distribution of the market factors in extremes. The shape of the EL’s 

confidence regions is also able to capture skewness and other features present in 

extreme outcomes. Then, in the second step, the scaling procedure is applied to adjust 

the conditional mean and its confidence regions to the most likely loss scenario and the 

most likely loss regions with respect to given confidence levels.  Therefore, not only 

can we find the most likely combination of stresses which push the portfolio losses 
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beyond the predefined threshold, the resulting most likely loss regions also provide 

additional information about uncertainty in extremes which is generally absent from the 

stress scenario selection process.  

2.3 Non-elliptical copula 

There were some evidences illustrating that the distribution of market risk factors 

might not be elliptical, and why reliance on such assumption could bring some failures. 

For instance, many studies found the equity returns suffer from increased correlations 

during bear markets, for example, Longin and Solnik (2001, 1995) and Ang and Chen 

(2002) indicating financial markets exhibit a characteristic known as lower tail 

dependence. Donnelly and Embrechts (2010) reviewed what occurred during the 2007-

2008 financial crisis and gave criticisms on the use of elliptical dependence model such 

as Gaussian copula. Many studies show that while forecasting models, incorporating 

asymmetric dependence produce significant gains for the investor (Garcia and Tsafack 

2011; Chu 2011). 

In our work, we want to introduce the use of copula which having the flexibility in 

modelling dependence, especially in the tail structure, to reverse stress testing 

framework.  In short, a copula is a multivariate cumulative distribution function for 

which the marginal probability distribution of each variable is uniformly distributed.  

With copula modelling, we are able to govern the multivariate dependence structure 

separately from the marginal distributions. In the previous literature on regular stress 

testing, there were some studies employing Gaussian copula. However, the Gaussian 

copula is lacking as it only allows for an elliptical dependence structure. There still be 

a challenge for integrating copula to reverse stress testing framework, especially in the 

non-elliptical field. 
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Figure  2. Copulas in the classes of Elliptical copula family and Archimedean copula 

family (Li et al. 2015). 

 

In this study, we picked three non-elliptical copulas from Archimedean family 

which are Frank copula, Clayton copula, and Gumbel copula for modelling dependence 

structures. Frank is a symmetric copula. Clayton is an asymmetric copula exhibiting 

greater dependence in the negative tail than in the positive. Gumbel, or also known as 

Gumbel-Hougard, is an asymmetric copula exhibiting greater dependence in the 

positive tail than in the negative. 

Apart from the nice properties they possess and the ease with which they can be 

constructed, we also observed many cases that the three copulas from Archimedean 

family turned out to be most efficient in financial applications and provided some 

advantages over elliptical-class copulas. For example, Aas et al. (2009) shows that 

applying Clayton in portfolio optimization and risk management can reduce the effects 

of extreme downside correlations and improve statistical and economic performance 

compared to the elliptical dependence copulas such as the Gaussian and Student-t. 

Hatherley and Alcock (2007) reported that managing asymmetric dependence, using a 

Clayton standard copula against the benchmark multivariate normal probability model 

results in reduced downside exposure. Agnihotri (2017) studied the correlation between 

bond market and stock market in US and China for past between 2006- 2016 and 

indicated that Frank and Gumbel are the most appropriated copula models.  
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3. Methodology 

To formulate the ideas of reverse stress testing into our analysis, let us first assign 

𝒁 to be a random 𝑑-dimensional vector representing the changes in market risk factors 

relevant to a portfolio. These factors could be interpreted as rates, prices, returns, or 

any other economic variables. Suppose 𝒁 has a probability density 𝑓𝒁 on ℝd, which 

represents the joint probability density of its elements 𝑍1, 𝑍2, … , 𝑍𝑑 . For any given 

scenario 𝒛, the loss of a portfolio being exposed to these factors is denoted by 𝐿, which 

can be written as a function of 𝒛.  

We say that a scenario has a large loss when the portfolio loss 𝐿 with respect to this 

scenario is at least, or larger than loss threshold ℓ, which is a predefined value. We 

write the conditional probability density of 𝒁 given 𝐿 ≥ ℓ as 𝑓𝒁(𝒛 | 𝐿 ≥ ℓ). The generic 

problem of reverse stress testing is to find the most likely scenarios 𝒛∗ given loss 𝐿 

greater than or equal to ℓ; in other words, to solve 

𝒛∗(ℓ) =  𝑎𝑟𝑔𝑚𝑎𝑥
𝒛 ∈ℝ𝑑

 𝑓𝒁 (𝒛 | 𝐿 ≥ ℓ)     

The solutions to the previous equation (𝒛∗(ℓ)) are referred as the solutions to the 

reverse stress test or the most likely loss scenarios. 

We see that the solutions to the reverse stress testing problem depend largely on the 

approximation of the conditional joint probability density,  𝑓𝒁 (𝒛 | 𝐿 ≥ ℓ). However, in 

reality, most of the time the joint distributions between portfolio risk factors are not 

certainly known. In this work, we adapted Glasserman et al. (2015)’s RST framework, 

which is lightly parametric and does not require the exact joint distribution to be known 

to our synthetic non-elliptical portfolios. 

Because Glasserman et al. (2015)’s scaling method is based on the assumption of 

elliptically contoured distributions, we have to apply some techniques to adjust the 

method. We tested the performance of our adapted models through simulation, where 

the exact RST solutions are alternatively acquired from a closed form of copula and 

marginal. In the later chapter, we discussed the performance or our adapted RST 

methods. Our research methodology is presented in Figure 3.  
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Figure  3.  Research methodology 

 

The methodology in this study is organized into the four main sections: 

Section A describes how our synthetic portfolios are constructed. First, we assign a 

copula to capture the desirable characteristics of the dependence structure of risk factors. 

Second, we assign marginal distributions for the risk factors. Then, we employ a loss 

function (𝐿) to combine risk factors into portfolios.  

Section B explains how we adapted Glasserman et al. (2015)’s RST approach on 

our non-elliptical portfolios. This section involves estimation of the conditional mean 

via Empirical Likelihood algorithm, and the scaling procedure adjusting for the most 

likelihood solutions. Since the joint distributions of our portfolios are not elliptical, we 

take some additional steps for determining an appropriate scaling factor based on the 

characteristic of tail dependence structure as governed by a copula. 

Section C shows how we estimate the exact solution to the most likely loss scenario 

from the closed-form joint pdf deriving from copula and marginals. Section D, we give 

our design of how we employ simulation to determine the coverage of the most likely 

loss regions acquiring from our adapted scailing RST method.  
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Section A. Risk factor modelling and portfolio construction 

This section describes in detail how our synthetic portfolios are built, from risk 

factor modelling to portfolio construction. In Section A1, we present a model which 

derives the components of the joint probability of portfolio risk factors, 𝑓𝒁 (𝒛) from 

their marginals and the governed copula. In Section A2, we determine the function 𝐿 

which is used to transform portfolio risk factors into portfolio values, or portfolio losses. 

Then, in Section A3, we combine the results in the previous parts to illustrate the 

conditional joint probability, 𝑓𝒁 (𝒛 | 𝐿 ≥ ℓ) which is the probability of scenarios given 

the associated portfolio losses exceed the given threshold.  This provides the basis for 

the most likelihood estimation which is further explained in section B. 

A.1 Risk factor modelling 

Our portfolio risk factor is modelled based on the two main steps: (1) construction 

of marginal, and (2) construction of dependence structure. For ease of interpretation we 

may think, for example, that our portfolios are equity portfolios consisting of more than 

one equity indices. Then, returns of equity indices are considered as portfolio risk 

factors driving the performance of our portfolios.  

Because fat tails are generally observed in financial returns, we selected student-t 

distribution for the marginal distribution of our portfolio risk factors. In other words, 

𝒁1, 𝒁2, … , 𝒁𝑑~ Student-t (𝜇, 𝜎, 𝜐) with the pdf 𝑓𝒁𝑖
 and the cdf 𝐹𝒁𝑖

  for 𝑖 = 1, … , 𝑑 as  

𝑓𝒁𝑖
 (𝒛𝑖 | 𝜇, 𝜎, 𝜐) =  

𝛤(
𝜐+1

2
)

𝛤(
𝜐

2
)√𝜋𝜐𝜎2

[1 +
1

𝜐
(

𝒛𝑖−𝜐

𝜎
)

2

]
−(𝜐+1) 2⁄

,  

𝐹𝒁𝑖
 (𝒛𝑖 | 𝜇, 𝜎, 𝜐) = ∫ 𝑓𝒁𝑖

 (𝒛𝑖 | 𝜇, 𝜎, 𝜐)
𝒛𝑖

−∞
 𝑑𝒛𝑖 .  

Another important and unique characteristic we usually observe from the nature of 

financial data and is that some of them possess considerable stronger dependency in 

their lost or gain domains. To allow the flexibility in modelling the joint tail structure, 

we assigned a copula to govern dependency.  

Basically, a copula is a multivariate distribution whose marginals are all uniform 

over (0,1). For a 𝑑 −dimensional random vector on the unit cube, a copula 𝐶 is 
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𝐶(𝒖1, … , 𝒖𝑑) = Pr(𝑼1 ≤ 𝒖1, … , 𝑼𝑑 ≤ 𝒖𝑑).           (1) 

Combined with the fact that any continuous random variable can be transformed to be 

uniform over (0,1) by its probability integral transformation, Sklar (1959) showed that 

there exists a  𝑑 −dimensional copula 𝐶 such that for all 𝑧 in the domain of 𝐹𝒁, 

𝐹𝒁(𝒛1, … , 𝒛𝑑) = 𝐶{𝐹𝒁1
(𝒛1), … , 𝐹𝒁𝑑

(𝒛𝑑)}.      (2) 

We selected three non-elliptical copulas from Archimedean family including Frank 

copula, Clayton copula, and Gumbel copula which allow flexibility in modelling the 

joint structures over elliptical-class copulas. For the bivariate case (𝑑 = 2), the simple 

forms of the three Archimedean copula functions are illustrated in Table 1. 

Copula Bivariate copula cdf, C(𝒖𝟏, 𝒖𝟐; 𝜽) 

Frank  −
1

𝜃
log [1 +

(𝑒−𝜃𝒖1−1)(𝑒−𝜃𝒖2−1)

(𝑒−𝜃−1)
] 

Clayton {max[(𝒖1
−𝜃 + 𝒖2

−𝜃 − 1), 0]}
−

1

𝜃  

Gumbel  exp {−[(− ln 𝒖1)𝜃 + (− ln 𝒖2)𝜃]
1

𝜃}  

Table  1. Three copula functions of the three copulas from Archimedean family of 

bivariate risk factor model. 

In higher dimensions (𝑑 > 2), Archimedean copula can be constructed through a 

generator function 𝜑 as 

𝐶(𝒖𝟏, … , 𝒖𝒅) = 𝜑−1{𝜑(𝒖𝟏), … , 𝜑(𝒖𝒅)},     (3) 

where 𝜑−1 is the inverse of the generator 𝜑 . The three multivariate Archimedean 

copulas are summarized in Table 2.  

Copula Parameter  

space 

Generator 

𝜑(𝑡) 

Generator Inverse 

𝜑−1(𝑡) 

Frank 𝜃 ≥ 0 − ln
𝑒−𝜃𝑡−1

𝑒−𝜃−1
  −𝛼−1 ln(1 + 𝑒−𝑠(𝑒−𝜃 − 1)) 

Clayton 𝜃 ≥ 0  𝑡−𝜃 − 1  (1 + 𝑠)−1 𝜃⁄   

Gumbel 𝜃 ≥ 1  (− ln 𝑡)𝜃  exp(−𝑠1 𝜃⁄ )  

Table  2. Archimedean generators 𝜑 for multivariate mode, 𝑑 > 2. 

It is worth noting that the parameter value at the boundary of parameter space gives the 

independent copula after taking the limit. 
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Figure  4. Wireframe surfaces of copula density and distribution function, with scatter 

sampling plots of Frank copula, Clayton copula, and Gumbel copula for bivariate 

models having copula’s 𝜃 = 1.5. 

 
Copula density 

𝑐(𝑢1, 𝑢2) 

Distribution function 

𝐶(𝑢1, 𝑢2) 
Sampling 𝑈1, 𝑈2  

(sample size = 1,000) 

Frank 
(𝜃 = 1.5) 

  
 

Clayton 
(𝜃 = 1.5) 

  
 

Gumbel 
(𝜃 = 1.5) 

  
 

We mentioned that Frank copula is a symmetric copula providing the same degree 

of dependency for both negative and positive domains. Clayton copula, on the other 

hand, is an asymmetric copula which exhibits greater dependence in the negative tail 

than in the positive tail. Gumbel copula is also an asymmetric copula; however, it 

exhibits greater dependence in the positive tail than in the negative tail. For giving a 

clearer picture, we illustrated examples of copula density, distribution function, and 

samplings of the three copulas for bivariate models having 𝜃 = 1.5 in Figure 4. 

Now that we have captured the essence of how our risk factor modelling are done 

showing in a straightforward order, in practice of risk factor sampling we rather start 

from copula then map out to the marginals. An example for a bivariate risk factor 

sampling case is illustrated in Algorithm 1. 
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A.2 Portfolio construction 

After we have our portfolio risk factors from Section A1, we employed a loss 

function (𝐿) to combine those portfolio risk factors into a portfolio. The outcomes of 𝐿 

are referred as portfolio values or portfolio losses. As in the same manner as Glasserman 

et al. (2015), we assumed portfolio risk factors recording the most important factors 

influencing the portfolio, so that the tail behavior of the portfolio loss consistent with 

that of the most important factors.  Based on Glasserman et al. (2015), the loss function 

can be any function either deterministic or stochastic. However, to govern the scope of 

our work, we assigned the portfolio loss to be a deterministic linear function of risk 

factors, given by 

𝐿 = 𝑐𝑇𝒛                  (4) 

Algorithm 1. Sampling bivariate risk factors 

1. Draw i.i.d. samples 𝑢1,𝑖, … , 𝑢1,𝑁 from a uniform distribution on [0,1]  for the 

elements of a vector 𝒖𝟏 representing the marginal cumulative probability of 

risk factor 𝒁𝟏. 

𝑈1,𝑖, … , 𝑈1,𝑁 ∼  i. i. d. Uniform [0,1] 

2. Draw i.i.d. samples 𝑤𝑖, … , 𝑤𝑁 from a uniform distribution on [0,1], which 

are the values the inverse conditional distribution of a bivariate copula. 

𝑊𝑖, … , 𝑊𝑁 ~ i. i. d. Uniform [0,1] 

3. Derive a vector 𝒖𝟐 from 𝒖𝟏 and 𝒘 via the inverse conditional distribution 

function (inverse ℎ -function) of the copula. Note that 𝒖𝟐 represents the 

cumulative probability of risk factor 𝒁𝟐. 

𝑢2,𝑖 = ℎ1
−1(𝑤𝑖|𝑢1,𝑖, 𝜃) 

4. From the cumulative probability vectors 𝒖𝟏, 𝒖𝟐 , sample 𝒁𝟏, 𝒁𝟐 follow their 

marginal distributions. 

𝑍1 = 𝐹𝑍1
−1(𝑈1)  

𝑍2 = 𝐹𝑍2
−1(𝑈2)  
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where 𝑐 is a 𝑑-dimensional vector of constants sum up to 1. For purposes of illustration, 

we selected the linear coefficient vector of the loss function 𝑐 to equally-weight all the 

relevant factors, therefore 𝑐𝑇 = [
1

𝑑
,

1

𝑑
, … ,

1

𝑑
] .  

A.3 Reverse stress testing 

Combining what we have done in Section A1 and Section A2 together, now we are 

able to write the conditional pdf of our portfolio risk factors as 𝑓𝐙(𝒛|𝐿 ≥ ℓ).  Therefore, 

to solve for the most likely loss scenarios is to find the solutions of 

𝒛∗(ℓ) =  argmax
𝒛 ∈ℝ𝑑

 𝑓𝐙 (𝒛 | 𝐿 ≥ ℓ)                     (5) 

where 𝐿 follows equation (4). Because of using copula, we can also derive 𝑓𝐙 in terms 

of copula and marginal functions. This plays a significant role in verifying the results 

of our adapted scaling reverse stress testing approach which will be explained later in 

more detail in Section C. Before that, let us show how we adapted scaling method to 

estimate the most likely loss regions without knowing the actual closed-form of the risk 

factor distribution in Section B. 

Section B. Reverse stress testing on non-elliptical distribution (adapted 

scaling method) 

After having all the models readily set up in section A, we now proceed to perform 

a reverse stress test to find the most likely loss scenarios. In this section, we present 

how we adapt Glasserman et al. (2015)’s RST on our synthetic portfolios. 

In brief, first we estimated the conditional mean of the underlying market factors 

given large losses (𝔼[𝒛|𝐿 ≥ ℓ])  by a nonparametric Empirical Likelihood (EL) 

algorithm. Then, we fitted a multivariate student t distribution to estimate an index 

variable 𝜐 in order to apply scaling method to adjust the conditional mean to the most 

likely loss scenarios. Expecting this might established some biases in particular 

dependence structures, in the next chapter we will test for the performance of our RST 

method in each copula setting with the exact solutions acquired from Section C. Apart 

from the coverage results, we also study the characteristics of the resulting important 

regions for the estimated most likely loss scenarios, and the behavior of coverages (or 
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non-coverages). In the end of this study, we conclude whether our adapted RST method 

can be used on non-elliptical portfolios constructed through the three different copulas. 

In the case that having biases on a particular dependence characteristic, we discuss 

whether we could at least predict the direction of biases based on the assumption we 

have on the dependence structure.  

B.1 Empirical likelihood estimation of the conditional mean 

For our goal to find the solution to RST (𝒛∗(ℓ)), our first intermediate step is to 

focus on estimating  �̅�(ℓ)  (= 𝔼[𝒛|𝐿 ≥ ℓ]) , which is the conditional mean of the 

portfolio risk factors given portfolio having large losses.  

Before moving toward the estimation process, we mentioned that our objective of 

RST is not to identify only a single most likely scenario, but its whole important regions 

where the contours of the regions provide the sets of equally plausible scenarios. For 

that, in this section, we need to find not only the conditional mean, but also its whole 

confidence region to be used as the inputs for the next section.  

Owen (2001)’s Empirical likelihood (EL) is a nonparametric estimation procedure 

through which we get confidence regions for the conditional mean. Importantly, the EL 

estimator does not rely on any significant assumption about the conditional distribution 

of the market factors. The shape of the resulting confidence regions is able to capture 

skewness and other features presented in extreme outcomes.  

This method considers convex combinations of the observations as candidate 

estimates of the mean: 

𝑤1𝒛1 + 𝑤2𝒛2 + ⋯ + 𝑤𝑛𝒛𝑛, 

∑ 𝑤𝑖 = 1

𝑛

𝑖=1

, 𝑤𝑖 ≥ 0, 𝑖 = 1, … , 𝑛 .                                     (6) 

The profile empirical likelihood associated with a candidate value 𝐱 is 

ℛ(𝐱) = max {∏ 𝑛𝑤𝑖

𝑛

𝑖=1

: ∑ 𝑤𝑖𝒛𝑖 = 𝐱

𝑛

𝑖=1

, 
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∑ 𝑤𝑖 = 1 

𝑛

𝑖=1

, 𝑤𝑖 ≥ 0 𝑖 = 1, … , 𝑛}                                    (7) 

The product inside the braces is the likelihood ratio of the probability vector 

(𝑤1, 𝑤2, … , 𝑤𝑛) to the uniform distribution (1 𝑛⁄ , 1 𝑛⁄ , … , 1 𝑛⁄ ). ℛ(𝐱) is larger when 

𝐱 is a more uniform convex combination of the weights on the observations, and it is 

maximized at the sample mean of the observations. 

The maximization problem defining the profile empirical likelihood is easy to solve 

by first reformulating it as 

max
𝑤1,…,𝑤2

∑ log 𝑤1

𝑛

𝑖=1

    subject to    ∑ 𝑤𝑖 = 1 

𝑛

𝑖=1

, ∑ 𝑤𝑖𝒛𝑖 = 𝐱

𝑛

𝑖=1

               (8) 

Suppose that the observations are i.i.d. with mean 𝝁𝟎(= 𝔼[𝒁|𝐿 ≥ ℓ]), and suppose 

that the convex hull of the observations contains 𝝁𝟎 with probability approaching 1 as 

the number of observations increases. Then, Owen (2001)’s Theorem 3.2 states that 

−2 log ℛℓ(𝝁𝟎 ) has an asymptotic 𝜒𝑑
2 distribution for large 𝑛. This provides the basis 

for EL confidence regions. By fixing a confidence level 1 − 𝛼 and finding the quantile 

𝜒𝛼 for which ℙ(𝜒𝑑
2  ≥ 𝜒𝛼) = 𝛼; the corresponding 1 − 𝛼 confidence region for 𝝁𝟎 is 

the set 

𝒞1−𝛼,𝑛 = {∑ 𝑤𝑖𝒛𝑖

𝑛

𝑖=1

: ∏ 𝑛𝑤𝑖

𝑛

𝑖=1

≥ exp (−
𝜒𝛼

2
) ,  

∑ 𝑤𝑖 = 1 

𝑛

𝑖=1

, 𝑤𝑖 ≥ 0 𝑖 = 1, … , 𝑛}                                            (9) 

Because the algorithm is empirical based, it takes the inputs from the samples of 

factors and portfolio values. Therefore, we first have to sample the risk factors based 

on our risk factor model presented in Section A1. From these samples, we formed our 

portfolios based on equation (4) and calculated the realization of portfolio losses (𝐿) 

for every sample scenario. As a result, we had observations (𝒛𝑖, 𝐿𝑖), 𝑖 = 1, 2, … of 

scenarios 𝒛𝑖 and corresponding loss 𝐿𝑖. From these, we assigned our threshold for large 

loss, ℓ to be equal to the value of the 𝑝𝑡ℎ  percentile of portfolio values. Then, we 

discard all observations except those for which the loss is at least ℓ. Consequently, we 
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were left with 𝑛 large loss observations, (𝒛1, 𝐿1), (𝒛2, 𝐿2), … , (𝒛𝑛, 𝐿𝑛) where 𝐿𝑖 ≥ 𝑙 for 

𝑖 = 1,2, … , 𝑛. Now we see that by estimating the remaining scenarios, the original 

problem of estimating a conditional mean reduces to one of estimating an unconditional 

mean.  

After applying an empirical likelihood algorithm described in this section to the 

large loss scenarios, we can get the conditional expectation 𝔼(𝒛|𝐿 ≥ ℓ)  together with 

its confidence regions. As mentioned earlier, the resulting confidence regions from EL 

algorithm are favoring because they give the information about the uncertainty around 

the critical points, and are able to capture skewness and other notable shape 

characteristics in the extremes with minimal assumptions on the distribution of the 

underlying data. 

B.2 Adapting the scaling method on non-elliptical distribution 

Now we proceed to the procedure which converts the conditional mean �̅�(ℓ) to the 

most likely loss scenario 𝒛∗(ℓ). Glasserman et al. (2015) shows that there exists a 

positive scalar sequence 𝜅 such that 

𝒛∗(ℓ) = 𝜅ℓ�̅�(ℓ), and 𝜅ℓ → 𝜅 as ℓ → ∞   (10) 

where 𝜅 = (𝜐 − 1) 𝜐⁄  for an elliptical distribution family regularly varying with an 

index 𝜐 > 1. This 𝜐 represents the tail distribution decays at the power 𝑥−𝜐 , thus a 

smaller index ν thus indicates a heavier tail.  

As we mentioned earlier that in addition to scale a single scenario �̅�(ℓ), more 

importantly we want to scale whole confidence regions of �̅�(ℓ) to get confidence 

regions for 𝒛∗(ℓ). Such a procedure associates two limits. Firstly, equation (10) applies 

as  ℓ → ∞. Secondly, the chi-square limit that underpins the EL method holds as the 

number of observations grows (𝑛 → ∞) . Based on Owen’s (2001) Theorem 4.1, 

Glasserman et al. (2015) shows that, 

−2 log ℛℓ(�̅�(ℓ)) = −2 log ℛℓ (𝜅ℓ
−1𝐳∗(ℓ)) → 𝜒𝛼

2  (11) 

in distribution, and  𝜅ℓ𝒞1−𝛼,𝑛ℓ
  is an asymptotic 100(1 − 𝛼)% confidence region for 

the most likely loss scenario 𝐳∗(ℓ); i.e. 
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ℙ(𝐳∗(ℓ) ∈ 𝜅ℓ𝒞1−𝛼,𝑛ℓ
) → 1 − 𝛼    (12) 

𝑎𝑠 ℓ → ∞, 𝑤ℎ𝑒𝑟𝑒 𝜅ℓ → 𝜅, 𝑤𝑖𝑡ℎ 𝜅  as stated in equation (10). 

Estimating the scaling parameter for non-elliptical distribution 

The scaling parameter 𝜅 in equation (10) assumes portfolio joint distribution falls 

within a broad family of elliptically contoured distributions. However, to adapt this 

scaling method to non-elliptical portfolios, we employ a multivariate 𝑡𝑣 distribution to 

fit into our portfolio risk factor samples. Such procedure allows us to roughly acquire a 

tail heaviness parameter, 𝜐 which is the degree of freedom of multivariate 𝑡𝑣 to be used 

as the input for 𝜅 = (𝜐 − 1) 𝜐⁄ .  

The density of multivariate 𝑡𝑣 with parameters 𝜇, 𝚺, 𝜐 is given by 

𝑓(𝒛|𝜇, 𝚺, 𝜐) =

Γ (
1
2

(𝜐 + 𝑑))

Γ (
1
2 𝜐) (𝜋𝜈)𝑑 2⁄ |𝚺|1 2⁄

× (1 +
(𝐳 − 𝜇)Τ𝚺−1(𝐳 − 𝜇)

𝜐
)

−(𝜐+𝑑) 2⁄

 

for 𝒛 ∈ ℝ𝒅 

where mean and variance of the distribution are given by 

𝔼[𝒁] = 𝜇,      𝕍[𝒁] =
𝜐

𝜐 − 2
𝜮 

assuming 𝜐 > 2 . In order to estimate 𝜐 , we first estimate the sample mean and 

covariance and then maximize the likelihood over 𝜐. 

Before moving to the next section, let us point out that the purpose of this study is 

to explore whether Glasserman et al. (2015)’s RST approach could be adapted to use in 

general cases where the joint distribution of portfolio risk factors does not necessary be 

elliptically distributed. One of the major features of Glasserman et al. (2015)’s work is 

that it is very lightly parametric in a way that only a single parameter required is  𝜅, 

which is determined by the tail decay of the factors. In the sense that we want to 

preserve the feature without adding too much complexity, we first thus employing the 

above technique to roughly get the scaling parameter 𝜅. 

Incorporating a copula within this study, we presume that the technique above 

should reliably perform for the cases that portfolio risk factors are constructed through 

Elliptical copula family such as Gaussian copula and Student-t copula.  Therefore, we 
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instead picked three non-elliptical copulas: Frank, Clayton, and Gumbel from 

Archimedean family having different dependence structures to test the performance of 

our adapted scaling method.  We assume our scaling method may give some biases in 

particular dependence structures; however, we assume the direction of biases could at 

least be predictable based on the assumption we have on the dependence structure.  

Section C. Estimating the exact solution of reverse stress testing 

This section shows how we proceed to estimate the exact solution to the problem 

of reverse stress testing. From equation (2), we can write the joint cdf for our portfolio 

risk factors as  

𝐹𝒁(𝒛1, … , 𝒛𝑑) = 𝐶(𝒖1, … , 𝒖𝑑) = 𝐶 (𝐹𝒁1
(𝒛1), … , 𝐹𝒁𝑑

(𝒛𝑑)) 

where (𝒖1, … , 𝒖𝑑)~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 [0,1]𝑑 .  

From the relationship between pdf and cdf, we are able to derive the components of the 

join pdf as 

𝑓𝒁(𝒛1, … , 𝒛𝑑) = 𝐶 (𝐹𝒁1
(𝒛1), … , 𝐹𝒁𝑑

(𝒛𝑑)) ∙ 𝑓𝒁1
(𝒛1) ⋯ 𝑓𝒁𝑑

(𝒛𝑑). 

Hence, the generic problem of reverse stress testing in equation (8) turns into 

𝒛∗(ℓ) = (𝒛1
∗ , … , 𝒛𝑑

∗ ) = argmax
𝒛∈ℝ𝑑,𝐿(𝒛)≥ℓ

 {𝐶 (𝐹𝒁1
(𝒛1), … , 𝐹𝒁𝑑

(𝒛𝑑)) ∙ 𝑓𝒁1
(𝒛1) ⋯ 𝑓𝒁𝑑

(𝒛𝑑)}. 

From what given, we are able to search for the solutions to the reverse stress testing 

problem through appropriated optimization techniques. More details on the derivation 

steps and an example for a bivariate Clayton copula case are provided in Appendix A. 
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Section D. Performance evaluation 

Now that we have our adapted RST procedure from section B and the formula to 

estimate the exact solution to RST from section C, we can proceed to evaluate the 

performance of our adapted RST procedure through simulation.  

As our study focuses on evaluating the performance of our adapted RST method on 

non-elliptical dependence structures, we select copula types and copula parameters to 

be our main independence variables. Then, for each copula setting, the marginals are 

sampled through i.i.d. student t distributions with degree of freedom 𝜐 = 7. Results will 

be evaluated as per equal loss threshold ℓ at 0.1𝑡ℎ percentile of the sampled scenarios. 

From Section A, we selected three non-elliptical copula types from Archimedean 

family: 1. Frank copula, which is a symmetric copula; 2. Clayton copula, an asymmetric 

copula exhibiting greater dependence in the negative tail; and 3. Gumbel copula, an 

asymmetric copula exhibiting greater dependence in the positive tail. 

As the three copula yields the independent copula after taking the limit of the 

copula’s parameter to the boundary of the parameter space (𝜃 ≥ 0 for Frank copula and 

Clayton copula, and 𝜃 ≥ 1 for Gumbel copula), we set the initial value of copula’s 𝜃 

for each copula closing to its boundary as a starting point. From that, we expect to see 

the consequences from the characteristic of each copula type getting stronger with the 

increasing value of copula’s 𝜃.  

In section B, we mentioned that the scaling method gives asymptotic support for 

confidence regions as the sample size increase. However, in practice, extreme data in 

the real world are limitedly available by their nature. Therefore, for our evaluation here, 

we want to see the performance for both the cases having a small number of large-loss 

observations (𝑛 = 10), knowing that the actual coverage of the estimated confidence 

regions may differ from the nominal coverage; together with the cases having a larger 

number of large-loss observations (𝑛 = 50), where the resulting estimated coverages 

are expected to go closer to the nominal coverages; in the circumstances that our 

adapted RST approach performs well. 
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We conduct our study on bivariate risk factor portfolios (𝑑 = 2) together with 

three-dimensional risk factor portfolios (𝑑 = 3), expecting the estimated coverages for 

portfolios with higher dimension may reach the nominal coverages slower than those 

for portfolios with lower dimension, at the equal number of input large-loss observation 

𝑛. We carry out the important regions for the most likely loss scenario at 50% and 95% 

confidence for comprehensive assessment. In summary, our parameter settings for 

simulation are designed as shown in Table 3 below. 

Parameter Setting 

Copula 1. Frank copula: 𝜃 = 0.2, 1.5, 3.0 
2. Clayton copula: 𝜃 = 0.2, 1.5, 3.0 
3. Gumbel copula: 𝜃 = 1.2, 1.5, 3.0 

Dimension of portfolio risk factors 𝑑 = 2, 3 
Sample size of large-loss scenarios 𝑛 = 10, 50 

Confidence level at 50% and 95% confidence 

         Table  3. Parameter setting for simulation. 

To test performance our adapted RST method, we generate enough sample points 

of 𝒁 for having 𝑛 large-loss observations which the loss 𝐿 = 𝑐𝑇𝒁 are at least ℓ. We 

keep these 𝑛  large-loss observations, then construct the confidence regions for the 

conditional mean �̅�(ℓ)  (= 𝔼[𝒛|𝐿 ≥ ℓ])  via an EL algorithm. We convert the 

confidence regions to the important regions for the most likely loss scenario 𝒛∗(ℓ) 

following the instructions given in section B. Then, we can examine whether this most 

likely loss boundary contains the exact most likely loss point 𝐳∗(ℓ) that we acquired 

from section C.  

We repeat the above process by 500 times and record the percentage of how many 

times that 𝐳∗(ℓ) are within the coverage of our estimated most likely loss important 

regions. We also observe the converging behaviors, especially for the cases having high 

non-coverage percentage, to see whether there is any pattern of how the estimated 

boundaries shifted away from the exact 𝐳∗(ℓ) points in that particular dependence 

structures.  
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4. Results 

Our adapted RST method were tested on non-elliptically distributed portfolios 

constructed through on Frank copula, Clayton copula, and Gumbel copula with varying 

parameter following the instructions given in the previous section. Our main results are 

presented in Table 4. Also, we provided illustration examples for all bivariate case in 

Figure B1-1:4, Appendix B.  

4.1 Main results 

𝐅𝐫𝐚𝐧𝐤  𝜃 = 0.2    1.5    3    

95% confidence   𝑛 = 10 50   𝑛 = 10  50   𝑛 = 10  50  

𝑑 = 2  86.4 94.4  82.2 94.2  79.8 95.0  

3  73.4 92.6  64.2 86.8  63.4 85.8  

50% confidence           

𝑑 = 2  44.6 59.2  48.6 56.6  46.8 56.2  

3  40.0 47.2  32.2 42.4  29.8 33.4  

𝐂𝐥𝐚𝐲𝐭𝐨𝐧  𝜃 = 0.2    1.5    3   
 

95% confidence   𝑛 = 10 50   𝑛 = 10  50   𝑛 = 10  50  

𝑑 = 2  84.8 88.0  83.0 84.0  84.6 81.4  

3  72.8 93.4  75.8 87.0  77.0 26.0  

50% confidence           

𝑑 = 2  39.8 39.4  37.0 27.4  37.8 8.6  

3  34.4 43.2  33.6 4.4  16.2 2.8  

𝐆𝐮𝐦𝐛𝐞𝐥  𝜃 = 1.2    1.5    3   
 

95% confidence   𝑛 = 10 50   𝑛 = 10  50   𝑛 = 10  50  

𝑑 = 2  84.4 93.8  85.2 94.8  84.0 93.4  

3  67.8 90.4  74.0 92.0  75.4 94.2  

50% confidence           

𝑑 = 2  51.4 58.8  41.6 61.0  44.4 51.2  

3  36.2 51.4  35.4 51.4  32.4 52.2  

Table  4. Estimated coverage percentage of the most likely loss scenario for portfolio 

dimension 𝑑, sample size of large-loss 𝑛 on Frank, Clayton, and Gumbel copulas with 

student-t marginals having degrees of freedom 𝜈 = 7, at loss level ℓ = 0.1 percentile 

and at confidence levels of 95% and 50% respectively for 500 iterations. 
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Coverage 

On the bottom line, the coverage results indicated that our adapted RST method 

reliably performed on portfolios having the join dependence structures as governed by 

Frank copula and Gumbel Copula.  This is from the observation that the coverage 

percentages of our estimated important regions reach to the nominal coverages when 

the number of input large-loss observation (𝑛) increased, regardless of the fact that the 

sizes of the regions become much smaller (see Figure B1-1:4, Appendix B, for 

references) when 𝑛 = 10 increased from to 𝑛 = 50. However, for Clayton copula, we 

observed the performance slightly inferior to those of Frank copula and Gumbel Copula, 

particular when the values of 𝜃 increased. 

Estimated important regions for the most likely loss scenarios 

We mentioned that apart from the coverage results, we also monitored the coverage 

behaviors of our estimated important regions to see whether there is any pattern of how 

the regions shifted away from the exact solutions of 𝐳∗(ℓ)  for each dependence 

structures. Since the shapes of the important regions follow the empirical likelihood 

profiles of the extreme lower tails, we also observed different characteristics given by 

the three copulas. The results are as followings. 

▪ For portfolios with underlying Frank copula, the exact solutions 𝐳∗(ℓ) located at 

around the center of the estimated important regions. The shapes of the important 

regions exhibited greater variance in the direction parallel to the loss function 

contours, and lower variance in the perpendicular to the loss function contours. The 

shapes and sizes did not significantly vary with the values of 𝜃. However, at 𝜃 = 3, 

the locations of the important regions slightly shifted upright toward the origin, 

comparing to the locations of the exact solutions. 

▪ For portfolios with underlying Clayton copula, we observed three major differences 

from those of Frank copula and Gumbel Copula. First, most of the time, the exact 

solutions 𝐳∗(ℓ)  located at top right corner of the estimated important regions. 

Second, the shapes of the important regions significantly exhibited lower variance 

in direction parallel to the loss function contours, while exhibited higher variance 

in the direction perpendicular to the loss function contours. Third, the sizes of the 
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important regions were smaller comparing to those of Frank copula and Gumbel 

copula at the same confidence level and the same number of large-loss observations. 

Importantly, we observed all the three characteristics went stronger with the 

increasing value of 𝜃.  

▪ For portfolios with underlying Gumbel copula, similar to Frank copula, the exact 

solutions 𝐳∗(ℓ) located at around the center of the estimated important regions. The 

shapes of the important regions also exhibited greater variance in the direction 

parallel to the loss function contours, and lower variance in the perpendicular 

direction. However, at 𝜃 = 3, the locations of the important regions slightly moved 

to the bottom-left direction, comparing to the locations of the exact solutions. We 

observed that with the increasing value of 𝜃, the variance in the direction parallel 

to the loss function contours reduced, while the variance in the perpendicular 

direction rose, in a sense that the shapes of the important regions became rounder. 

In efforts to support our observation on the locations of the resulting important 

regions, we plotted the histograms of the estimated most likely loss solutions acquiring 

from our adapted RST method, separated by risk factor. After that, we ranked the exact 

solutions among the estimated results, and located them inside the histograms. The 

results for the three copula cases are in the same lines our observations above, as 

illustrated in Figure B2-1:3, Appendix B for bivariate risk factor portfolio examples.  

4.2 Additional results 

Form our main results, we got a rough picture on the effects of copula type and 

copula’s parameter 𝜃 on the performance of our adapted RST method. In this section, 

we continued further to explore what factors which can influence the performance of 

our adapted RST method on non-elliptical bivariate risk factor portfolios.  

Kendall’s tau rank correlation 

First, we selected Kendall’s tau, which is one of the best-known rank correlation 

measures and suitable for multivariate data with underlying copula. We described the 

meaning of Kendall’s tau and the relationship to our copula’s 𝜃 in Appendix C.1. Again, 

we employed simulation to test the performance of our adapted RST model on the 
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varying values of Kendall’s tau on Frank copula, Clayton copula, and Gumbel copula. 

The results are shown on Table 5 below. 

Kendall's tau     Frank  Clayton   Gumbel  

𝜏 = 0.001   96.2  94.8  96.2  

0.1  94.2  86.2  97.0  

0.2  95.8  77.4  96.4  

0.3  94.2  87.6  95.8  

0.4  93.2  83.8  97.6  

0.5  90.8  83.8  92.8  

0.6  88.2  81.2  94.4  

0.7  89.2  57.2  93.0  

0.8  88.4  13.4  91.2  

0.9  85.4  9.0  83.4  

Table  5. Estimated coverage percentage of the most likely loss scenario for portfolio 

dimension 𝑑 = 2, sample size of large-loss 𝑛 = 50 on Frank copula, Clayton copula, 

and Gumbel copula, with student-t marginals having degrees of freedom 𝜈 = 7, at loss 

level ℓ = 0.1 percentile, and at confidence levels of 95% for 500 iterations, varying on 

Kendall's tau rank coefficient 𝜏. 

Still, at first glance we observed the performance of our adapted RST method 

differed with different type of copulas. In the similar manner with the main results, our 

method can moderately perform on portfolios constructed through Frank copula and 

Gumbel copula. While in Clayton copula’s cases, the performance swiftly dropped with 

the increasing values of Kendall’s tau.  

Since we already detected the patterns of how the estimated important regions of 

the most likely loss scenarios shifted away from the exact solutions when the values of 

the copula’s 𝜃 increases for different types of copula, we can measure the Euclidean 

distances between the estimated RST solutions and the exact solutions. We found that 

by using the Kendall’s tau parameter instead of the copula’s 𝜃, we could much better 

explain the resulting Euclidean distances in a sense of a linear relationship between 

those two factors (see Figure B3, Appendix B, for reference).  
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Tail dependence coefficient 

Apart from Kendall’s tau rank correlation which can give the information on the 

degree of concordance for the entire distribution, we also want to see whether if our 

performance varies over the tail-specific dependence measure. For multivariate data 

with underlying copula, tail dependence coefficient provides a handy measure to assess 

the degree of dependency separately for the lower tail and the upper tail (see definition 

and the relationship with and copula’s 𝜃 in Appendix C.2).  

Because Frank copula always gives 0 tail dependence coefficient for both tails (both 

upper-tail independent and lower-tail independent), we conducted our study on Clayton 

copula which provides solely the lower tail dependence, and Gumbel copula which 

provides solely the upper tail dependence on varying degrees of tail dependence 

coefficient. The results are shown on Table 6. 

  Clayton   Gumbel 

 𝝀𝐿 = 0.001  𝝀𝑈 = 0 95.8  𝝀𝐿 = 0  𝝀𝑈 = 0.001 96.2 

 0.1  0 80.4  0  0.1 95.6 

 0.2  0 79.6  0  0.2 95.8 

 0.3  0 80.2  0  0.3 95.6 

0.4  0 77.0  0 0.4 96.6 

0.5  0 81.2  0 0.5 95.6 

0.6  0 81.2  0 0.6 95.4 

0.7  0 83.2  0 0.7 95.0 

0.8  0 79.4  0 0.8 90.2 

0.9  0 18.2  0 0.9 89.0 

Table  6. Estimated coverage percentage of the most likely loss scenario for portfolio 

dimension 𝑑 = 2, sample size of large-loss 𝑛 = 50 on Clayton copula and Gumbel 

copula, with student-t marginals having degrees of freedom 𝜈 = 7, at loss level ℓ = 0.1 

percentile, and at confidence levels of 95%  for 500 iterations, varying on tail 

dependence coefficients 𝝀𝐿and 𝝀𝑈 

Now we observed that for our non-elliptically distributed portfolios, our adapted 

RST method gave stronger biases at the higher degree of lower tail dependence 

coefficients. On the other hand, while the lower tails remain independent, the varying 

degrees of the upper tail dependence coefficient did not significantly affect the 

performance of our adapted RST method. 
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5. Conclusion 

Aggregating what we have learned from our results, as for the coverage 

performance of how our estimating important regions from our adapted RST method 

can capture the exact RST solutions, we observed the followings. 

▪ Our adapted RST method can perform well on non-elliptical portfolios having the 

dependence structures constructed through Frank copula, a symmetric and tail 

independent copula, and portfolios with underlying Gumbel copula, a non-

symmetric copula carrying dependent upper tail and independent lower tail. 

▪ The performance of our adapted RST method slightly dropped when performing on 

portfolios having the joint dependence governed by Clayton copula, a non-

symmetric copula carrying dependent lower tail and independent upper tail. 

However, we observed the performance significantly dropped at very high degree 

of lower tail dependence (𝝀𝐿 = 0.9) . 

Apart from the coverage performance, we also observed the characteristics of the 

resulting important regions which follow empirical profiles of extreme dependence 

structures. Importantly, we found that the shapes of the regions were the key factors 

affected the performance of our adapted RST model.  For the three non-elliptical 

copulas applied in our work, we concluded the followings.   

▪ For Gumbel copula, the shape of the important regions displayed higher variance in 

the direction parallel to the loss function contour and lower variance in the direction 

perpendicular to the loss function contour. The regions captured the most likely loss 

scenarios at around their centers. With increasing values of 𝜃 , locations of the 

regions slightly shifted to the bottom-left direction, at the same time that the shapes 

became rounder (as the variances in the parallel direction diminished, and the 

variances in the perpendicular direction rose). As a result, the regions persistently 

captured the exact RST solutions, making our adapted RST method generally 

performed well in portfolios with underlying Gumbel copula. 

▪ For Frank copula, the shape of the important regions also exhibited greater variance 

in the direction parallel to the loss function contour, and lower variance in the 

perpendicular direction to the loss function contour. However, this characteristic 
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was consistent over the varying 𝜃. While 𝜃 increases, the location of the regions 

slightly shifted upright toward the origin comparing to the location of the exact RST 

solutions.  

▪ For Clayton copula, there are three main differences from those of Frank copula 

and Gumbel Copula. First, the shape of the important regions significantly exhibited 

lower variance in direction parallel to the loss function contour, while exhibited 

higher variance in the direction perpendicular to the loss function contour. Second, 

the regions captured the exact RST solutions at around their top right corner of the 

estimated important regions. Third, the size of the important regions was smaller 

comparing to those of Frank copula and Gumbel copula at the same confidence 

level and the same number of large-loss observations. As a result, the performance 

of our RST method on Clayton copula was inferior to those of Frank copula and 

Gumbel copula, especially when the degree of lower tail dependency increases. 

Apart from the effects of copula as listed above, the sizes of the important regions 

also varied with the number of large-loss observations (𝑛) and the confidence levels 

we applied during the estimation of the conditional mean via an EL algorithm. With the 

larger number of 𝑛 being the input, the size of the important regions for the most likely 

loss solution becomes smaller in the sense that the model becomes more confident. The 

confidence level, on the other hand, provides the approaching boundary for the 

estimating coverage to reach the nominal coverage at big 𝑛 , assuming the model 

performs well on that data structure. Rationally, the sizes of the important regions are 

bigger at the higher confidence levels.  

In summary, our work illustrated the potential to adapt Glasserman et al. (2015)’s 

RST framework on non-elliptical portfolios by fitting an elliptical distribution 

(multivariate t) on portfolio risk factors. The performance testing on three non-elliptical 

copulas from Archimedean family (Frank, Clayton, and Gumbel) showed that the 

estimated most likely loss regions from our adapted RST method can robustly capture 

the exact solutions to RST in most of the cases.  

We note that the performance of our adapted RST approach depends on (1) the 

dependence structure of extreme lower tail and (2) the quality of fitting elliptical 
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distribution into non-elliptical distribution. For example, the method can perform well 

with data underlying Frank (symmetric) copula and Gumbel (non-symmetric, lower tail 

independent) copula, while being slightly inferior with data underlying Clayton (non-

symmetric, lower tail dependent) copula. We also note that our adapted RST method 

can give a drawback when performing on non-symmetric data having particularly 

strong dependence in the left tail comparing to the right tail dependence (for example, 

Clayton copula with lower tail dependent coefficient above 0.8). 

On the bottom line, our RST method can still give a reliable guideline when 

estimating the most likely scenarios leading to losses exceeding a given threshold 

(solutions to RST) for portfolios with underlying non-elliptically distributed risk factor, 

which is useful for financial risk assessment considering there is not yet any proper 

RST framework has been developed on non-elliptical distribution framework. Also, as 

we summarized what we observed on the different characteristics of the resulting 

estimated most likely loss regions arriving from the three underlying copulas, 

practitioners who want to follow our practice can interpret and adjust the results, 

accordingly, based on the assumption on the joint dependence structure. 
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