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ABSTRACT ( THA I) 
 ณฐัวุฒิ ลาดี : การก าหนดค่าตามรอยคลาดเคล่ือนและมูลค่าความเส่ียงของพอร์ตการ

ลงทุนเชิงรุก เม่ือรวมกบัพอร์ตการลงทุนเชิงรับ ภายใตข้อ้จ ากดัมูลค่าความเส่ียงของ
พอร์ตการลงทุนรวม. ( DETERMINING THE TRACKING 

ERROR AND VALUE-AT-RISK OF AN ACTIVE 

PORTFOLIO WHEN COMBINED WITH A 

PASSIVE PORTFOLIO WITH VALUE-AT-RISK 

CONSTRAINT) อ.ท่ีปรึกษาหลกั : รศ. ดร.สิระ สุจินตะบณัฑิต 
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เสนอไปใชจ้ริง จึงตอ้งค านึงถึงขอ้จ ากดัดงักล่าวดว้ย 

 

สาขาวิชา วิศวกรรมการเงิน ลายมือช่ือนิสิต 
................................................ 

ปีการศึกษา 2563 ลายมือช่ือ อ.ท่ีปรึกษาหลกั 
.............................. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 iv 

 

ABSTRACT ( ENGLISH) 
# # 6182916126 : MAJOR FINANCIAL ENGINEERING 

KEYW

ORD: 

TE, VaR, active portfolio, entire portfolio, limit 

 Nuttawoot Ladee : DETERMINING THE 

TRACKING ERROR AND VALUE-AT-RISK OF 

AN ACTIVE PORTFOLIO WHEN COMBINED 

WITH A PASSIVE PORTFOLIO WITH VALUE-

AT-RISK CONSTRAINT. Advisor: Assoc. Prof. 

SIRA SUCHINTABANDID, Ph.D. 

  

When an asset manager manages a portfolio, he usually 

imposes a TE or a VaR limit on his portfolio to control portfolio 

risks. However, a portfolio may be divided into different 

portions. In our research, we consider a portfolio that consists 

of an active portion and a passive portion. Having a VaR budget 

of an entire portfolio, we propose methods to determine TE and 

VaR limit on the active portfolio and illustrate them by using 

real data. In the empirical part, some problems can occur when 

we relax certain theoretical assumptions such as (1) stocks in an 

investment universe can be different from stocks in a 

benchmark (2) there is a restriction on short-selling. Moreover, 

risk measures derived from the analysis part are "ex-ante," but 

calculation methods for monitoring are "ex-post." Therefore, 

we need to consider these limitations when using the proposed 

limit on TE and VaR of an active portfolio in real life. 
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Section 1: Introduction 

When investors assign an asset manager to manage a portfolio for them, they 

usually set Value-at-Risk (VaR) to control the portfolio risk since it is easy to 

understand. However, investors also want to motivate asset managers to make more 

profit by giving some incentive for asset managers who make more profit than the 

benchmark. Nevertheless, this may make asset managers too aggressive so that they 

choose to invest in the portfolio that is too different from the benchmark; consequently, 

the portfolio return also has a big difference. So, investors need to impose a constraint 

on the Tracking Error (TE) as well. 

From the research paper conducted by (Riccetti, 2016), he considers a 

manager who manages an active portfolio. His research question is, “How should a risk 

manager set TE and VaR constraints in asset management?”. To answer this question, 

he suggests that the risk manager chooses TE limit (𝑇𝐸 ) from a range [𝑇𝐸𝑚𝑖𝑛, 𝑇𝐸𝑚𝑎𝑥] 

and chooses a VaR limit (�̂�) from a range (−∞,𝑉𝑚𝑎𝑥]. His objective is to find a good 

set of constraints that can help asset managers achieve good performance. His definition 

for a good set of constraints is to make a feasible region contain as many efficient 

portfolios (in the mean-variance sense) and, at the same time, as few inefficient 

portfolios as possible. In his method (as Figure1), from the data that was given such as 

stock universe, benchmark, confidence level (𝜃), and commission fee (𝑐𝑜𝑚), he uses 

them to derive the suggested 𝑇𝐸𝑚𝑖𝑛 and 𝑇𝐸𝑚𝑎𝑥 first. After choosing TE limit (𝑇𝐸 ) 

from a range [𝑇𝐸𝑚𝑖𝑛, 𝑇𝐸𝑚𝑎𝑥], he uses this number to determine �̂�𝑚𝑎𝑥. Then, a risk 

manager can choose to set a VaR limit (�̂�). Now, an asset manager can choose to invest 

in a portfolio from a feasible region which has tracking error of a portfolio (𝑇𝐸𝑝) less 

than TE limit (𝑇𝐸 ) and Value-at-risk of a portfolio (𝑉𝑝) less than VaR limit (�̂�). 

Figure 1: Riccetti research methodology 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

In contrast to Riccetti’s work, this paper considers a different situation: while 

Riccetti’s objective is to find an appropriate range of TE and VaR for a single portfolio, 

we, on the other hand, consider a portfolio that consists of an active portion and a 

passive portion. The risk budget of the entire portfolio is usually given in terms of the 

overall Value-at-Risk budget, while the active portion is typically managed under a TE 

budget (and also possible for a VaR budget). In this paper, we assume that we have a 

given constraint on the Value-at-Risk of the entire portfolio (𝑉𝐺) and the proportion 𝑊𝐴 

allocated to the active part of the portfolio. And we are interested in determining the 

TE limit of the active portion of the portfolio. Therefore, our research question is, 

“What is the appropriate way to set TE limit of the active portfolio that is also consistent 

with the VaR constraint on the entire portfolio?”. In our opinion, the appropriate TE 

constraint should make the feasible region contain as many efficient portfolios as 

possible while ruling out the portfolios that are inefficient or violate the overall VaR 

limit. In so doing, we will derive the upper limit on VaR of an active portfolio (𝑉𝐴
𝑚𝑎𝑥), 

which is limited by the given Value-at-Risk of the entire portfolio (𝑉𝐺). The proposed 

𝑉𝐴
𝑚𝑎𝑥 will provide us the largest feasible region of active portfolios that do not make 

the entire portfolio VaR exceed the given limit. For the lower limit on VaR of an active 

portfolio (𝑉𝐴
𝑚𝑖𝑛), we will find the least VaR limit that can be set from an unconstrained 

portfolio region. There will be no feasible region when setting a VaR limit less than 

this proposed 𝑉𝐴
𝑚𝑖𝑛. Therefore, we get a range [𝑉𝐴

𝑚𝑖𝑛, 𝑉𝐴
𝑚𝑎𝑥] and then we derive a range 

[𝑇𝐸𝐴
𝑚𝑖𝑛, 𝑇𝐸𝐴

𝑚𝑎𝑥] in which the TE limit of an active portfolio (𝑇𝐸𝐴 ) should be set. The 

proposed 𝑇𝐸𝐴
𝑚𝑎𝑥 will provide us the largest feasible region that does not violate the 

overall VaR in case the given overall VaR (𝑉𝐺) more than the VaR at benchmark 

portfolio (𝑉𝐵). And the proposed 𝑇𝐸𝐴
𝑚𝑖𝑛 will provide us at least a portfolio’s expected 

return that can compensate for the commission fees. The outline of our method is shown 

in Figure 2 below. After a risk manager chooses TE limit of an active portfolio (𝑇𝐸 𝐴) 

and VaR limit of an active portfolio (𝑉𝐴 ) from the suggested range, the active manager 

can follow these TE and VaR mandates while the combined portfolio is guaranteed to 

satisfy the overall VaR limit (𝑉𝐺). 
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Figure 2: Our research methodology 

 

In sum, we extend Riccetti’s framework, which identifies risk limits of a 

stand-alone portfolio. Our framework covers the situation in which risk limits are 

identified for a portion of a part-passive-part-active portfolio whose overall risk is itself 

controlled by the introduction of an overarching VaR constraint. In our method, we first 

use the overall VaR constraint to imply the VaR range and the feasible region of the 

active portion of the portfolio. Once the region of active portfolios is determined, we 

then identify the range of active portfolio’s TE. 

Beside from our main contribution, we extend some parts of Riccetti’s work 

that he did not cover. In so doing, we propose new methods to determine a TE limit and 

a VaR limit of a single portfolio in various cases: 

- We propose the method to determine a lower limit on TE (𝑇𝐸𝑚𝑖𝑛) when 

VaR is given (𝑉𝐺). The 𝑇𝐸𝑚𝑖𝑛 proposed by Riccetti can be contradicted 

with the given VaR which causes empty feasible region. 

- We propose the method to determine the lower limit on VaR (𝑉𝑚𝑖𝑛) which 

Riccetti’s work did not mention. It is the minimum value that can be 

achieved from an unconstrained portfolio region.  

- We propose the method to determine the upper limit on TE (𝑇𝐸𝑚𝑎𝑥) in 

the case of the expected return of the benchmark is less than an expected 

return of the minimum variance portfolio (called inefficient benchmark). 

We will provide clearer instructions on how to calculate 𝑇𝐸𝑚𝑎𝑥 base on 

Riccetti’s work. 

Based on these modifications of Riccetti’s work, we will extend the analysis 

further to determine a TE limit and a VaR limit of the active portion of a part-passive-

part-active portfolio (main objective of this paper) 
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To implement the suggested risk limits in practice, we need to estimate the 

risk-return characteristics of the portfolio constituents in order to compute the TE limit. 

However, while in-sample data is used for estimation, the measurement of realized TEs 

and VaRs is done “out-of-sample.” More specifically, our limits are computed based on 

“ex-ante” measures (ex-ante VaRs, ex-ante TEs, etc.), but the measurement in practice 

is usually performed in ex-post (ex-post VaRs, ex-post TEs, etc.) Furthermore, stocks 

in an investment universe is the same as stocks in a benchmark in theory, while it can 

be different in real life. Moreover, short-selling is hard to implement in practice. 

Therefore, it is interesting to test whether the realized risk measures truly stay within 

the given constraints, provided that re-estimation and re-balancing are carried out at 

reasonable frequency. This experiment is the objective of our second part, which 

implements the suggested risk limits using real market data and investigates the ex-post 

risk measures in the following issues: 

- an effect on having stocks in an investment universe different from stocks 

in a benchmark, 

- an effect on short-selling restriction, and 

- an effect on yearly re-estimate parameters and re-balance portfolio. 

This paper will proceed as follows. Section 2 reviews portfolio frontier and 

reviews how Riccetti (2016) determined a TE limit (𝑇𝐸 ) and a VaR limit (�̂�). If we 

consider only one active portfolio, section 3 will explain how to determine the TE limit 

when the VaR is given. This section also describes how can we determine the lower 

limit on TE (𝑇𝐸𝑚𝑖𝑛), the lower limit on VaR(𝑉𝑚𝑖𝑛), and the upper limit on TE (𝑇𝐸𝑚𝑎𝑥) 

in the case of inefficient benchmark specifically value of 𝛼 which Riccetti (2016) did 

not cover. We will develop the methods of determining TE limit and a VaR limit of a 

single portfolio from section 3 into combined portfolio in section 4. We will determine 

TE of an active portfolio (𝑇𝐸 𝐴) in Section 4 in the case that we are given with two 

portfolios, which the one is a passive portfolio, and the other is an active portfolio. 

Section 5 is an empirical experiment to observe the practical issues in implementing the 

proposed limits. Finally, the conclusion is in section 6.  
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Section 2: Literature review 
 

2.1 Review portfolio frontier 

This section reviews some portfolio frontiers and constraints that have been 

proposed in the literature, which will be useful in this paper. Mean-variance frontier 
(MVF), Constrained-TE frontier (CTF) and Value-at-Risk (VaR) are shown in Figure3. 

The analysis is conducted in a variance-expected return space (σ2, μ), but some figures 

are presented in the usual standard deviation-expected return space (σ, μ). 

Figure 3: Mean-variance frontier (MVF), Constrained-TE frontier (CTF), Value-at-

Risk (VaR) and Benchmark (B) in (σ, μ) space 

 

2.1.1 Mean-variance frontier (MVF) 

 From the given stock universe, we can have an infinite number of portfolios 

on the right side of the Mean-variance frontier (MVF) (Markowitz, 1952) as show in 

Figure3. As the derivation by (Merton, 1972), MVF can be constructed from the 

portfolios which has minimum variance with the given expected return. When there is 

no risk-free asset, the optimization can be set as: 

Min   𝜎𝑝
2  =  

1

2
𝑤′Ω𝑤   

s.t. 𝜇𝑝  =   𝑤′𝐸  (1) 
 

𝑖′𝑤  =   1,  

where each notation is defined as: 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 6 

 

𝜎𝑝
2  =   variance of a portfolio return, 

𝜇𝑝  =   expected return of a portfolio, 

Ω  =   variance-covariance matrix of asset returns,  

𝑤  =   vector of portfolio weights, 

𝐸  =   vector of expected returns, 

𝑖  =   vector of ones. 

 The Mean-variance frontier is given by: 

𝜎𝑝
2 =

1

𝑑
(𝜇𝑝 −

𝑏

𝑎
)
2

+
1

𝑎
 ,  (2) 

with 𝑎 = 𝑖′Ω−1𝑖, 𝑏 = 𝑖′Ω−1𝐸, 𝑐 = 𝐸′Ω−1𝐸′ and 𝑑 = 𝑐 −
𝑏2

𝑎
. In the (σ2, μ) space, 

equation (2) represents a parabola which minimum variance portfolio (C) mean and 

variance are 𝜇𝐶 =
𝑏

𝑎
 and 𝜎𝑐

2 =
1

𝑎
 respectively. Therefore, it is a hyperbola in the (σ, μ) 

space. 

 

2.1.2 Constrained TE frontier (CTF) 

 When we impose a limit on tracking error (TE), the feasible portfolios for the 

asset manager are inside an elliptical area (for relatively low TE values) that contains 

the benchmark (𝐵). (Palomba & Riccetti, 2012) called this ellipse the constrained TE 

frontier (CTF). The shape of constant TE frontier (CTF) in the original mean-variance 

space is explained by (Jorion, 2003) which was derived from a maximization (or 

equivalently a minimization) over 𝑥: 

Max   𝑥′𝐸    
s.t. 𝑥′𝑖  =   0  (3) 

 

𝑥′Ω𝑥  =   𝑇2   

 (𝑞 + 𝑥)′Ω(𝑞 + 𝑥)  =   𝜎𝑝
2,  

where  

𝑞  =   vector of benchmark weights, 

𝑥  =   vector of weights that deviate from the benchmark, 

𝑞 + 𝑥  =   vector of portfolio weights, 

𝑇2  =   variance of excess returns. 
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By setting up the Lagrangian and solving the equation, we get the 

relationship between 𝑦 and 𝑧 as: 

𝑑𝑦2 + 4∆2𝑧
2 − 4∆1𝑦𝑧 − 4𝑇

2(𝑑∆2 − ∆1
2) = 0,  (4) 

where  

𝑦  =   𝜎𝑝
2 − 𝜎𝐵

2 − 𝑇2, 

𝑧  =   𝜇𝑝 − 𝜇𝐵, 

𝜎𝐵
2  =   variance of the benchmark return, 

𝜇𝐵  =   expected return on the benchmark, 

∆1  =   𝜇𝐵 − 𝜇𝐶, 

∆2  =   𝜎𝐵
2 − 𝜎𝐶

2. 

This equation is a quadratic equation of the type 𝐴𝑦2 + 𝐵𝑧2 + 𝑐𝑦𝑧 + 𝐹 = 0 

which represents an ellipse when the term: 

𝐴𝐵 − (
1

4
)𝐶2  =   𝑑(4∆2) − (

1

4
) (−4∆1)

2   

 =   4(𝑑∆2 − ∆1
2)  (5) 

is strictly positive. Therefore, the center of the ellipse is at (𝜎𝐵
2 + 𝑇2, 𝜇𝐵) in the (σ2, μ) 

space and the shape of ellipse will somewhat distort in (σ, μ) space. 

From the ellipse equation (equation (4)), we provide derivation more in detail 

in the Appendix. We can find the weight of a portfolio on the CTF (i.e., “an optimal 

weight”) from: 

where each notation is defined as: 

𝜆1  =   −
𝑏+𝜆3

𝑎
,  

𝜆3  =   −
∆1

∆2
±√

∆1
2

∆2
2 −

𝑑𝑦2−4𝑇2∆1
2

∆2𝑦2−4𝑇2∆2
2, 

𝜆2 + 𝜆3  =   ±(−2)√
∆1
2−𝑑∆2

𝑦2−4𝑇2∆2
. 

 The portfolio constructed from an optimal weight will be considered as “an 

optimal portfolio.”  

 

𝑥  =  −
1

𝜆2+𝜆3
Ω−1(𝐸 + 𝜆1𝑖 + 𝜆3Ω𝑞),  (6) 
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2.1.3 Value-at-Risk (VaR) 

A portfolio’s VaR (𝑉𝑝) is the maximum potential loss over a time period at a 

given confidence level. In (𝜎, 𝜇) space, the VaR constraint is represent by a line with 

intercept −𝑉𝑝. Assuming that security returns have a multivariate normal distribution, 

the portfolio’s VaR at the 100𝜃% confidence level is: 

𝑉𝑝 = 𝑧𝜃𝜎𝑝 − 𝜇𝑝, (7) 

where 𝑧𝜃 is the critical value obtained from the inverse cumulative distribution of a 

standardized normal with the confidence level 0.5 < 𝜃 < 1. In (𝜎, 𝜇) space, when we 

imposed the limit on Value-at-Risk (VaR), the feasible portfolios will be on the left side 

of a straight line which is the VaR limit and has a slope 𝑧𝜃  (see, e.g., (Alexander & 

Baptista, 2008)).  

 

2.2 Review the limit on TE and VaR proposed by Riccetti 

(2016) 

Considering the MVF and CTF, Riccetti (2016) defined portfolios which have 

specific characteristic (in Figure 4) as follows: (1) 𝐵: benchmark (2) 𝐽2: ellipse portfolio 

with minimum variance (3) 𝐽1: ellipse portfolio with maximum expected return and (4) 

𝐶: minimum variance portfolio. Noted that Riccetti (2016) only considers “optimal 

portfolios” on the CTF. 

Figure 4: Portfolios defined by Riccetti(2016) 
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The closed-form solutions of mean and variance in each portfolio are 

explained in Jorion (2003). The mean, variance, and VaR of each portfolio are 

described in Table 1. 

Table 1: Calculation of relevant portfolio. 

Portfolio Mean Variance VaR 

𝐵 𝜇𝐵 𝜎𝐵
2 𝑉𝐵 = 𝑍𝜃𝜎𝐵 − 𝜇𝐵 

𝐽2* 

𝜇𝐵 −
∆1√𝑇

√∆2
  

𝜎𝐽2 = 𝜎𝐵
2 + 𝑇 −

2√𝑇∆2  

𝑉𝐽2 = 𝑧𝜃(𝜎𝐵
2 + 𝑇 − 2√𝑇∆2)

1

2 −

𝜇𝐵 +
∆1√𝑇

√∆2
  

𝐽1 
𝜇𝐵 +

√𝑑𝑇  

𝜎𝐽1 = 𝜎𝐵
2 + 𝑇 +

2∆1√
𝑇

𝑑
  

𝑉𝐽1 = 𝑧𝜃 (𝜎𝐵
2 + 𝑇 + 2∆1√

𝑇

𝑑
)

1

2

−

𝜇𝐵 − √𝑑𝑇  

𝐶 𝜇𝐶 =
𝑏

𝑎
  𝜎𝐶

2 =
1

𝑎
  - 

*Note that: starting from a small number of TE, portfolio 𝐽2 will be move to the left side as 

CTF expanding when TE increases. It will coincide with portfolio 𝐶 when TE reaches to ∆2 (it 

will be derived in section 3.3). However, when TE increases more than ∆2, portfolio 𝐽2 will be 

move to the right side of portfolio 𝐶. It does not make sense when portfolio 𝐽2 which is the 

minimum variance portfolio given TE still have variance more than portfolio 𝐶 in this case. 

Therefore, we conclude that if 𝑇 ≥ ∆2, portfolio 𝐽2 will be the same as portfolio 𝐶. 

 

2.2.1 Lower limit on TE ( )  

As explained in Riccetti (2016), his objective is to determine the limit on TE 

(𝑇𝐸 ) for an amount large enough to give asset managers a non-empty and not too 

narrow set of feasible portfolios. For the lower limit on TE (𝑇𝐸𝑚𝑖𝑛), it should be 

increasing function of the commission fee so at least investors can get the return after 

fees equal to investing in benchmark from a portfolio (as Figure 5).  The lower limit on 

TE should be 𝑇𝐸𝑚𝑖𝑛 =
𝑐𝑜𝑚2

𝑑
 which was analytically explained in (Luca, 2012), where 

𝑐𝑜𝑚 is commission fee that includes all management fees. If the limit on TE (𝑇𝐸 ) is set 

at 
𝑐𝑜𝑚2

𝑑
, portfolio 𝐽1 which is the maximum expected return portfolio on ellipse will 

have expected return equal to 𝜇𝐵 + 𝑐𝑜𝑚. If the limit on TE (𝑇𝐸 ) is less than 𝑇𝐸𝑚𝑖𝑛, an 

asset manager cannot invest in a portfolio that have an expected return after fee more 

𝑻𝑬𝒎𝒊𝒏 
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than investing on a benchmark. Therefore, the limit on TE (𝑇𝐸 ) should be set more than 

or equal to 
𝑐𝑜𝑚2

𝑑
. 

Figure 5: A feasible portfolio region when   

 

 

2.2.2 Upper limit on TE ( )  

2.2.2.1 Upper limit on TE ( ) in case  

Riccetti (2016) considers a general case where the expected return of a 

benchmark is greater than of a minimum variance portfolio (∆1> 0). For the upper limit 

on TE (𝑇𝐸𝑚𝑎𝑥), it should provide a feasible region that contains as many efficient 

portfolios and, at the same time, as few inefficient portfolios as possible. The ellipse 

area of constrained TE Frontier is expanded from point B (where is a benchmark 

portfolio) as TE increases. Suppose we set the limit on TE (𝑇𝐸 ) for a small number 

(e.g. 𝑇𝐸  which is less than ∆2= 𝜎𝐵
2 − 𝜎𝐶

2), a feasible portfolio region will be on the gray 

area, which its shape is an ellipse (as Figure 6).   

 

 

 

 

𝑻𝑬 =
𝒄𝒐𝒎𝟐

𝒅
 

𝑻𝑬𝒎𝒂𝒙 

𝑻𝑬𝒎𝒂𝒙 ∆𝟏> 𝟎 
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Figure 6: A feasible portfolio region when in case  

 

If TE increases to ∆2, the ellipse area will be expanded so that the minimum 

variance portfolio on ellipse (𝐽2) coincides with the minimum variance portfolio (𝐶). 

This value is derived by Jorion (2003). Since some parts of an ellipse are not investable, 

the feasible portfolio region will be on the gray area in Figure 7.  

Figure 7: A feasible portfolio region when   in case  

 

If TE increases more than ∆2, the ellipse area will be expanded from the 

benchmark. As Figure 8, even though the ellipse area is expanded to cover some part 

of efficient portfolios on the MVF, it also covers portfolios with high absolute risk (𝜎) 

and cover more portfolio that cannot be invests. As a result, the feasible portfolio region 

will look like the gray area in Figure 8. Therefore, Riccetti (2016) proposes that TE 

should not more than ∆2 in the case ∆1> 0. 

𝑻𝑬 < ∆𝟐 ∆𝟏> 𝟎 

𝑻𝑬 = ∆𝟐 ∆𝟏> 𝟎 
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Figure 8: A feasible portfolio region when  in case  

 

2.2.2.2 Upper limit on TE ( ) in case   

In the case where expected return of a benchmark is less than or equal to a 

minimum variance portfolio (∆1≤ 0). When TE increases to ∆2, the ellipse area is 

expanded so that the minimum variance portfolio on ellipse (𝐽2) coincides with 

minimum variance portfolio (𝐶). However, most parts of the ellipse area are on the 

lower side of MVF which contains a lot of inefficient portfolios (as Figure 9). So, 

Riccetti (2016) proposed to increase TE limit (𝑇𝐸 ) more than ∆2 to expand the ellipse 

covering more part on the upper side on MVF (as Figure 10). 

 

Figure 9: A feasible portfolio region when  in case  

 

 

𝑻𝑬 > ∆𝟐 ∆𝟏> 𝟎 

𝑻𝑬𝒎𝒂𝒙 ∆𝟏≤ 𝟎 

𝑻𝑬 = ∆𝟐 ∆𝟏< 𝟎 
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Figure 10: A feasible portfolio region when  in case  

 

The situation when ∆1< 0 means expected return of the benchmark is less 

than expected return of the minimum variance portfolio (Riccetti (2016) called it as an 

inefficient benchmark). This benchmark is far from the efficient part of the Markowitz 

frontier. So, asset managers can improve the portfolio performance with a very active 

strategy to move portfolio allocation away from the benchmark, which requires a high 

TE. So, in this case, the TE limit (𝑇𝐸 ) should be more than ∆2. Therefore, Riccetti 

concluded that the upper limit on TE (𝑇𝐸 𝑚𝑎𝑥) should be 𝛼∆2 where 𝛼 = 1 when ∆1>

0 and 𝛼 > 1 when  ∆1≤ 0. Since he did not derive the calculation in this value and 

suggested investors change the benchmark to a new one that has a higher expected 

return than the minimum variance portfolio (𝐶), we will propose the calculation of 𝛼 in 

section 3.3. 

 

2.2.3 Upper limit on VaR ( ) 

For the upper limit on VaR (𝑉𝑚𝑎𝑥), as same as the objective of finding the TE 

limit, Riccetti suggests that it should provide a feasible region that contains as many 

efficient portfolios and, at the same time, as few inefficient portfolios as possible. As 

shown in Figure 11, 𝐽2 represents the portfolio with minimum variance, while 𝐾 

represents the portfolio with the minimum VaR. There will be a trade-off between VaR 

and variance reduction. If VaR is set at 𝑉𝐾, we can only invest at point 𝐾. However, if 

we set VaR at �̂�𝐽2, we will have many choices to invest. Therefore, Palomba and Riccetti 

(2012) proposed that the minimum range of upper limit on VaR should be at 𝑉𝐽2. 

𝑻𝑬 > ∆𝟐 ∆𝟏< 𝟎 

𝑽𝒎𝒂𝒙 
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Figure 11: Minimum VaR portfolio (𝑲) and minimum variance portfolio (𝑱𝟐) 

 

Figure 12: VaR constraints at portfolio level  and  in case  

 

Considering the maximum range of the upper limit on VaR (𝑉𝑚𝑎𝑥) in Figure 

12, we compare a VaR of the maximum expected return portfolio on the CTF (𝑉𝐽1) and 

a VaR of the benchmark portfolio. It is obvious that if we choose VaR more than at 𝐽1, 

it will only increase an inefficient set of portfolios. Therefore, Riccetti (2016) proposes 

that the upper limit on VaR should not more than 𝑉𝐽1. However, 𝑉𝐽1 may be too risky 

compare to at benchmark (𝑉𝐵), so he divided the proposed maximum range of the upper 

limit on VaR (𝑉𝑚𝑎𝑥) into three scenarios:   

1. In case 𝑉𝐽2 ≤ 𝑉𝐽1 < 𝑉𝐵, if 𝑉𝐽1 < 𝑉𝐵, then 𝑉𝐽1 is still a reasonable choice to be 

upper limit on VaR. 

2. In case 𝑉𝐽2 ≤ 𝑉𝐵 < 𝑉𝐽1, if 𝑉𝐵 < 𝑉𝐽1then 𝑉𝐵 should be upper limit on VaR so that 

some feasible region is not too risky (as seen in Figure 13 below). 

𝑽𝑱𝟏 𝑽𝑩 𝑽𝑱𝟏 < 𝑽𝑩 
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3. In case 𝑉𝐽1 < 𝑉𝐽2, Setting the upper limit on VaR at 𝑉𝐽1(as shown in Figure 14 

below), the feasible set will be relatively small. Increasing the VaR limit more 

than that would increase the feasible set, but also increase the inefficient set as well.   

 

Figure 13: VaR constraints at portfolio level  and  in case  

 

Figure 14: VaR constraints at portfolio level  and  in case of  

 

If we define the efficient constraint TE portfolios, they are portfolios on the 

CTF only the upper part of the minimum variance portfolio (𝐽2) until the maximum 

expected return portfolio (𝐽1). As Figure15, the efficient constraint TE portfolios are 

sets 𝐽2𝐽1 on an ellipse. Comparing constraint on VaR at 𝑉𝐵 with constraint on standard 

deviation at 𝐵 (𝜎𝐵) (or variance limit), if we choose to constraint on VaR at �̂�𝐵, it will 

cut efficient sets 𝐽2𝐾2̂ but increase efficient sets 𝐵1𝐽1  and also increase inefficient set in 

area 𝐵𝐵1𝐾1. Choosing constraint on standard deviation at 𝐵 (𝜎𝐵) will cut efficient sets 

𝐵1𝐽1  but increase efficient sets 𝐽2𝐾  and increase inefficient set in area 𝐵𝐾2𝐽2𝐵2. It is a 

𝑽𝑱𝟏 𝑽𝑩 𝑽𝑱𝟏 > 𝑽𝑩 

𝑽𝑱𝟏 𝑽𝑱𝟐 𝑽𝑱𝟏 < 𝑽𝑱𝟐 
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free choice for the risk manager to choose VaR limit or variance limit (standard 

deviation limit). However, the limit on VaR implies a riskier set of a feasible portfolio 

than the limit in variance term (standard deviation term), so Riccetti (2016) suggests 

using constraint on variance (standard deviation) at 𝜎𝐵 rather than constraint on VaR at 

�̂�𝐵.  

Figure 15: Feasible region when we set VaR or standard deviation at B in case of 

 

 

In sum, the limits proposed by Riccetti (2016) are suggested base on the limits 

that provide a feasible region that contains as many efficient portfolios and, at the same 

time, as few inefficient portfolios as possible. As summarized in Table 2 below, the TE 

limit should not be less than 
𝑐𝑜𝑚2

𝑑
 because there will be no portfolio’s expected return 

that high enough to compensate for the commission fees. The TE limit should not be 

more than 𝛼∆2 because it would only increase a few efficient portfolio regions while 

increasing a lot of inefficient portfolio regions. For the VaR limit, in general, if it were 

less than 𝑉𝐽2, we would unnecessarily forgo some portfolios on the efficient CTF. On 

the other hand, if the VaR limit is more than 𝑉𝑗1, it will only increase inefficient feasible 

regions, which will contradict Riccetti’s objective of setting the limits. The suggested 

VaR limit is also changed depends on the value among 𝑉𝐽2, 𝑉𝐽1, and 𝑉𝐵. 

 

 

 

𝑽𝑱𝟏 < 𝑽𝑱𝟐 
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Table 2: Proposed limits by Riccetti(2016) 

 Limit Case Value 

TE 

Lower  
𝑇𝑚𝑖𝑛 =

𝑐𝑜𝑚2

𝑑
 

Upper(range)  𝑐𝑜𝑚2

𝑑
< 𝑇𝑚𝑎𝑥 ≤  𝛼∆2 

VaR 

Range in general 𝑉𝐽2 ≤ 𝑉𝑚𝑎𝑥 ≤ 𝑉𝑗1 

Upper 
𝑉𝐽2 ≤ 𝑉𝐽1 < 𝑉𝐵 𝑉𝑚𝑎𝑥 = 𝑉𝐽1 

𝑉𝐽2 ≤ 𝑉𝐵 < 𝑉𝐽1 𝑉𝑚𝑎𝑥 = 𝑉𝐵 

 𝑉𝐽1 < 𝑉𝐽2 Prefer limit on variance to VaR at 𝜎𝐵 

 

Section 3: Extension from Riccetti (2016) 

This section will modify and complete some of Riccetti’s works that 

determine the TE limit and the VaR limit of a single portfolio. Then we will extend the 

modified work to determine the TE limit and the VaR limit of the active portion of the 

entire portfolio in the next section. If we were given the VaR limit, the TE limit that we 

should set should not make any parts of portfolio region exceed the given VaR limit. In 

general, if the VaR limit (𝑉𝐺) is more than the VaR at portfolio 𝐵 (𝑉𝐵), the TE should 

be set at the level that the ellipse of the CTF tangent with 𝑉𝐺 at portfolio 𝐺 (as shown 

in Figure16). We define that level of TE as 𝑇𝐸𝐺. 

Given TE limit (𝑇𝐸 ) = 𝑇𝐸𝐺, the portfolio that has highest VaR is at portfolio 

𝐺 and the portfolio that has the lowest VaR is at portfolio 𝐾. 

Figure 16: The ellipse tangent with the given VaR ( ) and the resulting portfolio K 

on the ellipse with the lowest VaR 
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To find a portfolio on the CTF with a specific slope, we take the partial 

derivative with respect to 𝑦 on equation (4), we get the slope: 

𝑧′  =  
2∆1𝑧−𝑑𝑦

4∆2𝑧−2∆1𝑦
 . (8) 

When we set 𝑧′ = 0, we can find the point of an ellipse that has maximum / 

minimum expected return as: 

Table 3 : Calculation on maximum/minimum expected return point 

Points Calculations 

Maximum expected return point 

(portfolio 𝐽1) 
(𝜇𝐵 + √𝑇2𝑑, 𝜎𝐵

2 + 𝑇2 + 2∆1√
𝑇2

𝑑
)   

Minimum expected return point (𝜇𝐵 − √𝑇2𝑑, 𝜎𝐵
2 + 𝑇2 − 2∆1√

𝑇2

𝑑
)  

And by taking the partial derivative with respect to 𝑧 on equation (4) we get 

the slope: 

𝑦′  =  
2∆1𝑦−4∆2𝑧

𝑑𝑦−2∆1𝑧
 . (9) 

Then we set 𝑦′ = 0, we can find the point of an ellipse that has maximum / 

minimum variance as: 

Table 4 : Calculation on maximum/minimum expected variance point 

Points Calculations 

Maximum variance point (𝜇𝐵 + ∆1√
𝑇2

∆2
, 𝜎𝐵
2 + 𝑇2 + 2√𝑇2∆2)   

Minimum variance point (portfolio 𝐽2) (𝜇𝐵 − ∆1√
𝑇2

∆2
, 𝜎𝐵
2 + 𝑇2 − 2√𝑇2∆2). 

Considering a VaR of a portfolio, it can be computed from 𝑉𝑝 = 𝑍𝜃𝜎𝑝 − 𝜇𝑝. 

To find the slope of VaR in the mean-variance space in term of 𝑧, we get: 

𝜇𝑝  =  𝑍𝜃𝜎𝑝 − 𝑉𝑝   

𝑧   =  𝑍𝜃√𝑦 + 𝜎𝐵
2 + 𝑇2 − 𝑉𝑝 − 𝜇𝐵  (10) 

𝑧′ =  
𝑍𝜃

2√𝑦+𝜎𝐵
2+𝑇2

 . 
(11) 
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From equation (8), we can find 𝑧 in term of 𝑧′ as: 

𝑧′  =  
2∆1𝑧−𝑑𝑦

4∆2𝑧−2∆1𝑦
   

4∆2𝑧𝑧′ − 2∆1𝑦𝑧′  =   2∆1𝑧 − 𝑑𝑦    

𝑑𝑦 − 2∆1𝑦𝑧′  =   2∆1𝑧 − 4∆2𝑧𝑧′   

𝑧  =  
𝑑𝑦−2∆1𝑦𝑧′

 2∆1−4∆2𝑧′
 . (12) 

Therefore, the tangent point of VaR and the ellipse is the point that: 

𝑧  =  

𝑑𝑦−
∆1𝑍𝜃𝑦

√𝑦+𝜎𝐵
2+𝑇

 2∆1−
2∆2𝑍𝜃

√𝑦+𝜎𝐵
2+𝑇

   

𝑧  =  
𝑑𝑦√𝑦+𝜎𝐵

2+𝑇−∆1𝑍𝜃𝑦

 2∆1√𝑦+𝜎𝐵
2+𝑇−2∆2𝑍𝜃

 . (13) 

The value of 𝑦 can be found by substituting the value of 𝑧 from equation 

(13) to the ellipse equation (4), so we get: 

𝑑𝑦2 + 4∆2(
𝑑𝑦√𝑦+𝜎𝐵

2+𝑇−∆1𝑍𝜃𝑦

 2∆1√𝑦+𝜎𝐵
2+𝑇−2∆2𝑍𝜃

)

2

− 4∆1𝑦(
𝑑𝑦√𝑦+𝜎𝐵

2+𝑇−∆1𝑍𝜃𝑦

 2∆1√𝑦+𝜎𝐵
2+𝑇−2∆2𝑍𝜃

) − 4𝑇(𝑑∆2 − ∆1
2) = 0,  (14) 

Since we cannot find the closed-form solution by plugging-in the value of 𝑧 to 

the ellipse equation (4), we will use the numerical search to get the value of 𝑦, which 

should have two values. To get the value of 𝑧, we plug-in those values of 𝑦 back to 

equation (12). Then we revert them to the value of 𝜇𝑝 and 𝜎𝑝
2. The higher variance 

portfolio will be the highest VaR portfolio given the TE limit and vice versa. as 

Figure16, if we set  𝑇 = 𝑇𝐸𝐺, the higher variance portfolio will be portfolio 𝐺 and the 

lower variance portfolio will be portfolio 𝐾. 

 

3.1 Determining the lower limit on TE ( ) when VaR is given ( ) 

When a VaR limit was given before, if we set the TE limit to 
𝑐𝑜𝑚2

𝑑
 as Riccetti 

suggest, there may be the case that there is no feasible region. So, we propose the lower 

limit on TE (𝑇𝐸𝑚𝑖𝑛) as to at least give us a portfolio to invest in. Considering the case 

where 𝑉𝐺 < 𝑉𝐵, In this case, there are only portfolios on the left side of 𝑉𝐺 can have 

VaR less than 𝑉𝐺. Since we cannot invest in a portfolio on the right side of 𝑉𝐺, the lower 

𝑻𝑬𝒎𝒊𝒏 𝑽𝑮 
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limit on TE (𝑇𝐸𝑚𝑖𝑛) should be set as tangential CTF is on the right side of  𝑉𝐺 (as 

shown in Figure 17 below). To find such a value of TE that tangent with 𝑉𝐺, we start 

by assigning a small number of TE. We then find a tangential portfolio on CTF by 

searching for the pair of 𝑧 and 𝑦 that give the lowest VaR portfolio equal to 𝑉𝐺. 

Considering 𝑧 and 𝑦 in equation (13) and (14), we want to find the value of TE that 

satisfies an equation: 

𝑍𝜃√𝑦 + 𝜎𝐵
2 + 𝑇 − 𝑧 − 𝜇𝐵 − 𝑉𝐺 = 0,  (15) 

where 𝑍𝜃√𝑦 + 𝜎𝐵
2 + 𝑇 − 𝑧 − 𝜇𝐵 is the VaR of the lowest VaR portfolio given a TE 

limit. If 𝑍𝜃√𝑦 + 𝜎𝐵
2 + 𝑇 − 𝑧 − 𝜇𝐵 − 𝑉𝐺 > 0, we will increase the value of TE until it 

becomes zero (vice versa). The TE that satisfies equation (15) will be the lower limit 

on TE (𝑇𝐸𝑚𝑖𝑛). 

Figure 17: The lower limit on TE ( ) when VaR is given ( ) in the case 

 

 

 

 

 

 

 

𝑻𝑬𝒎𝒊𝒏  𝑽𝑮 
𝑉𝐺 < 𝑉𝐵 
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3.2 Determining the lower limit on VaR (𝑽𝒎𝒊𝒏) that can be set 

From Riccetti’s work, there is no lower limit on VaR (𝑉𝑚𝑖𝑛) in his suggestion, 

so we will propose it in this section. We propose that the lower limit on VaR should 

provide us at least a portfolio to invest in regardless of how large a feasible region. 

Figure 18: Minimum VaR ( ) that can be set 

 

Considering the minimum value of 𝑉𝐺 that can be set, it should be the VaR of 

the lowest VaR portfolio in MVF (as shown in Figure 18). So, we propose the lower 

limit on VaR (𝑉𝑚𝑖𝑛) to be the VaR of the portfolio at the tangential point of the MVF 

and the VaR line. Given the stock universe that we can invest, the mean-variance 

efficient frontier (MVF) from equation (2) can be rewritten as: 

𝜎𝑝
2  =  

1

𝑑
(𝜇𝑝 − 𝜇𝐶)

2
+ 𝜎𝐶

2   

𝜎𝑝
2  =  

1

𝑑
(𝜇𝑝
2 − 2𝜇𝑝𝜇𝐶 + 𝜇𝐶

2) + 𝜎𝐶
2 . (16) 

The slope of this MVF is: 

2𝜎𝑝  =  
1

𝑑
(2𝜇𝑝𝜇𝑝′ − 2𝜇𝑝′𝜇𝐶)   

𝑑𝜎𝑝 =  𝜇𝑝𝜇𝑝′ − 𝜇𝑝′𝜇𝐶   

𝜇𝑝
′  =  

𝑑𝜎𝑝

𝜇𝑝−𝜇𝐶
 . (17) 

From 𝑉𝑝 = 𝑍𝜃𝜎𝑝 − 𝜇𝑝, the slope of VaR line is: 

0  =  𝑍𝜃 − 𝜇𝑝′   

𝜇𝑝
′   =  𝑍𝜃. (18) 

𝑽𝒎𝒊𝒏 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 22 

 

Therefore, the point that has lowest value of VaR is at: 

𝑍𝜃  =  
𝑑𝜎𝑝

𝜇𝑝−𝜇𝐶
   

𝜎𝑝  =  
𝑍𝜃(𝜇𝑝−𝜇𝐶)

𝑑
 . (19) 

Substitute the value of 𝜎𝑝 from equation (19) to equation (16), we get:  

(
𝑍𝜃(𝜇𝑝−𝜇𝐶)

𝑑
)
2

  =  
1

𝑑
(𝜇𝑝 − 𝜇𝐶)

2
+ 𝜎𝐶

2   

𝑍𝜃
2(𝜇𝑝 − 𝜇𝐶)

2
  =   𝑑(𝜇𝑝 − 𝜇𝐶)

2
+ 𝑑2𝜎𝐶

2   

𝜇𝑝 − 𝜇𝐶  =  ±√
𝑑2𝜎𝐶

2

𝑍𝜃
2−𝑑

   

𝜇𝑝  =  𝜇𝐶 ±
𝑑𝜎𝐶

√𝑍𝜃
2−𝑑

 . 
(20) 

Since the efficient frontier is the line above minimum variance portfolio (𝐶) 

on MVF, then we will consider only: 

𝜇𝑝 =  𝜇𝐶 +
𝑑𝜎𝐶

√𝑍𝜃
2−𝑑

 , 
(21) 

for 
𝑑𝜎𝐶

√𝑍𝜃
2−𝑑

 which should have a positive value. So, substituting 𝜇𝑝 into equation (19), 

we get: 

𝜎𝑝 =  

𝑍𝜃(𝜇𝐶+
𝑑𝜎𝐶

√𝑍𝜃
2−𝑑

−𝜇𝐶)

𝑑
  

 

𝜎𝑝  =  
𝑍𝜃𝜎𝐶

√𝑍𝜃
2−𝑑

  
(22) 

Therefore, the minimum Value at Risk is: 

𝑉𝑚𝑖𝑛  =  
𝑍𝜃
2𝜎𝐶

√𝑍𝜃
2−𝑑

− 𝜇𝐶 −
𝑑𝜎𝐶

√𝑍𝜃
2−𝑑

   

𝑉𝑚𝑖𝑛  =  
(𝑍𝜃
2−𝑑)𝜎𝐶

√𝑍𝜃
2−𝑑

− 𝜇𝐶   

𝑉𝑚𝑖𝑛 =  𝜎𝐶√𝑍𝜃
2 − 𝑑 − 𝜇𝐶. (23) 
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3.3 Proposed value of 𝜶 when benchmark is inefficient 

In Riccetti (2016), the upper limit on TE (𝑇𝐸𝑚𝑎𝑥) is proposed at 𝛼∆2 where 

∆2 is the value at which portfolio 𝐽2 coincides with 𝐶. While 𝛼 ≥ 1 when ∆1≤ 0, and  

𝛼 = 1 when ∆1> 0. When ∆1≤ 0, the CTF will be on the lower side of the MVF. So, 

we suggest that the TE should be increased until we can at least invest in the minimum 

VaR portfolio (as shown in Figure 19). Therefore, we will find 𝑇𝐸  that make CTF 

coincide with MVF at point 𝑀 where point 𝑀 indicates the minimum VaR portfolio. In 

this case, our proposed 𝛼 will provide a value that is more than one (concordant with 

Riccetti’s suggestion), which will increase the efficient portfolio region. Moreover, we 

can invest in the lowest risk portfolio in terms of VaR. 

Figure 19: The upper limit on TE ( ) in case of inefficient benchmark 

 

Considering 𝜎𝑝
2 in the mean-variance efficient frontier (MVF) from equation 

(16) and put this value into 𝑦, we get: 

𝑦 =
1

𝑑
(𝜇𝑝
2 − 2𝜇𝑝𝜇𝐶 + 𝜇𝐶

2) + 𝜎𝐶
2 − 𝜎𝐵

2 − 𝑇2   

𝑦 =
1

𝑑
(𝜇𝑝 − 𝜇𝐶)

2
− ∆2 − 𝑇

2   

𝑦 =
1

𝑑
(𝑧 + ∆1)

2 − ∆2 − 𝑇
2. (24) 

To find the points which the mean-variance efficient frontier (MVF) contacts 

with the constrained TE frontier (CTF). We substitute 𝑦 from equation (24) into 

equation (4), so we get: 

 

𝑻𝑬𝒎𝒂𝒙 
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0 = 𝑑𝑦2 + 4∆2𝑧
2 − 4∆1𝑦𝑧 − 4𝑇

2(𝑑∆2 − ∆1
2)   

0 = 𝑑 [
1

𝑑
(𝑧 + ∆1)

2 − ∆2 − 𝑇
2]
2

+ 4∆2𝑧
2 − 4∆1 [

1

𝑑
(𝑧 + ∆1)

2 − ∆2 − 𝑇
2] 𝑧 −

4𝑇2(𝑑∆2 − ∆1
2)  

 

0 = 𝑑 [
1

𝑑2
(𝑧 + ∆1)

4 −
2

𝑑
(𝑧 + ∆1)

2(∆2 + 𝑇
2) + (∆2 + 𝑇

2)2] + 4∆2𝑧
2 −

4∆1𝑧 [
1

𝑑
(𝑧2 + 2𝑧∆1 + ∆1

2) − ∆2 − 𝑇
2] − 4𝑇2𝑑∆2 + 4𝑇

2∆1
2  

 

0 = 𝑑2 [
1

𝑑2
(𝑧 + ∆1)

4 −
2

𝑑
(𝑧 + ∆1)

2(∆2 + 𝑇
2) + (∆2 + 𝑇

2)2] + 4𝑑∆2𝑧
2 −

4𝑑∆1𝑧 [
1

𝑑
(𝑧2 + 2𝑧∆1 + ∆1

2) − ∆2 − 𝑇
2] − 4𝑇2𝑑2∆2 + 4𝑇

2𝑑∆1
2  

 

0 = [(𝑧4 + 4𝑧3∆1 + 6𝑧
2∆1
2 + 4𝑧∆1

3 + ∆1
4) − 2𝑑(𝑧2 + 2𝑧∆1 + ∆1

2)(∆2 + 𝑇
2) +

𝑑2(∆2
2 + 2∆2𝑇

2 + 𝑇4)] + 4𝑑∆2𝑧
2 − [4∆1𝑧

3 + 8𝑧2∆1
2 + 4∆1

3𝑧 − 4𝑑∆1∆2𝑧 −

4𝑑∆1𝑇
2𝑧] − 4𝑇2𝑑2∆2 + 4𝑇

2𝑑∆1
2  

 

0 = [(𝑧4 + 4𝑧3∆1 + 6𝑧
2∆1
2 + 4𝑧∆1

3 + ∆1
4) − 2𝑑(∆2𝑧

2 + 2∆2∆1𝑧 + ∆2∆1
2 +

𝑇2𝑧2 + 2𝑇2∆1𝑧 + 𝑇
2∆1
2) + 𝑑2∆2

2 + 2𝑑2∆2𝑇
2 + 𝑑2𝑇4] + 4𝑑∆2𝑧

2 −

4∆1𝑧
3 − 8𝑧2∆1

2 − 4∆1
3𝑧 + 4𝑑∆1∆2𝑧 + 4𝑑∆1𝑇

2𝑧 − 4𝑇2𝑑2∆2 + 4𝑇
2𝑑∆1

2  

 

0 = 𝑧4 + 4𝑧3∆1 + 6𝑧
2∆1
2 + 4𝑧∆1

3 + ∆1
4 − 2𝑑∆2𝑧

2 − 4𝑑∆2∆1𝑧 − 2𝑑∆2∆1
2 −

2𝑑𝑇2𝑧2 − 4𝑑𝑇2∆1𝑧 − 2𝑑𝑇
2∆1
2 + 𝑑2∆2

2 + 2𝑑2∆2𝑇
2 + 𝑑2𝑇4 + 4𝑑∆2𝑧

2 −

4∆1𝑧
3 − 8𝑧2∆1

2 − 4∆1
3𝑧 + 4𝑑∆1∆2𝑧 + 4𝑑∆1𝑇

2𝑧 − 4𝑇2𝑑2∆2 + 4𝑇
2𝑑∆1

2  

 

0 = 𝑧4 − 2𝑧2∆1
2 + ∆1

4 + 2𝑑∆2𝑧
2 − 2𝑑∆2∆1

2 − 2𝑑𝑇2𝑧2 + 2𝑑𝑇2∆1
2 + 𝑑2∆2

2 −

2𝑑2∆2𝑇
2 + 𝑑2𝑇4  

 

0 = 𝑧4 − 2𝑧2(∆1
2 − 𝑑∆2 + 𝑑𝑇

2) + (∆1
4 − 2𝑑∆2∆1

2 + 2𝑑𝑇2∆1
2 + 𝑑2∆2

2 −

2𝑑2∆2𝑇
2 + 𝑑2𝑇4)   

0 = 𝑧4 − 2𝑧2(∆1
2 − 𝑑∆2 + 𝑑𝑇

2) + (∆1
2 − 𝑑∆2 + 𝑑𝑇

2)2   

0 = [𝑧2 − (∆1
2 − 𝑑∆2 + 𝑑𝑇

2)]2 . (25) 

From the explanation is provided by (Palomba, 2008). there are three cases 

for solutions in equation (25): 

1) No solution: when ∆1
2 − 𝑑∆2 + 𝑑𝑇

2 < 0 or 𝑇 is very small, the CTF will have 

no contact point with the MVF. 

2) 1 solution: when ∆1
2 − 𝑑∆2 + 𝑑𝑇

2 = 0 or 𝑇2 = ∆2 −
∆1
2

𝑑
, the CTF will have a 

contact point with the MVF when 𝑧 = 0 or 𝜇𝑝 = 𝜇𝐵 which means the first 

contact occurs on the horizontal from the benchmark. 

3) 2 solutions: when ∆1
2 − 𝑑∆2 + 𝑑𝑇

2 > 0 or 𝑇2 is large enough, the CTF will 

have two contact points with the MVF when: 

𝑧  =  ±√∆1
2 − 𝑑∆2 + 𝑑𝑇2   

𝜇𝑝 − 𝜇𝐵  =  ±√∆1
2 − 𝑑∆2 + 𝑑𝑇2   

𝜇𝑝  = 𝜇𝐵 ±√∆1
2 − 𝑑∆2 + 𝑑𝑇

2.  (26) 
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The ellipse of the CTF will coincide with the MVF at the minimum 

variance portfolio (𝐶) as shown in Figure 7 when 𝜇𝑝 = 𝜇𝐶 or: 

𝜇𝐶  =  𝜇𝐵 ±√∆1
2 − 𝑑∆2 + 𝑑𝑇2   

𝜇𝐶 − 𝜇𝐵  =  ±√∆1
2 − 𝑑∆2 + 𝑑𝑇2   

(−∆1)
2  =  ∆1

2 − 𝑑∆2 + 𝑑𝑇
2   

𝑑𝑇2  =   𝑑∆2   

𝑇2  =  ∆2.  (27) 

To find the value of TE which makes the CTF coincide with the MVF at 

portfolio 𝑀, we substitute 𝜇𝑝 = 𝜇𝐶 +
𝑑𝜎𝐶

√𝑍𝜃
2−𝑑

 from (20) into equation (26). Since we 

consider only on the upper part on efficient frontier, we get: 

 𝜇𝐶 +
𝑑𝜎𝐶

√𝑍𝜃
2−𝑑

  =  𝜇𝐵 +√∆1
2 − 𝑑∆2 + 𝑑𝑇2   

𝑑𝜎𝐶

√𝑍𝜃
2−𝑑

− ∆1  =  √∆1
2 − 𝑑∆2 + 𝑑𝑇2   

𝑑2𝜎𝐶
2

𝑍𝜃
2−𝑑
−
2𝑑𝜎𝐶∆1

√𝑍𝜃
2−𝑑

+ ∆1
2  =  ∆1

2 − 𝑑∆2 + 𝑑𝑇
2  

 

𝑑2𝜎𝐶
2

𝑍𝜃
2−𝑑
−
2𝑑𝜎𝐶∆1

√𝑍𝜃
2−𝑑

+ 𝑑∆2  =   𝑑𝑇
2  

 

𝑇2  =  
𝑑𝜎𝐶
2

𝑍𝜃
2−𝑑
−
2𝜎𝐶∆1

√𝑍𝜃
2−𝑑

+ ∆2 . (28) 

Therefore, in the case of the inefficient benchmark, 𝛼 from Riccetti (2016) 

should have the value proportional to ∆2, so we get: 

𝛼  =  
𝑇2

∆2
   

 =  
𝑑𝜎𝐶
2

∆2(𝑍𝜃
2−𝑑)

−
2𝜎𝐶∆1

∆2√𝑍𝜃
2−𝑑

+ 1 . (29) 

By an assumption that  

1. The benchmark portfolio (𝐵) is inside an efficient frontier (MVF), so ∆2 is 

positive. 

2. To get value of  𝛼 to be a real number, 𝑍𝜃
2 − 𝑑 must be positive. 

3. Since we consider the case of the inefficient benchmark, ∆1 is negative. 

4. By assuming the CTF to be an ellipse, 𝑑 must be positive (described in 

Appendix). And 𝜎𝐶  is standard deviation of the minimum variance portfolio, 

which is positive. 
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If we consider  
𝑑𝜎𝐶
2−2𝜎𝐶∆1√𝑍𝜃

2−𝑑

∆2(𝑍𝜃
2−𝑑)

, it will have a positive value. Therefore, 𝛼 

will have a value of more than 1 when the benchmark is inefficient (𝜇𝐵 − 𝜇𝐶 < 0 or 

∆1< 0), which is concordant with Riccetti (2016). 

 

Section 4: Determining the Tracking Error ( ) and 

VaR ( ) of an active portfolio when combined with a 

passive portfolio  

Considering portfolios in (𝜎𝑝, 𝜇𝑝) space, as shown in Figure 20, the 

relationship between expected return and volatility of the mixed portfolios will be a 

straight line when the correlation of two portfolios equal to 1. the shape of the mixed 

portfolios will be like the dashed line when two portfolios have correlation less than 1. 

If we compare those two lines with the same expected return, the dashed line will have 

variance less than the straight line. This relationship also applies to VaR. So, we will 

first consider the case correlation equal to 1, which causes a VaR of a mixed portfolio 

to be highest. Let portfolio 𝐴 is the active portfolio with the highest VaR given a value 

of Tracking error (𝑇𝐸𝐴) and portfolio 𝐵 is a passive portfolio which has expected return 

and variance equal to the benchmark. 

Figure 20: Mixed portfolio with correlation 1 and less than 1 

 

𝑻𝑬 𝑨 

𝑽 𝑨 
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4.1 Case  

In the case 𝑉𝐵 < 𝑉𝐺, the TE limit and VaR limit of an active portfolio will be 

proposed as the highest value that will not make any part of the portfolio region breach 

the given VaR of the entire portfolio. Setting the active portfolio’s TE limit and VaR 

limit beyond the proposed values will introduce the chance that the entire portfolio’s 

VaR breaches the VaR limit (𝑉𝐺). Suppose we invest in portfolio 𝐴 with weight 𝑊𝐴 and 

portfolio 𝐵 (Benchmark) with weight (1 −𝑊𝐴), the VaR of the mixed portfolio (𝑉𝑝𝑀𝑖𝑥) 

will be equal to 𝑉𝐺. This portfolio 𝐴 is the portfolio with the highest VaR on the CTF 

from setting TE limit equal to 𝑇𝐸𝐴. With this value of TE, we can choose any portfolio 

in CTF which will not cause the VaR of the mixed portfolio greater than 𝑉𝐺  (as shown 

in Figure 21). So, 𝑇𝐸𝐴 is the upper limit on TE given 𝑉𝐴 (called 𝑇𝐸𝐴
𝑚𝑎𝑥).  

 

Figure 21: An active portfolio which has the highest value of VaR with the given TE 

in case of ρ=1 

 

Assuming correlation between 𝐴 and 𝐵 (𝜌) equal to 1, the VaR of the mixed 

portfolio can be computed from weighted average VaR of the two portfolios. So, it can 

be expressed by: 

𝑉𝑝𝑀𝑖𝑥 = 𝑊𝐴𝑉𝐴 + (1 −𝑊𝐴)𝑉𝐵.  (30) 

With the given 𝑉𝐺 and 𝑊𝐴, we want to find a mixed portfolio that 𝑉𝑝𝑀𝑖𝑥 = 𝑉𝐺. 

Since we know 𝑉𝐵, we will solve equation (30) for 𝑉𝐴. So, we get: 

𝑉𝐴 =
(𝑉𝐺−(1−𝑊𝐴)𝑉𝐵)

𝑊𝐴
.  (31) 

𝑽𝑩 < 𝑽𝑮 
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We can find TE that tangent with 𝑉𝐴 as the same approach as explained in 

section 3.1. Start from assigning a small number of TE, we can find a pair of 𝑧 and 𝑦 

that gives the highest value of VaR. We will increase the value of TE until it satisfies 

𝑉𝐴 − 𝑍𝜃√𝑦 + 𝜎𝐵
2 + 𝑇 + 𝑧 + 𝜇𝐵 = 0.  (32) 

The TE we get from equation (32) should be greater than 
𝑐𝑜𝑚2

𝑑
 as Riccetti’s 

suggestion for an active manager to get more return than the commission he pays. 

Supposing we set the TE limit at 
𝑐𝑜𝑚2

𝑑
, the VaR limit should be more than the minimum 

VaR obtained from the TE limit at 
com2

𝑑
 (𝑉𝑇𝐸=𝑐𝑜𝑚2/𝑑 

𝑚𝑖𝑛 ). So, 𝑉𝑇𝐸=𝑐𝑜𝑚2/𝑑 
𝑚𝑖𝑛 will be 

represented as the lower limit on VaR (𝑉𝐴
𝑚𝑖𝑛). The calculation of 𝑉𝑇𝐸=𝑐𝑜𝑚2/𝑑 

𝑚𝑖𝑛 can be 

adapted from the instructions in section 3.1. In sum, the set of limits of an active 

portfolio in case 𝑉𝐵 < 𝑉𝐺 are summarized in Table 5 below. 

Table 5: Set of limits of an active portfolio in case  

Set of limits Lower limit Upper limit 

VaR 𝑉𝐴
𝑚𝑖𝑛 = 𝑉𝑇𝐸=𝑐𝑜𝑚2/𝑑 

𝑚𝑖𝑛  𝑉𝐴
𝑚𝑎𝑥 = 𝑉𝐴 

TE 𝑇𝐸𝐴
𝑚𝑖𝑛 =

𝑐𝑜𝑚2

𝑑
  𝑇𝐸𝐴

𝑚𝑎𝑥 = 𝑇𝐸𝐴 

Figure 22: An active portfolio which has the highest value of VaR with the 

given TE in case of ρ<1 

 

However, the correlation between 𝐴 and 𝐵 is not equal to one in reality. With 

the same parameters such as 𝑊𝐴, 𝑉𝐴, 𝑉𝐵, etc. except 𝜌 < 1, this situation will make VaR 

of an entire portfolio (𝑉𝑃) less than 𝑉𝐺 (as seen in Figure 22 above). Therefore, we are 

𝑽𝑩 < 𝑽𝑮 
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still able to increase 𝑉𝐴 until 𝑉𝑝𝑀𝑖𝑥 equal to 𝑉𝐺. If we relax a correlation assumption, a 

VaR of an entire portfolio can be express by: 

𝑉𝑝𝑀𝑖𝑥  =  𝑧𝜃𝜎𝑝𝑀𝑖𝑥 − 𝜇𝑝𝑀𝑖𝑥   

 
=  𝑧𝜃√𝑊𝐴

2𝜎𝐴
2 + (1 −𝑊𝐴)2𝜎𝐵

2 + 2𝜌𝑊𝐴𝑊𝐵𝜎𝐴𝜎𝐵 − (𝑊𝐴𝜇𝐴 +

(1 −𝑊𝐴)𝜇𝐵).  
(33) 

Given a VaR of an entire portfolio equal to 𝑉𝐺, we will get: 

𝑉𝐺  =  𝑧𝜃√𝑊𝐴
2𝜎𝐴
2 + (1 −𝑊𝐴)2𝜎𝐵

2 + 2𝜌𝑊𝐴(1 −𝑊𝐴)𝜎𝐴𝜎𝐵 −

(𝑊𝐴𝜇𝐴 + (1 −𝑊𝐴)𝜇𝐵)  
 

𝑉𝐺 + (𝑊𝐴𝜇𝐴 + (1 −𝑊𝐴)𝜇𝐵)  =   𝑧𝜃√𝑊𝐴
2𝜎𝐴
2 + (1 −𝑊𝐴)2𝜎𝐵

2 + 2𝜌𝑊𝐴(1 −𝑊𝐴)𝜎𝐴𝜎𝐵   

(𝑉𝐺 +𝑊𝐴𝜇𝐴 + (1 −𝑊𝐴)𝜇𝐵)
2  =  𝑧𝜃

2(𝑊𝐴
2𝜎𝐴
2 + (1 −𝑊𝐴)

2𝜎𝐵
2 + 2𝜌𝑊𝐴(1 −𝑊𝐴)𝜎𝐴𝜎𝐵)   

(𝑉𝐺 + (1 −𝑊𝐴)𝜇𝐵)
2 + 2(𝑉𝐺 +

(1 −𝑊𝐴)𝜇𝐵)𝑊𝐴𝜇𝐴 +𝑊𝐴
2𝜇𝐴
2    

=  𝑧𝜃
2𝑊𝐴

2𝜎𝐴
2 + 𝑧𝜃

2(1 −𝑊𝐴)
2𝜎𝐵
2 + 2𝑧𝜃

2𝜌𝑊𝐴(1 −𝑊𝐴)𝜎𝐴𝜎𝐵  
 

(𝑉𝐺 + (1 −𝑊𝐴)𝜇𝐵)
2  =  𝑧𝜃

2𝑊𝐴
2𝜎𝐴
2 + 2𝑧𝜃

2𝜌𝑊𝐴(1 −𝑊𝐴)𝜎𝐴𝜎𝐵 − 2(𝑉𝐺 +

(1 −𝑊𝐴)𝜇𝐵)𝑊𝐴𝜇𝐴 −𝑊𝐴
2𝜇𝐴
2 + 𝑧𝜃

2(1 −𝑊𝐴)
2𝜎𝐵
2 . 

(34) 

Consider 𝑉𝐴 = 𝑧𝜃𝜎𝐴 − 𝜇𝐴, so 𝜎𝐴 =
𝑉𝐴+𝜇𝐴

𝑧𝜃
. Therefore, we get: 

(𝑉𝐺 + (1 −𝑊𝐴)𝜇𝐵)
2  = 𝑊𝐴

2(𝑉𝐴 + 𝜇𝐴)
2 + 2𝑧𝜃𝜌𝑊𝐴(1 −𝑊𝐴)(𝑉𝐴 + 𝜇𝐴)𝜎𝐵 −

2(𝑉𝐺 + (1 −𝑊𝐴)𝜇𝐵)𝑊𝐴𝜇𝐴 −𝑊𝐴
2𝜇𝐴
2 + 𝑧𝜃

2(1 −𝑊𝐴)
2𝜎𝐵
2  

 

(𝑉𝐺 + (1 −𝑊𝐴)𝜇𝐵)
2  = 𝑊𝐴

2(𝑉𝐴
2 + 2𝑉𝐴𝜇𝐴) + 2𝑧𝜃𝜌𝑊𝐴(1 −𝑊𝐴)(𝑉𝐴 + 𝜇𝐴)𝜎𝐵 −

2(𝑉𝐺 + (1 −𝑊𝐴)𝜇𝐵)𝑊𝐴𝜇𝐴 + 𝑧𝜃
2(1 −𝑊𝐴)

2𝜎𝐵
2  

 

0  = 𝑊𝐴
2(𝑉𝐴

2 + 2𝑉𝐴𝜇𝐴) + 2𝑧𝜃𝜌𝑊𝐴(1 −𝑊𝐴)(𝑉𝐴 + 𝜇𝐴)𝜎𝐵 −

2(𝑉𝐺 + (1 −𝑊𝐴)𝜇𝐵)𝑊𝐴𝜇𝐴 + 𝑧𝜃
2(1 −𝑊𝐴)

2𝜎𝐵
2 − (𝑉𝐺 +

(1 −𝑊𝐴)𝜇𝐵)
2.  

(35) 

Equation (35) will leave us two unknown parameters (i.e. 𝑉𝐴 and 𝜇𝐴). From 

the main objective is to find a TE limit in equation (32) with the given 𝜌, we can solve 

equations (13), (14), (32), (35) by following this: 

1. Assume a number of 𝑉𝐴 which should be more than 𝑉𝐴 in case of 𝜌 = 1. 

2. Find TE that tangent with 𝑉𝐴 as the same approach as explained in section 3.1 

so that the TE limit we get is satisfied equation (32). 

3. With the TE limit we find from step 2, we can also find 𝑧 from equation (13) 

which leads us to know 𝜇𝐴. 
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4. If the assumed 𝑉𝐴 in step 1 and 𝜇𝐴 from step 3 does not satisfy equation (35), 

we will change a number of 𝑉𝐴 and repeat step 1 – 4 again. 

In this paper, with the capability of MATLAB on solving equations, we use 

the function “vpasolve” to solve equations (13), (14), (32), (35) simultaneously. Then 

we get parameters 𝑦, 𝑧, 𝑇2, and 𝑉𝐴 (an illustration will be shown in section 5). Therefore, 

𝑇2 and 𝑉𝐴 will be TE limit and VaR limit on an active portfolio, respectively. 

 

4.2 Case  

In this case, since 𝑉𝐵 ≥ 𝑉𝐺, there are always some parts of CTF exceeding the 

given entire portfolio’s VaR limit regardless of the TE limit we set. Unlike the 𝑉𝐵 < 𝑉𝐺 

case, we cannot find a TE limit that makes all portfolio in the feasible region satisfy the 

entire portfolio’s VaR limit. Therefore, we will propose the active portfolio’s TE limit 

and VaR limit that makes the feasible region contain as many efficient portfolios as 

possible while ruling out the portfolios that are inefficient or violate the overall VaR 

limit. 

Figure 23: An active portfolio which has the lowest value of VaR with the given TE in 

case of ρ=1 

 

To give a clear explanation in the case of 𝑉𝐵 > 𝑉𝐺 , the illustration is shown in 

case of 𝜌 = 1 as Figure 23 above. We can find a VaR limit and a TE limit of an active 

portfolio as the same method described in section 4.1. Even though, the VaR limit in 

this case is the upper limit on VaR (𝑉𝐴
𝑚𝑎𝑥) as same as the case of 𝑉𝐵 < 𝑉𝐺, the TE 

whose CTF tangent with 𝑉𝐴 on the right side is the lower limit on TE (𝑇𝐸𝐴
𝑚𝑖𝑛). The 

𝑉𝐴
𝑚𝑎𝑥 should not be more than 𝑉𝐴 computed from the four equations (described in 

section 4.1) because some portfolios can breach the overall VaR limit. The 𝑇𝐸𝐴
𝑚𝑖𝑛 

𝑽𝑩 ≥ 𝑽𝑮 
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should not be less than 𝑇𝐸𝐴 computed from the four equations because there will be no 

feasible region. However, the 𝑇𝐸𝐴
𝑚𝑖𝑛 still should be more than 

𝑐𝑜𝑚2

𝑑
 which will allow 

investors to get expected return more than the commission they pay. For the upper limit 

on TE (𝑇𝐸𝐴
𝑚𝑎𝑥), we can set it as 𝛼∆2 as Riccetti proposed because it provides the most 

efficient portfolios while ruling out the inefficient portfolios as much as possible. 

Setting the TE limit more than 𝛼∆2 would only increase a few efficient portfolio regions 

while increasing a lot of inefficient portfolio regions. For the lower limit on VaR 

(𝑉𝐴
𝑚𝑖𝑛), we can set it as 𝑉𝑚𝑖𝑛 as we proposed in section 3.2. Setting the VaR limit less 

than 𝑉𝑚𝑖𝑛 will cause no feasible region.  Therefore, the set of limits of an active 

portfolio in case 𝑉𝐵 ≥ 𝑉𝐺 are summarized in Table 6. Although the VaR limit can be 

set as Table 6, there may be the case where 𝑉𝐴 < 𝑉
𝑚𝑖𝑛 which is impossible to set the 

VaR limit equal to 𝑉𝐴. Therefore, in the case of 𝑉𝐵 > 𝑉𝐺, since we rely on an active 

portfolio to reduce VaR of an entire portfolio, we can increase the weight of an active 

portion (or allow 𝑉𝐺 to be increase) to prevent 𝑉𝐴 < 𝑉
𝑚𝑖𝑛 which give us empty feasible 

region. 

Table 6: Set of limits of an active portfolio in case  

Set of 

limits 
Lower limit Upper limit 

VaR 𝑉𝐴
𝑚𝑖𝑛 = 𝑉𝑚𝑖𝑛 𝑉𝐴

𝑚𝑎𝑥 = 𝑉𝐴 

TE 
𝑐𝑜𝑚2

𝑑
≤ 𝑇𝐸𝐴

𝑚𝑖𝑛 = 𝑇𝐸𝐴 𝑇𝐸𝐴
𝑚𝑎𝑥 = 𝛼∆2 

The proposed active portfolio’s limits given the entire portfolio VaR are 

summarized in Table 7 below. 

Table 7: Summary of the proposed active portfolio’s limits given the entire portfolio 

VaR 

Limit 
Case 

𝑽𝑩 < 𝑽𝑮 𝑽𝑩 ≥ 𝑽𝑮 

TE 
Lower 𝑇𝐸𝐴

𝑚𝑖𝑛 =
𝑐𝑜𝑚2

𝑑
 

𝑐𝑜𝑚2

𝑑
≤ 𝑇𝐸𝐴

𝑚𝑖𝑛 = 𝑇𝐸𝐴 

Upper 𝑇𝐸𝐴
𝑚𝑎𝑥 = 𝑇𝐸𝐴 𝑇𝐸𝐴

𝑚𝑎𝑥 = 𝛼∆2 

VaR 

Lower 𝑉𝐴
𝑚𝑖𝑛 = 𝑉𝑇𝐸=𝑐𝑜𝑚2/𝑑 

𝑚𝑖𝑛  𝑉𝐴
𝑚𝑖𝑛 = 𝑉𝑚𝑖𝑛 

Upper 𝑉𝐴
𝑚𝑎𝑥 = 𝑉𝐴 𝑉𝐴

𝑚𝑎𝑥 = 𝑉𝐴 

𝑽𝑩 ≥ 𝑽𝑮 
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Section 5: Empirical experiment: Practical issues in 

implementing the proposed limits 

In this section, we will use real data to determine the TE limit of the active 

portfolio using the method from the previous section. There will be many portfolios we 

can choose from within this TE limit. To reflect a real-life situation, we will choose the 

maximum expected return portfolio as an asset manager is likely to select this portfolio.  

Using a numerical optimizer to find the manger’s decision, we obtain a portfolio on the 

CTF and the portfolio’s parameters and ex-ante risk measures (such as weights, 

expected return, variance, VaR, and TE). These parameters and ex-ante risk measures 

will be the same as those calculated using the method from the previous section (i.e., 

“theoretical value”), provided that the following assumptions hold: (1) stocks that we 

can invest are as same as stocks in a benchmark  (2) no restriction on investment (such 

as stocks can be short-sold).  

During the data period that we use to compute the TE limit (i.e., the “in-

sample” period), investing in any active portfolio within this TE limit still makes the 

entire portfolio's ex-ante VaR be within the given value (𝑉𝐺).  However, in reality, 

stocks in an investment universe can be different from a benchmark, and short-selling 

is hard to implement, so the expected return, variance, VaR, and TE of the CTF 

portfolios might not be the same as the theoretical values. The conditions on the 

different stock universe and short-selling may cause CTF to change from what we 

derived in the previous section. Choosing portfolios based on a wrong CTF may make 

the entire portfolio's VaR exceed the given limit. Furthermore, as time pass, parameters 

that are used to determine a TE limit can be changed. Moreover, VaR and TE used to 

derive a TE limit from the analysis part are "ex-ante," but calculation methods of VaR 

and TE for monitoring are "ex-post." Therefore, even we invest in an active portfolio 

whose ex-ante TE and VaR are within the limit at first, but later on, the ex-post TE or 

VaR of the active portfolio and VaR of the mixed portfolio can be far from the given 

value. So, we may need to re-estimate parameters and re-balance the portfolio to ensure 

that the entire portfolio's VaR will not exceed the limit. 

To observe the problems of determining an active portfolio’s TE limit, we will 

try to imitate investment management in Thailand in this section. We will use SET as 

a benchmark. Moreover, since ex-post TE and ex-post VaR are commonly used for 

calculating TE and VaR, we will use them to compute TE and VaR for this section as 

well. With the assumptions given in Table 8. This section will illustrate the issues on: 
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1. What are the effects of having stocks in an investment universe different from 

stocks in a benchmark? 

2. What are the effects of prohibiting short-sale compare with allowing short-

sale? 

3. Are yearly re-estimating parameters and re-balancing the portfolio enough to 

help us control an entire portfolio’s VaR to be within a given limit? 

Table 8: Assumptions 

List Detail 

Stock universe select 20 stocks from SET 

Benchmark SET index 

Calculation of return weekly return 

Training period 1 years from 1 January 2014 – 31 December 2014 

Testing period 5 years from 1 January 2015 – 31 December 2019 

Given VaR(VG) VB + 2% (calculated at 1 January 2015) 

Correlation between 

an active and a passive 

portfolio 

50% 

Commission fee 

(𝑐𝑜𝑚) 

1.5% yearly 

Given active portfolio 

weight (WA) 

40% 

VaR confidence level 95% 

Tracking error and 

VaR calculation 

method 

- Ex-ante method when we determine a TE limit and a 

VaR limit in the in-sample period 

- Ex-post method when we monitor them in the out-

sample period  

 

5.1 The effects of having stocks in an investment universe 

different from stocks in a benchmark 

Regarding the assumption in Table 8 above, we will use the SET index as a 

benchmark. However, to compare the effect of having a small number of stocks in an 

investment universe, we add an equal weight benchmark as another benchmark. To find 

an active portfolio’s stock weights, we need to determine the TE limit and the VaR limit 

of an active portfolio. Then, we can find stocks’ weights of the active portfolio using 

numerical search given the TE and VaR limit. In the empirical test, we will use 

MATLAB as a calculator. As we choose to invest in the maximum expected return 
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portfolio as an active portfolio, the portfolio’s risk measures such as expected return, 

variance, VaR, and TE should be the same as theoretical values of portfolio 𝐽1 (see the 

statistic calculation on Portfolio 𝐽1 in Table 2). If we use a benchmark that consists of 

the same stocks as in the investment universe (in this case: equal weight benchmark), 

the weight of an active portfolio also can be calculated from equation (6). However, in 

the case of SET index as a benchmark, we do not have enough data on all stocks in SET 

index, so we cannot find weight of each stock in the benchmark. Moreover, investing 

in stocks in a benchmark is limited due to the small stock universe. Therefore, we 

cannot calculate the weight of an active portfolio using equation (6). So, we can only 

find stocks’ weights of an active portfolio through numerical search.  

In sum, this part will be divided into two cases: (1) equal weight benchmark 

and (2) SET index as a benchmark. We will compare statistics such as weight, expected 

return, variance, VaR, and TE with their theoretical values in each case. The first case 

will show the capability of MATLAB that can use numerical search to get the active 

portfolio’s weight as the same value as calculated by using the method from section 2, 

and its parameters and risk measures have the same value as the theoretical portfolio. 

In contrast, the second case will show the effect of having a stock universe difference 

than a benchmark. A methodology of finding the weight of an active portfolio is 

proceeded as follows: 

1. Determine an investment universe by selecting 20 stocks from SET and 

calculate weekly return from in-sample period price data on both an 

investment universe and a benchmark. 

2. Compute expected returns and variance-covariance matrix of asset returns, 

then we can compute expected returns and variance of minimum variance 

portfolio and a benchmark portfolio. The calculation is described in equation 

(1) and (2). 

3. With parameters calculated from step (2), we will determine an active 

portfolio’s TE limit and VaR limit by finding 4 parameters: 𝑦, 𝑧, a TE limit 

(𝑇𝐸 ), and an active portfolio’s VaR limit (𝑉𝐴 ). We will solve four equations 
with “vpasolve” in MATLAB which are consists of equation (13), (14), (32), 

and (35): 

- equation (13) is used to find a portfolio that have the maximum VaR 

given TE limit or at the tangent point of a VaR line and an ellipse. 

- equation (14) is an ellipse equation which represented in the CTF in 

(𝜎2, 𝜇) space. 
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- equation (32) is used to find TE that makes VaR of the maximum VaR 

portfolio given TE limit equal to VaR of an active portfolio. 

- equation (35) is used to find an active portfolio’ VaR. It can be computed 

without involving the other three equations (13,14,32), if we assume a 

correlation of an active and a passive portfolio equal to one. So, the VaR 

of an active portfolio can be computed from equation (31). However, as 

we assume a correlation of an active and a passive portfolio to be less 

than one, we need parameter 𝜇𝐴 from the other three equations. 

4. We will find the weights of the active portfolio by using “fmincon”1 in 

MATLAB. Since we want to find weights of a maximum expected return, we 

set an objective function by minimizing −𝑤′𝐸 subject to tracking error 

calculated from step 3. 

Table 9: portfolio weight and its statistics in case of equal weight benchmark 

Stock Weights (1-20) Mean* Volatility* VaR* TE* 

TE and VaR limit prescribed by Section 4 9.332% 3.018% 

Theoretical active portfolio that maximizes expected return 

28.76% 68.58% 35.98% 37.36% 28.62% 70.84% 13.56% 7.18% -53.23% 17.62% 
3.981% 3.873% 2.390% 3.018% 

-50.67% 39.09% 32.25% 18.52% 7.91% -28.29% -26.09% -96.56% -23.27% -28.14% 

Value of numerical search from MATLAB 

28.76% 68.58% 35.98% 37.36% 28.62% 70.83% 13.56% 7.18% -53.23% 17.62% 
3.981% 3.873% 2.390% 3.018% 

-50.67% 39.09% 32.25% 18.52% 7.92% -28.30% -26.09% -96.56% -23.26% -28.15% 

 * Note that mean, volatility, VaR, and TE are computed from weekly return 

 As a result shown in Table 9 above, stock weights of the maximum expected 

return portfolio found by MATLAB’s numerical search are equal to the theoretical 

value (can be calculated from equation (6 Portfolio statistics, including mean, variance, 

VaR, and TE, also have the same value as portfolio 𝐽1 as characterized by Riccetti 

(2016) (see Table 1). It shows that MATLAB’s numerical search is capable of finding 

the true value of stock weights of the maximum expected return portfolio given TE 

limit, which is the weights of a portfolio on the CTF (i.e., “the optimal weights”). So, 

the portfolio’s parameters and the risk measures such as expected return, variance, VaR, 

and TE are equal to the theoretical value of portfolio 𝐽1. 

From the CTF's derivation, an optimal portfolio is a portfolio constructed from 

an optimal weight that is derived from maximizing expected return with respect to the 

portfolio’s TE, portfolio’s variance, and the sum of different weights from the 

 
1 “fmincon” in MATLAB is commonly used to find parameters that minimize a value of a function 
subject to non-linear constrain. 
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benchmark equal to zero (see equation 3). So, optimal portfolios are on the CTF. 

However, we cannot conclude that all portfolios on the CTF are the optimal portfolios. 

There are many portfolios constructed from different sets of weights having the same 

mean and variance as the optimal portfolio. However, their TEs are higher than the TE 

of the optimal portfolio (or the TE limit). From the fact that the more TE limit, the more 

area of the CTF expanded from the benchmark portfolio. We can conclude that a higher 

TE portfolio than the TE limit must be on or outside of the CTF. Therefore, we can 

imply that any portfolio that has TE less than the TE limit (regardless of being an 

optimal or un-optimal portfolio) must be inside the CTF. 

 The result also proves that the risk measures of the portfolio found by 

MATLAB, such as expected return, variance, VaR, and TE, follows the ellipse equation 

(see equation 4). Therefore, as long as optimal portfolios’ statistic follows the points on 

CTF,  if we set a TE limit as proposed in section 4, it can be guaranteed that an active 

portfolio which has TE less than or equal to the proposed limit will have VaR less than 

or equal to the active portfolio’s VaR limit (𝑉𝐴 ) in the in-sample period. As a result, the 

entire portfolio's VaR will also be less than or equal to the given value. 

Table 10: active portfolio weight and its statistics in case of SET index as a 

benchmark 

Stock Weights (1-20) Mean* Volatility* VaR* TE* 

TE and VaR limit prescribed by Section 4 9.105% 2.889% 

Theoretical active portfolio that maximizes expected return ** 

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
3.649% 3.545% 2.181% 2.889% 

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Value of numerical search from MATLAB 

47.32% 63.64% 28.31% 25.81% 26.92% 71.67% 7.78% 5.09% -54.77% 13.91% 
3.493% 3.377% 2.062% 2.889% 

-33.11% 37.51% 32.83% 13.25% 8.84% -29.40% -30.11% -92.84% -18.78% -23.86% 

 * Note that mean, volatility, VaR, and TE are computed from weekly return 

** the theoretical active portfolio weights cannot be computed by using equation (6) in the 

case of SET index as a benchmark. Because equation (6) is derived from the maximization 

problem (equation (3)) without the constraint on stock universe. Moreover, we do not have 

enough data on all stocks in the benchmark. 

In the case of using SET index as a benchmark, we cannot compute the 

optimal weight because we do not have enough data on all stocks in SET index, and a 

number of stocks in the investment universe is also less than that of the benchmark. 

From the derivation in Appendix A, it requires all stocks in a benchmark to be 

investable and we need to know weights in each stock that are used to calculate 
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benchmark. Therefore, we cannot directly calculate optimal portfolio’s weights from 

equation (6). we can still find portfolio’s risk measures that include mean, variance, 

VaR, and TE from the calculation method provided in Table 1 (i.e., “theoretical value”). 

So, we can compare the result from MATLAB’s numerical search with the theoretical 

value. As shown in Table 10, the parameters such as mean, variance, and VaR of the 

maximum expected return portfolio found by MATLAB is less than the theoretical 

values. It can be implied that the maximum expected return portfolio given the TE limit 

moves to the upper-right side of the theoretical portfolio on (𝜎2, 𝜇) space. In the case 

of SET index as a benchmark, the result in Table 9 considers being better than the equal 

weight benchmark case in terms of VaR The VaR of the active portfolio in the case of 

SET index as a benchmark lower than that of the equal weight benchmark case. 

However, it also proves that portfolios can be moved from theoretical portfolios if an 

investment universe differs from a benchmark. There may be the case that portfolios on 

the CTF move to the lower-right side of the theoretical portfolios. So, even we invest 

in an active portfolio that TE is within the limit, the active portfolio’s VaR can be more 

than the limit. Consequently, the entire portfolio’s VaR will be more than the given 

limit. 

However, the entire portfolio’s VaR is unlikely to be more than the given limit 

when an investment universe is different from a benchmark. Because of the three 

reasons: 

(1) There is a large gap to increase the VaR of an active portfolio when we choose 

to invest in the maximum expected return portfolio (𝐽1). Because 𝑉𝐽1 is far less 

than 𝑉𝑀 (VaR of the maximum VaR portfolio given TE limit)  

(2) Suppose a new active portfolio is moved from a theoretical portfolio with any 

directions with equal probability. There is only 25% chance that a new active 

portfolio is moved to the lower-right side of from a theoretical portfolio. 

(3) After choosing an active portfolio, if the correlation between the active 

portfolio and the passive portfolio is less than the assumption, the entire 

portfolio's VaR will be reduced more from a high diversification effect. 

Therefore, it is still safe to use the proposed TE limit from section 4 on 

determining an active portfolio’s TE limit, even if stocks in an investment universe are 

different from a benchmark. 
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5.2 Effects of prohibit short-sale vs. allowing short-sale  
 

 From the previous part, we conclude that we can use the proposed TE limit 

from section 4 on determining an active portfolio’s TE limit when stocks in an 

investment universe are different from stocks in a benchmark. However, putting more 

restrictions on finding a portfolio to invest in may make the portfolio’s TE and VaR 

deviate more from theoretical values. Since short-selling is hard to implement in 

practice, we will impose a short-selling restriction into this part. The test will be divided 

into two parts: (1) Allow short sell, and (2) Not allow short sell. Then we will observe 

the chosen active portfolio’s statistics (expected return, variance, VaR, and TE) on the 

first day of the testing period and the movement of the TE and the VaR of the active 

portfolio and VaR of the entire portfolio for the whole testing period. 

 Table 11: active portfolio weight and its statistics in case of Allow/Not allow short 

sell with SET index as a benchmark 

* Note that mean, volatility, VaR, and TE are computed from weekly return 

** the theoretical active portfolio weights cannot be computed by using equation (6) in the 

case of SET index as a benchmark. Because equation (6) is derived from the maximization 

problem (equation (3)) without the constraint on the stock universe. Moreover, we do not 

have enough data on all stocks in the benchmark. 

As we find a maximum expected return portfolio’s weight given the TE limit 

using MATLAB’s numerical search, the result is shown in Table 11 above. For the case 

where short-selling is prohibited, the active portfolio’s expected return is less than the 

case where short-selling is allowed as we impose a restriction on portfolio weights. 

Since the active portfolio variance does not change much, a significant decrease in the 

portfolio’s mean makes the portfolio’s VaR significantly increase. However, the 

portfolio’s VaR is still very far from the active portfolio’s VaR limit. It is safe to invest 

in this active portfolio in the case where short-selling is not allowed. 

Stock Weights (1-20) Mean* Volatility* VaR* TE* 

TE and VaR limit prescribed by Section 4 9.105% 0.083% 

Theoretical active portfolio that maximizes expected return** 

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
3.649% 3.545% 2.181% 2.889% 

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Value of the active portfolio from MATLAB’s numerical search (Case: Allow short selling) 

47.32% 63.64% 28.31% 25.81% 26.92% 71.67% 7.78% 5.09% -54.77% 13.91% 
3.493% 3.377% 2.062% 2.889% 

-33.11% 37.51% 32.83% 13.25% 8.84% -29.40% -30.11% -92.84% -18.78% -23.86% 

Value of the active portfolio from MATLAB’s numerical search (Case: Not allow short selling) 

0.01% 31.60% 0.01% 4.14% 14.08% 0.02% 22.13% 0.00% 0.00% 5.43% 
1.693% 3.418% 3.930% 2.889% 

0.01% 1.29% 0.01% 21.22% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 
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We will invest in an active portfolio and a passive portfolio for five years for 

testing portfolio statistics. The entire portfolio consists of 60% of a passive portfolio 

and 40% of an active portfolio with the weight as Table 11 on 1 January 2015. Without 

a re-estimating/re-balancing portfolio, the results of TE and VaR of the active portfolio 

and VaR of the mix portfolio from 1 January 2015 to 31 December 2019 in the case 

where short-selling is allowed is shown in Figure 24 and in the case where short-selling 

is not allowed is shown in Figure 25. 

As the result shown in Figures 24 below, if we allow short-selling on an active 

portfolio, the ex-post TE and the ex-post VaR of the active portfolio are very high in 

the middle of 2016 to the end of 2017. Consequently, it causes the ex-post VaR of the 

mix portfolio to exceed the given limit. However, in the case where short-selling is 

prohibited as shown in Figures 25, all of the ex-post TE, the ex-post VaR of the active 

portfolio and the ex-post VaR of the mix portfolio are in the limit for all testing period. 

The portfolio weights become lower leverage than the allowed short-selling case, so the 

portfolio’s returns will be less volatile. Although the portfolio without short-selling 

causes the risk measures to deviate from the theoretical portfolio (which should increase 

the chance of the risk measures exceeding the limit), the portfolio’s risk measures do 

not tend to exceed the limit in the out-of-sample period. 
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Figure 24: TE, VaR of active portfolio and VaR of mix portfolio in the case where 

short-selling is allowed 
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Figure 25: TE, VaR of active portfolio and VaR of mix portfolio in case of not allow 

short selling 
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Due to the restriction on short-selling, the portfolio’s returns are less volatile. 

It is safe to set the TE limit to the maximum as we proposed in section 4 while 

maximizing the opportunity for return. However, if we allow short-selling, the portfolio 

could be highly leveraged, and the entire portfolio's VaR might breach the given limit. 

So, without re-estimating/re-balancing portfolios, we recommend setting the TE limit 

at a lower level than the 𝑇𝐸𝐴
𝑚𝑎𝑥. 

From Table 5, we suggest the range of the TE limit on the active portfolio as 

[𝑇𝐸𝐴
𝑚𝑖𝑛, 𝑇𝐸𝐴

𝑚𝑎𝑥] = [
𝑐𝑜𝑚2

𝑑
, 𝑇𝐸𝐴]. The active portfolio’s TE limit can be set as 

(1 − 𝛾)𝑇𝐸𝐴
𝑚𝑖𝑛 + 𝛾𝑇𝐸𝐴

𝑚𝑎𝑥 where 𝛾 is the weight on 𝑇𝐸𝐴
𝑚𝑎𝑥 whose value is between 0 

to 1. We will illustrate TE, VaR, NAV of the active portfolio, and VaR of the mix 

portfolio in the cases of setting 𝛾 at 100%, 75%, 50%, 25%, 0% with and without re-

estimating/re-balancing portfolio. Setting 𝛾 at 100% means that we set TE limit at 

𝑇𝐸𝐴
𝑚𝑎𝑥. And Setting 𝛾 at 0% means that we set TE limit at 𝑇𝐸𝐴

𝑚𝑖𝑛. 

 
Table 12: Value of the active portfolio from MATLAB’s numerical search in different 

TE limits 

Stock Weights (1-20) Mean* Volatility* VaR* TE* 

Setting active portfolio’s TE limit at 100%of 𝑻𝑬𝒎𝒂𝒙 

47.32% 63.64% 28.31% 25.81% 26.92% 71.67% 7.78% 5.09% -54.77% 13.91% 
3.493% 3.377% 2.062% 2.889% 

-33.11% 37.51% 32.83% 13.25% 8.84% -29.40% -30.11% -92.84% -18.78% -23.86% 

Setting active portfolio’s TE limit at 75%of 𝑻𝑬𝒎𝒂𝒙 

44.21% 55.31% 24.26% 21.57% 23.83% 63.05% 6.65% 4.80% -47.14% 12.25% 
3.035% 3.043% 1.970% 2.502% 

-25.82% 33.05% 29.25% 11.48% 8.45% -25.04% -26.04% -79.53% -15.08% -19.51% 

Setting active portfolio’s TE limit at 50%of 𝑻𝑬𝒎𝒂𝒙 

40.49% 45.34% 19.40% 16.49% 20.13% 52.73% 5.31% 4.46% -38.02% 10.27% 
2.488% 2.665% 1.895% 2.043% 

-17.09% 27.70% 24.97% 9.36% 8.00% -19.81% -21.16% -63.61% -10.65% -14.32% 

Setting active portfolio’s TE limit at 25%of 𝑻𝑬𝒎𝒂𝒙 

35.51% 32.04% 12.91% 9.72% 15.18% 38.95% 3.52% 4.00% -25.83% 7.63% 
1.758% 2.217% 1.889% 1.445% 

-5.44% 20.57% 19.28% 6.53% 7.39% -12.85% -14.65% -42.36% -4.74% -7.38% 

Setting active portfolio’s TE limit at minimum value 

25.00% 3.89% -0.81% -4.61% 4.73% 9.80% -0.27% 3.04% -0.05% 2.04% 
0.212% 1.710% 2.601% 0.549% 

19.21% 5.48% 7.22% 0.54% 6.10% 1.90% -0.89% 2.60% 7.78% 7.29% 

* Note that mean, volatility, VaR, and TE are computed from weekly return 
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There will be a trade-off when we increase or decrease the TE limit. Setting 

the TE limit at the maximum allows us to invest in the higher expected return portfolio, 

but it also increases the chance of the entire portfolio VaR exceeding the limit. On the 

other hand, setting the TE limit at the minimum decreases the chance of the entire 

portfolio VaR exceeding the limit, but it will lower the portfolio’s expected return. As 

shown in Table 12 above, high leverage stock weights become lower when we decrease 

the TE limit, resulting in a lower portfolio’s expected return. 

 
Figure 26: Comparing TEs of the active portfolios in each level of the TE limit setting 

without re-estimating/re-balancing portfolio 

 

 

 

 

 

 

 

 

 

 

 

 

When we invest in the active portfolio with the weight in Table 7, we will 

observe the ex-post TE, the ex-post VaR, NAV of the active portfolio, and the ex-post 

VaR of the mix portfolio in the “out-sample” period. As shown in Figure 26 above, 

without re-estimating/re-balancing the portfolio, the active portfolio’s TE becomes 

lower as we set the TE limit at a lower percentage of 𝛾. However, all of the active 

portfolio’s TE still be higher than the TE limit regardless of the TE limit level. So, it 
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can imply that if stocks in an active portfolio can be short-sold, it will be hard to control 

the ex-post active portfolio’s TE to be within the limit. (Without re-estimating/ re-

balancing a portfolio) 

 

Figure 27: Comparing VaRs of the active portfolios in each level of the TE limit 

setting without re-estimating/re-balancing portfolio 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Figure 27 above, when we compare the active portfolios’ VaR 

in each level of the TE limit setting, they are also become lower as we set the TE limit 

at a lower percentage of 𝑊𝑇𝐸𝑚𝑎𝑥 . From our stocks’ set, the active portfolios’ VaR starts 

to be lower than the VaR limit when setting TE limit at 25% of the 𝑇𝐸𝐴
𝑚𝑎𝑥. If we set 

TE limit at the very low level such as 𝑇𝐸𝑚𝑖𝑛, the active portfolio’s VaR will become 

very close to the passive portfolio’s VaR. 
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Figure 28: Comparing VaRs of the mix portfolios in each level of the TE limit setting 

without re-estimating/re-balancing portfolio 

 

 

 

 

 

 

 

 

 

 

 

 

For the entire portfolio’s VaR, since we invest in the passive portfolio for 60% 

and the active portfolio for 40%, the entire portfolio’s VaR will be calculated from both 

portions. Because the passive portfolio’s VaR always stays at a low level, the active 

portfolio’s VaR will be the main factor that stimulates the entire portfolio’s VaR. As 

shown in Figure 28 above, the entire portfolio’s VaR starts to be lower than the given 

limit (𝑉𝐺) when setting the TE limit at 50% of the 𝑇𝐸𝐴
𝑚𝑎𝑥. So, we conclude that we need 

to set the TE limit below 𝑇𝐸𝐴
𝑚𝑎𝑥 to allow some buffer for the entire portfolio’s VaR 

within the given limit. 
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Figure 29: Comparing NAVs of the active portfolios in each level of the TE limit 

setting without re-estimating/re-balancing portfolio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Even though an entire portfolio’s VaR can be lower if we set a TE limit at a 

low level, the portfolio returns will also be lower. As shown in Table 12, the active 

portfolio’s expected returns become lower when setting the TE limit at a low level. The 

active portfolio’s actual returns presented in NAV, as Figure 29 above, are also lower 

if we set a TE limit at a lower level. Although setting TE at 𝑇𝐸𝐴
𝑚𝑎𝑥can make the  

portfolio’s return more volatile, it still produces the highest return at the end of 2019. 

However, since we prioritize the entire portfolio VaR rather than its expected 

return, we suggest setting the TE limit below 𝑇𝐸𝐴
𝑚𝑎𝑥 when we do not re-estimate/re-

balance the portfolio. From our example of the stocks’ set, setting the TE limit at 75% 

of 𝑇𝐸𝐴
𝑚𝑎𝑥will be safe for the entire portfolio’s VaR within the limit while having a high 

return opportunity. 
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5.3 effects on yearly re-estimating/re-balancing portfolio 

As the result in part 5.2, to prevent VaR of the mix portfolio exceeds the given 

limit, we will illustrate the effect of yearly re-estimating/re-balancing portfolio in this 

part. According to best practices for portfolio re-balancing by (Zilbering, Jaconetti, & 

Kinniry Jr, 2015), they suggest that “re-balancing strategy based on reasonable 

monitoring frequencies (such as annual or semi-annual) and reasonable allocation 

thresholds (variations of 5% or so) is likely to provide sufficient risk control relative to 

the target asset allocation”. From their research paper, the risk-adjusted returns are not 

meaningfully different whether a portfolio is re-balanced more frequently, but costs 

will be increase more as we re-balance more. Moreover, since parameters change as 

time pass, keeping only the same weight (re-balance), the active portfolio’s TE and 

VaR may still exceed the limit. Therefore, we decide to illustrate both yearly re-estimate 

parameters and re-balance portfolio in this part to keep the active portfolio’s TE and 

VaR within the limit at the beginning of each year. 

In the case where short-selling is allowed as shown in Figure 30 below, the 

ex-post TE of the active portfolio still exceeds the limit even we re-estimating/re-

balancing the portfolio (right-hand side of Figure 30). However, ex-post VaR of the 

active portfolio and VaR of the mix portfolio can still be within the limit when we re-

estimating/re-balancing portfolio for most of the period. However, in the middle of 

2019, a sudden price change in the high leverage stocks causes the ex-post TE, ex-post 

VaR of the active portfolio to significantly increases and very far from the limits. So, 

we re-estimate parameters and re-balance portfolios again. After re-estimating/re-

balancing in the middle of 2019, the ex-post TE, the ex-post VaR of the active portfolio, 

and the ex-post VaR of the mix portfolio stop increasing. However, they start increasing 

at the end of 2019 again as the sudden price change in the high leverage stocks causing 

the ex-post VaR of the mix portfolio to exceed the limit. So, we need to re-estimate 

parameters and re-balance portfolios at the start of 2020, and it will be done as a yearly 

schedule. Even though we closely monitor the risk measures, it is still hard to reduce 

the risk measures to be within the limit. Because the risk measures are calculated in the 

“ex-post” method, which is based on one-year data, so it needs time to change ex-post 

risk measures.  
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Figure 30: TE, VaR of active portfolio and VaR of mix portfolio in a case where 

short-selling is allowed with yearly re-estimating/re-balancing portfolio 

No re-estimate and re-balance Re-estimate and re-balance 

  

 
In sum, the result still shows the better result on yearly re-estimating/re-

balancing portfolio than do nothing. Sometimes, re-estimating/re-balancing portfolio 

also helps an asset manager to increase risk limit. However, there may be some 
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occurrence that TE, VaR of the active portfolio, and VaR of the mix portfolio can 

exceed the limit, such as the second half of 2019. So, apart from the yearly re-estimate 

and re-balance portfolio, we still need to monitor the portfolio’s risk and re-estimate/ 

re-balance the portfolio when TE and VaR of the active portfolio go too far from the 

limit. 

In the case where short-selling is not allowed, as shown in Figure 27 below, 

even we do not need to re-estimating/re-balancing portfolio (left side of Figure 27), 

there are chances of ex-post TE, ex-post VaR of the active portfolio, and ex-post VaR 

of the mix portfolio exceeding the limit. With yearly re-estimating/re-balancing 

portfolio (right side of Figure 27), ex-post TE, ex-post VaR of the active portfolio is in 

the limit until 2018. However, they start to exceed the limit when choosing to invest in 

a newly re-balanced portfolio after 2018. This situation shows that there are cases that 

a chosen active portfolio in the case where short-selling is prohibited can make ex-post 

TE and ex-post VaR exceed the limit when time goes, even though they are less volatile 

than the case where short-selling is allowed. Re-estimating/re-balancing does not make 

ex-post TE and ex-post VaR drop suddenly because they are calculated from one-year 

returns which already happen in the past. Ex-post TE and ex-post VaR will only change 

a bit when the time goes. As we see the result after re-estimating/re-balancing portfolio 

and choosing a new active portfolio at the beginning of 2019, ex-post TE, ex-post VaR 

of the active portfolio starts to reduce. Even the ex-post VaR of the mix portfolio is not 

yet exceeding the limit. If we still insist on not re-estimate and re-balance the portfolio, 

the ex-post VaR of the mix portfolio can go further and exceed the limit. Therefore, a 

yearly re-estimating/re-balancing portfolio is still needed. 
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Figure 31: TE, VaR of active portfolio and VaR of mix portfolio in the case where 

short-selling is not allowed with yearly re-estimating/re-balancing portfolio 

No re-estimate and re-balance Re-estimate and re-balance 
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For the suggestion on setting the active portfolio’s TE limit when we assume 

re-estimating and re-balancing portfolios regularly, the test will be as same as without 

re-estimating/ re-balancing portfolios in section 5.2. We will invest in the active 

portfolio with the weight in Table 7. Then we observe the ex-post TE, the ex-post VaR, 

NAV of the active portfolio, and the ex-post VaR of the mix portfolio in the “out-

sample” period. As shown in Figure 32 below, the result can be concluded as the same 

as without re-estimating/re-balancing portfolio case. The ex-post active portfolio’s TE 

becomes lower as we set the TE limit at a lower percentage of 𝛾. And all of the active 

portfolio’s TE still be higher than the TE limit regardless of the TE limit level. 

 
Figure 32: Comparing TEs of the active portfolios in each level of the TE limit setting 

with re-estimating/re-balancing portfolio 
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Figure 33: Comparing VaRs of the active portfolios in each level of the TE limit 

setting with re-estimating/re-balancing portfolio 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Figure 33 above, when comparing the active portfolios’ VaR in 

each level of the TE limit setting, they become lower as we set the TE limit at a lower 

percentage of 𝛾. As the same as the case of no re-estimating/re-balancing, the active 

portfolio’s VaR starts to be lower than the VaR limit when setting the TE limit at 25% 

of the 𝑇𝐸𝐴
𝑚𝑎𝑥. If we set the TE limit at the 𝑇𝐸𝑚𝑖𝑛, the active portfolio’s VaR will 

become very close to the passive portfolio’s VaR. 
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Figure 34: Comparing VaRs of the active portfolios in each level of the TE limit 

setting with re-estimating/re-balancing portfolio 

 

 

 

 

 

 

 

 

 

 

 

 

For the entire portfolio’s VaR, as shown in Figure 34 above, we do not require 

much buffer like the case of no re-estimating/re-balancing. The entire portfolio’s VaR 

starts to be lower than the given limit (𝑉𝐺) when setting the TE limit at 75% of 

the 𝑇𝐸𝐴
𝑚𝑎𝑥. Since we re-estimate/re-balance portfolios regularly, the risk measures of 

the active portfolio, including the entire portfolio’s VaR can be reduced to be within 

the limit. Even though the ex-post risk measures cannot be reduced suddenly when we 

re-estimate/re-balance the portfolio, the movement of the ex-post risk measures can be 

adjusted in the long run. 
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Figure 35: Comparing NAVs of the active portfolios in each level of the TE limit 

setting with re-estimating/re-balancing portfolio 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Figure 35 above, there is still a trade-off between risk control 

and return opportunity. Even though the active portfolio’s NAV of setting the TE limit 

at maximum is lowest among the other level at the end of 2019, setting the TE limit at 

maximum can still generate the most actual return in some period. The active portfolio’s 

NAV in case of setting TE limit at maximum has a chance to reach 3 baht/unit. 

Although the portfolio construction with the highest TE limit yields higher NAV most 

of the time, it is accompanied by higher volatility and sometimes underperforms, as we 

can see in Figure 35 around the end of our test period. In other words, while setting a 

higher TE limit implies a higher expected return, the realized return also tends to be 

more volatile. 

In sum, as we prioritize an entire portfolio VaR more than a portfolio expected 

return, we still recommend setting the TE limit below 𝑇𝐸𝐴
𝑚𝑎𝑥 in case re-estimating/re-

balancing portfolio regularly. From the example of stocks’ set, setting the TE limit at 

75% of the 𝑇𝐸𝐴
𝑚𝑎𝑥 is the safe level for the entire portfolio’s VaR to be within the limit 

while generating the high opportunity for return. 
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Section 6: Conclusion 

When an asset manager manages a portfolio, he usually imposes a TE or a 

VaR limit on his portfolio to control portfolio risks. However, a portfolio may be 

divided into different portions. In our research, we consider a portfolio that consists of 

an active portion and a passive portion. Having a VaR budget of an entire portfolio, we 

propose methods to determine TE and VaR limit on the active portfolio. We adapt the 

methodology of determining TE and VaR limit on a portfolio proposed by Riccetti 

(2016) into this research paper. Moreover, in contrast to Riccetti (2016), we propose a 

new method to determine: 

(1) the lower limit on TE (𝑇𝐸𝑚𝑖𝑛) when VaR is given (𝑉𝐺), 

(2) the lower limit on VaR (𝑉𝑚𝑖𝑛) that can be set, 

(3) the upper limit on TE (𝑇𝐸𝑚𝑎𝑥) in the case of an inefficient benchmark. 

These methods will provide us with clearer instructions on determining the 

TE and the VaR limit on the active portfolio. We start from the idea of the portfolio on 

a CTF (an ellipse) tangent with the VaR line. The area inside the CTF represents a 

necessary (but not sufficient) condition for the TE to be within the limit. Therefore, 

provided that the tangential CTF is to the left-hand side of the VaR line, we can 

conclude that any portfolio whose tracking error is within the TE limit has value-at-risk 

that satisfies the VaR limit as well. 

From the idea of determining a portfolio’s TE limit, we apply this idea to 

determine a TE limit of an active portfolio when we have an entire portfolio consist of 

an active portion and a passive portion. We impose an assumption on a correlation of 

portfolios’ return between an active and a passive portfolio. (The correlation equal to 

one will be most conservative when determining the TE and the VaR limit of the active 

portfolio.) We use the given VaR of the entire portfolio to determine the active 

portfolio’s VaR. Then we determine the active portfolio’s TE which makes the CTF 

tangent with the VaR line. Most parts of determining the TE and the VaR limit of an 

active portfolio can be easily computed as proposed in Table 3 and Table 4. However, 

the parts that we want to find active portfolio’s TE which make the CTF tangent with 

the VaR line are involved with four equations (such as equation (13), (14), (32), and 

(35)). We need to solve those four equations to get the active portfolio’s TE and the 

active portfolio’s VaR, making the CTF tangent with the VaR line. 

Based on actual market data, we try to determine an active portfolio’s TE limit 

and an active portfolio’s VaR limit and perform back-testing. In this empirical part, we 
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relax certain theoretical assumptions so that (1) stocks in an investment universe can be 

different from stocks in a benchmark (2) there is a restriction on short-selling. To 

determine the TE limit of the active portfolio, we use the method described in section 

4. We then use MATLAB’s numerical search to find an active portfolio weight: the 

maximum expected return portfolio with constraints on the TE limit and the VaR limit. 

Due to the difference in stocks between the investment universe and the benchmark, 

the expected return, variance, VaR, and TE of the active portfolio from MATLAB’s 

numerical search deviate from the theoretical portfolio. In the case where the numerical 

search is carried out under the constraint of no short-sell, the active portfolio’s VaR and 

the entire portfolio’s VaR are even more likely to exceed the theoretical limit, at least 

in our in-sample period. Luckily, during the out-of-sample period, the results of the 

portfolio’s risk measure do not tend to exceed the limit, because the active portfolio and 

the entire portfolio’s returns are less volatile due to a low leverage in the case no-short-

selling portfolio. 

TEs and VaRs derived from the analysis part are “ex-ante” in the in-sample 

period, but we monitor them in the out-of-sample period in “ex-post.” Ex-post TEs and 

ex-post VaRs likely to be more than the limit, especially in the case of having short 

positions in an active portfolio. The high entire portfolio’s VaR usually comes from the 

active portfolio’s VaR since the passive portfolio’s VaR usually stays at the low level. 

Because the active portfolio returns are more volatile due to high leverage, we 

recommend re-estimating/re-balancing the portfolio regularly, such as annually or 

semi-annually, to control the risk measures. However, it is still hard to reduce the risk 

measures to be within the limit. Since the risk measures are calculated in “ex-post” 

based on one-year data in the empirical test, so it needs time for ex-post risk measures 

to change. Even though re-estimating/re-balancing the portfolio cannot reduce the ex-

post TE and the ex-post VaR suddenly, it can change their direction to go up further. 

In sum, this work presents formulas to compute the TE limit and VaR limit. 

We suggest setting the TE limit at a maximum to maximize the opportunity for return. 

However, in practice, when we monitor the risk measures in ex-post, there are issues. 

If short-selling is allowed, the portfolio could be highly leveraged, and the portfolio's 

VaR might breach the given limit. In that case, we recommend setting the TE limit 

below the 𝑇𝐸𝐴
𝑚𝑎𝑥 when we do not re-estimate/re-balance the portfolio to allow some 

buffer. We do not require much buffer when assuming re-estimating/re-balancing 

portfolio regularly. So, we can set the TE limit higher than the case of no re-estimating/ 

re-balancing. However, if short-selling is not allowed, it quite safes to set the TE limit 

at 𝑇𝐸𝐴
𝑚𝑎𝑥 as we proposed because the portfolio will be low leveraged enough to prevent 
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the entire portfolio’s VaR from exceeding the limit. In this case, we can increase the 

TE limit to the maximum to gain more return opportunities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 58 

APPENDIX 

Constant TE frontier (CTF) can be derived from a maximization (or 

equivalently a minimization) over 𝑥: 

Max   𝑥′𝐸    
s.t. 𝑥′𝑖  =   0  (A1) 

 

𝑥′Ω𝑥  =   𝑇2   

 (𝑞 + 𝑥)′Ω(𝑞 + 𝑥)  =   𝜎𝑝
2,  

where  

𝑞  =   vector of benchmark weights, 

𝑥  =   vector of weights that deviate from the benchmark, 

𝑞 + 𝑥  =   vector of portfolio weights, 

𝑇2  =   variance of excess returns. 

We can set up Lagrangian function as: 

Taking partial derivatives with respect to 𝑥, 𝜆1, 𝜆2, 𝜆3 and set them equal to 

zero, we get: 

𝜕𝐿

𝜕𝑥
 
=   0  =   𝐸 + 𝜆1𝑖 + 𝜆2Ω𝑥 + 𝜆3Ω𝑥 + 𝜆3Ω𝑞, 

(A3) 
 

 

 

𝜕𝐿

𝜕𝜆2
 
=   0  =   0.5(𝑥′Ω𝑥 − 𝑇2) , 

(A5) 

 

 

 

From (A3), we get: 

 

 

 

 

𝐿  = 𝑥
′𝐸 + 𝜆1(𝑥

′𝑖 − 0) + 0.5𝜆2(𝑥
′Ω𝑥 − 𝑇2) + 0.5𝜆3(𝑥

′Ω𝑥 + 2𝑞′Ω𝑥 + 𝑞′Ω𝑞 − 𝜎𝑝
2).  (A2) 

𝜕𝐿

𝜕𝜆1
 
=   0  =  𝑥′𝑖 , 

(A4) 

𝜕𝐿

𝜕𝜆3
 
=   0  =   0.5(𝑥′Ω𝑥 + 2𝑞′Ω𝑥 + 𝑞′Ω𝑞 − 𝜎𝑝

2) . 
(A6) 

𝑥  =  −
1

𝜆2+𝜆3
Ω−1(𝐸 + 𝜆1𝑖 + 𝜆3Ω𝑞) . (A7) 
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Substitute 𝑥 from (A7) to (A4), we get: 

Substitute 𝑥 from (A7) to (A5), we get 

Define 𝑦 = 𝜎𝑝
2 − 𝜎𝐵

2 − 𝑇2. If we consider (A5), we get 𝑥′Ω𝑥 = 𝑇2. Then 

we substitute 𝑥 from (A7) to (A6), we get: 

Substitute 𝜆1 from (A8) to (A10), we get: 

 

 

 

 

 

 

0  =  𝑖′Ω−1(𝐸 + 𝜆1𝑖 + 𝜆3Ω𝑞)   

0  =  𝑖′Ω−1𝐸 + 𝜆1𝑖′Ω
−1𝑖 + 𝜆3𝑖′Ω

−1Ω𝑞   

0  =  𝑏 + 𝜆1𝑎 + 𝜆3   

𝜆1 = −
𝑏+𝜆3

𝑎
  (A8) 

𝑇2  =  (
1

𝜆2+𝜆3
)
2

(𝐸 + 𝜆1𝑖 + 𝜆3Ω𝑞)′Ω
−1ΩΩ−1(𝐸 + 𝜆1𝑖 + 𝜆3Ω𝑞)   

(𝜆2 + 𝜆3)
2𝑇2 =  𝐸′Ω−1𝐸 + 𝜆1𝐸

′Ω−1𝑖 + 𝜆3𝐸
′Ω−1Ω𝑞 + 𝜆1𝑖

′Ω−1𝐸 + 𝜆1
2𝑖′Ω−1𝑖 +

𝜆1𝜆3𝑖
′Ω−1Ω𝑞 + 𝜆3𝑞

′ΩΩ−1𝐸 + 𝜆1𝜆3𝑞
′ΩΩ−1𝑖 + 𝜆3

2𝑞′ΩΩ−1Ω𝑞  
 

(𝜆2 + 𝜆3)
2𝑇2  =   𝑐 + 𝜆1𝑏 + 𝜆3𝜇𝐵 + 𝜆1𝑏 + 𝜆1

2𝑎 + 𝜆1𝜆3 + 𝜆3𝜇𝐵 + 𝜆1𝜆3 + 𝜆3
2𝜎𝐵
2   

(𝜆2 + 𝜆3)
2𝑇2  =   𝑐 + 2𝜆1𝑏 + 2𝜆3𝜇𝐵 + 𝜆1

2𝑎 + 2𝜆1𝜆3 + 𝜆3
2𝜎𝐵
2 . (A9) 

0  =  𝑇
2 −

2

𝜆2+𝜆3
𝑞′ΩΩ−1(𝐸 + 𝜆1𝑖 + 𝜆3Ω𝑞) + 𝑞

′Ω𝑞 − 𝜎𝑝
2    

𝑇2 + 𝜎𝐵
2 − 𝜎𝑝

2 =  
2

𝜆2+𝜆3
𝑞′ΩΩ−1(𝐸 + 𝜆1𝑖 + 𝜆3Ω𝑞)   

−𝑦  =  
2

𝜆2+𝜆3
𝑞′ΩΩ−1(𝐸 + 𝜆1𝑖 + 𝜆3Ω𝑞)   

−
(𝜆2+𝜆3)𝑦

2
  =  𝑞

′ΩΩ−1𝐸 + 𝜆1𝑞
′ΩΩ−1𝑖 + 𝜆3𝑞

′ΩΩ−1Ω𝑞   

−
(𝜆2+𝜆3)𝑦

2
  =  𝜇𝐵 + 𝜆1 + 𝜆3𝜎𝐵

2 . (A10) 

−
(𝜆2+𝜆3)𝑦

2
  =  𝜇𝐵 −

𝑏+𝜆3

𝑎
+ 𝜆3𝜎𝐵

2   

−
(𝜆2+𝜆3)𝑦

2
  = (𝜇𝐵 −

𝑏

𝑎
) + 𝜆3(𝜎𝐵

2 −
1

𝑎
)   

−
(𝜆2+𝜆3)𝑦

2
  =  ∆1 + 𝜆3∆2   

𝜆2 + 𝜆3 =  −
2

𝑦
(∆1 + 𝜆3∆2) . (A11) 
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Substitute 𝜆1 from (A8) and 𝜆2 + 𝜆3 from (A11) to (A9), we get: 

Solutions for the quadratic equation (A12) is: 

 

 

 

4

𝑦2
(∆1 + 𝜆3∆2)

2𝑇2  
=   𝑐 − 2𝑏 (

𝑏+𝜆3

𝑎
) + 2𝜆3𝜇𝐵 + (

𝑏+𝜆3

𝑎
)
2

𝑎 − 2 (
𝑏+𝜆3

𝑎
) 𝜆3 +

𝜆3
2𝜎𝐵
2  

 

4𝑇2

𝑦2
(∆1
2 + 2∆1∆2𝜆3 + 𝜆3

2∆2
2)  =   𝑐 −

2𝑏2

𝑎
−
2𝑏𝜆3

𝑎
+ 2𝜆3𝜇𝐵 +

𝑏2

𝑎
+
2𝑏𝜆3

𝑎
+
𝜆3
2

𝑎
−
2𝑏𝜆3

𝑎
−
2𝜆3
2

𝑎
+

𝜆3
2𝜎𝐵
2  

 

4𝑇2

𝑦2
(∆1
2 + 2∆1∆2𝜆3 + 𝜆3

2∆2
2)  =   𝑐 −

𝑏2

𝑎
+ 2𝜆3𝜇𝐵 −

2𝑏𝜆3

𝑎
−
𝜆3
2

𝑎
+ 𝜆3

2𝜎𝐵
2   

4𝑇2

𝑦2
(∆1
2 + 2∆1∆2𝜆3 + 𝜆3

2∆2
2)  =   𝑑 + 2𝜆3 (𝜇𝐵 −

𝑏

𝑎
) + 𝜆3

2 (𝜎𝐵
2 −

1

𝑎
)   

4𝑇2

𝑦2
(∆1
2 + 2∆1∆2𝜆3 + 𝜆3

2∆2
2)  =   𝑑 + 2𝜆3∆1 + 𝜆3

2∆2   

4𝑇2∆1
2 + 8𝑇∆1∆2𝜆3 +

4𝑇𝜆3
2∆2
2  

=   𝑑𝑦2 + 2𝜆3∆1𝑦
2 + 𝜆3

2∆2𝑦
2  

 

0  
=   𝑑𝑦2 + 2𝜆3∆1𝑦

2 + 𝜆3
2∆2𝑦

2 − 4𝑇2∆1
2 − 8𝑇2∆1∆2𝜆3 −

4𝑇2𝜆3
2∆2
2  

 

0  
=  (∆2𝑦

2 − 4𝑇2∆2
2)𝜆3

2 + (2∆1𝑦
2 − 8𝑇2∆1∆2)𝜆3 + 𝑑𝑦

2 −

4𝑇2∆1
2  

 

0  
=  (∆2𝑦

2 − 4𝑇2∆2
2)𝜆3

2 +
2∆1

∆2
(∆2𝑦

2 − 4𝑇2∆2
2)𝜆3 + 𝑑𝑦

2 −

4𝑇2∆1
2  

 

0  =  𝜆3
2 +

2∆1

∆2
𝜆3 +

𝑑𝑦2−4𝑇2∆1
2

∆2𝑦2−4𝑇2∆2
2 . (A12) 

𝜆3  =  [−
2∆1

∆2
±√

4∆1
2

∆2
2 − 4(

𝑑𝑦2−4𝑇2∆1
2

∆2𝑦2−4𝑇2∆2
2)] /2   

𝜆3  =  −
∆1

∆2
± √

∆1
2

∆2
2 −

𝑑𝑦2−4𝑇2∆1
2

∆2𝑦2−4𝑇2∆2
2   

𝜆3  =  −
∆1

∆2
± √

∆1
2𝑦2−4𝑇2∆1

2∆2

(𝑦2−4𝑇2∆2)∆2
2 −

𝑑∆2𝑦2−4𝑇2∆1
2∆2

(𝑦2−4𝑇2∆2)∆2
2    

𝜆3  =  −
∆1

∆2
± √

𝑦2(∆1
2−𝑑∆2)

(𝑦2−4𝑇2∆2)∆2
2   

𝜆3  =  −
∆1

∆2
±
𝑦

∆2
√
∆1
2−𝑑∆2

𝑦2−4𝑇2∆2
 . (A13) 
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Substitute 𝜆3 from (A13) to (A11), we get: 

 

Define 𝑧 = 𝜇𝑝 − 𝜇𝐵. Substitute 𝜆1 from (A8), 𝜆2 + 𝜆3 from (A14), and 𝜆3 

from (A13) to (A7) and compute 𝑥′𝐸, we get: 

 

𝜆2 + 𝜆3  =  −
2

𝑦
(∆1 + (−

∆1

∆2
±
𝑦

∆2
√
∆1
2−𝑑∆2

𝑦2−4𝑇2∆2
)∆2)    

𝜆2 + 𝜆3  =  −
2

𝑦
(±𝑦√

∆1
2−𝑑∆2

𝑦2−4𝑇2∆2
)   

𝜆2 + 𝜆3  =  ±(−2)√
∆1
2−𝑑∆2

𝑦2−4𝑇2∆2
 . (A14) 

𝑥′𝐸  =  −
1

𝜆2+𝜆3
(𝐸 + 𝜆1𝑖 + 𝜆3Ω𝑞)′Ω

−1𝐸   

𝑥′𝐸 + 𝑞′𝐸 − 𝑞′𝐸  =  −
1

𝜆2+𝜆3
(𝐸 −

𝑏+𝜆3

𝑎
𝑖 + 𝜆3Ω𝑞) ′Ω

−1𝐸     

𝜇𝑝 − 𝜇𝐵  =  −
1

𝜆2+𝜆3
(𝐸′Ω−1𝐸 −

𝑏+𝜆3

𝑎
𝑖′Ω−1𝐸 + 𝜆3𝑞′ΩΩ

−1𝐸 )   

𝑧  =  −
1

𝜆2+𝜆3
(𝑐 −

𝑏+𝜆3

𝑎
𝑏 + 𝜆3μB )   

 =  −
1

𝜆2+𝜆3
((𝑐 −

𝑏2

𝑎
) + (𝜇𝐵 −

𝑏

𝑎
) 𝜆3)   

 =  −
1

𝜆2+𝜆3
(𝑑 + ∆1𝜆3)   

 =  ±
1

2
√
𝑦2−4𝑇2∆2

∆1
2−𝑑∆2

(𝑑 + ∆1 (−
∆1

∆2
±
𝑦

∆2
√
∆1
2−𝑑∆2

𝑦2−4𝑇2∆2
))   

±2𝑧√
∆1
2−𝑑∆2

𝑦2−4𝑇2∆2
  =   𝑑 −

∆1
2

∆2
±
𝑦∆1

∆2
√
∆1
2−𝑑∆2

𝑦2−4𝑇2∆2
   

±2𝑧∆2√
∆1
2−𝑑∆2

𝑦2−4𝑇2∆2
  =   𝑑∆2 − ∆1

2 ± 𝑦∆1√
∆1
2−𝑑∆2

𝑦2−4𝑇2∆2
   

±(2𝑧∆2 − 𝑦∆1)√
𝑑∆2−∆1

2

4𝑇2∆2−𝑦2
  =   𝑑∆2 − ∆1

2    

±(2𝑧∆2 − 𝑦∆1)  =  √(𝑑∆2 − ∆1
2)(4𝑇2∆2 − 𝑦2)    

4∆2
2𝑧2 − 4∆1∆2𝑦𝑧 + ∆1

2𝑦2  =   4𝑑𝑇2∆2
2 − 𝑑∆2𝑦

2 − 4𝑇2∆1
2∆2 + ∆1

2𝑦2    

4∆2
2𝑧2 − 4∆1∆2𝑦𝑧  =   4𝑑𝑇

2∆2
2 − 𝑑∆2𝑦

2 − 4𝑇2∆1
2∆2    

4∆2𝑧
2 − 4∆1𝑦𝑧  =   4𝑑𝑇

2∆2 − 𝑑𝑦
2 − 4𝑇2∆1

2    

0  =   4∆2𝑧
2 − 4∆1𝑦𝑧 − 4𝑑𝑇

2∆2 + 𝑑𝑦
2 + 4𝑇2∆1

2    

0  =   𝑑𝑦2 + 4∆2𝑧
2 − 4∆1𝑦𝑧 − 4𝑇

2(𝑑∆2 − ∆1
2). (A15) 
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For a quadratic equation of type 𝐴𝑦2 + 𝐵𝑧2 + 𝐶𝑦𝑧 + 𝐹 = 0, equation (A15) 

represents and ellipse when the term: 

is strictly positive. This term must be positive when the benchmark is within the 

efficient set which also imply 𝑑 to be positive. 

If we consider a minimization problem over 𝑥, it will also provide the same 

ellipse equation (equation (A15)) as the maximization problem. 

Consider a minimization over 𝑥: 

Max   −𝑥′𝐸    
s.t. 𝑥′𝑖  =   0  (A17) 

 

𝑥′Ω𝑥  =   𝑇2   

 (𝑞 + 𝑥)′Ω(𝑞 + 𝑥)  =   𝜎𝑝
2.  

We can set up Lagrangian function as: 

Taking partial derivatives with respect to 𝑥, 𝜆1, 𝜆2, 𝜆3 and set them equal to 

zero, we get: 

𝜕𝐿

𝜕𝑥
 
=   0  =  −𝐸 + 𝜆1𝑖 + 𝜆2Ω𝑥 + 𝜆3Ω𝑥 + 𝜆3Ω𝑞, 

(A19) 
 

 

 

 

 

 

From (A19), we get: 

 

𝐴𝐵 −
1

4
𝐶2  =   𝑑(4∆2) − (

1

4
) (−4∆1)

2   

𝐴𝐵 −
1

4
𝐶2  =   4(𝑑∆2 − ∆1

2)   (A16) 

𝐿  = −𝑥
′𝐸 + 𝜆1(𝑥

′𝑖 − 0) + 0.5𝜆2(𝑥
′Ω𝑥 − 𝑇2) + 0.5𝜆3(𝑥

′Ω𝑥 + 2𝑞′Ω𝑥 + 𝑞′Ω𝑞 − 𝜎𝑝
2) . (A18) 

𝜕𝐿

𝜕𝜆1
 
=   0  =  𝑥′𝑖, 

(A20) 

𝜕𝐿

𝜕𝜆2
 
=   0  =   0.5(𝑥′Ω𝑥 − 𝑇2), 

(A21) 

𝜕𝐿

𝜕𝜆3
 
=   0  =   0.5(𝑥′Ω𝑥 + 2𝑞′Ω𝑥 + 𝑞′Ω𝑞 − 𝜎𝑝

2). 
(A22) 

𝑥  =  −
1

𝜆2+𝜆3
Ω−1(−𝐸 + 𝜆1𝑖 + 𝜆3Ω𝑞) . (A23) 
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Substitute 𝑥 from (A23) to (A20), we get: 

Substitute 𝑥 from (A23) to (A21), we get: 

Define 𝑦 = 𝜎𝑝
2 − 𝜎𝐵

2 − 𝑇2. From 𝑥′Ω𝑥 = 𝑇2 in (A21), we substitute 𝑥 from 

(A23) to (A22), we get: 

Substitute 𝜆1 from (A24) to (A26), we get: 

 

 

 

 

 

 

0  =   𝑖′Ω−1(−𝐸 + 𝜆1𝑖 + 𝜆3Ω𝑞)   

0  =  −𝑖′Ω−1𝐸 + 𝜆1𝑖′Ω
−1𝑖 + 𝜆3𝑖′Ω

−1Ω𝑞   

0  =  −𝑏 + 𝜆1𝑎 + 𝜆3   

𝜆1 =  
𝑏−𝜆3

𝑎
 . (A24) 

𝑇2  =  (
1

𝜆2+𝜆3
)
2

(−𝐸 + 𝜆1𝑖 + 𝜆3Ω𝑞)′Ω
−1ΩΩ−1(−𝐸 + 𝜆1𝑖 + 𝜆3Ω𝑞)   

(𝜆2 + 𝜆3)
2𝑇2 =  𝐸′Ω−1𝐸 − 𝜆1𝐸

′Ω−1𝑖 − 𝜆3𝐸
′Ω−1Ω𝑞 − 𝜆1𝑖

′Ω−1𝐸 + 𝜆1
2𝑖′Ω−1𝑖 +

𝜆1𝜆3𝑖
′Ω−1Ω𝑞 − 𝜆3𝑞

′ΩΩ−1𝐸 + 𝜆1𝜆3𝑞
′ΩΩ−1𝑖 + 𝜆3

2𝑞′ΩΩ−1Ω𝑞  
 

(𝜆2 + 𝜆3)
2𝑇2  =   𝑐 − 𝜆1𝑏 − 𝜆3𝜇𝐵 − 𝜆1𝑏 + 𝜆1

2𝑎 + 𝜆1𝜆3 − 𝜆3𝜇𝐵 + 𝜆1𝜆3 + 𝜆3
2𝜎𝐵
2   

(𝜆2 + 𝜆3)
2𝑇2  =   𝑐 − 2𝜆1𝑏 − 2𝜆3𝜇𝐵 + 𝜆1

2𝑎 + 2𝜆1𝜆3 + 𝜆3
2𝜎𝐵
2 . (A25) 

0  =  𝑇
2 −

2

𝜆2+𝜆3
𝑞′ΩΩ−1(−𝐸 + 𝜆1𝑖 + 𝜆3Ω𝑞) + 𝑞

′Ω𝑞 − 𝜎𝑝
2    

𝑇2 + 𝜎𝐵
2 − 𝜎𝑝

2 =  
2

𝜆2+𝜆3
𝑞′ΩΩ−1(−𝐸 + 𝜆1𝑖 + 𝜆3Ω𝑞)   

−𝑦  =  
2

𝜆2+𝜆3
𝑞′ΩΩ−1(−𝐸 + 𝜆1𝑖 + 𝜆3Ω𝑞)   

−
(𝜆2+𝜆3)𝑦

2
  =  −𝑞

′ΩΩ−1𝐸 + 𝜆1𝑞
′ΩΩ−1𝑖 + 𝜆3𝑞

′ΩΩ−1Ω𝑞   

−
(𝜆2+𝜆3)𝑦

2
  =  −𝜇𝐵 + 𝜆1 + 𝜆3𝜎𝐵

2 . (A26) 

−
(𝜆2+𝜆3)𝑦

2
  =  −𝜇𝐵 +

𝑏−𝜆3

𝑎
+ 𝜆3𝜎𝐵

2   

−
(𝜆2+𝜆3)𝑦

2
  =  (−𝜇𝐵 +

𝑏

𝑎
) + 𝜆3(𝜎𝐵

2 −
1

𝑎
)   

−
(𝜆2+𝜆3)𝑦

2
  =  −∆1 + 𝜆3∆2   

𝜆2 + 𝜆3 =  
2

𝑦
(∆1 − 𝜆3∆2) . (A27) 
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Substitute 𝜆1 from (A24) and 𝜆2 + 𝜆3 from (A27) to (A25), we get: 

Solutions for the quadratic equation (A28) is: 

 

 

Substitute 𝜆3 from (A29) to (A27), we get: 

𝜆2 + 𝜆3  =  
2

𝑦
(∆1 − (

∆1

∆2
±
𝑦

∆2
√
∆1
2−𝑑∆2

𝑦2−4𝑇2∆2
)∆2)    

𝜆2 + 𝜆3  =  
2

𝑦
(±(−𝑦)√

∆1
2−𝑑∆2

𝑦2−4𝑇2∆2
)   

𝜆2 + 𝜆3  =  ±(−2)√
∆1
2−𝑑∆2

𝑦2−4𝑇2∆2
 . (A30) 

4

𝑦2
(∆1 − 𝜆3∆2)

2𝑇2  =   𝑐 − 2𝑏 (
𝑏−𝜆3

𝑎
) − 2𝜆3𝜇𝐵 + (

𝑏−𝜆3

𝑎
)
2

𝑎 + 2 (
𝑏−𝜆3

𝑎
) 𝜆3 + 𝜆3

2𝜎𝐵
2   

4𝑇2

𝑦2
(∆1
2 − 2∆1∆2𝜆3 + 𝜆3

2∆2
2)  =   𝑐 −

2𝑏2

𝑎
+
2𝑏𝜆3

𝑎
− 2𝜆3𝜇𝐵 +

𝑏2

𝑎
−
2𝑏𝜆3

𝑎
+
𝜆3
2

𝑎
+
2𝑏𝜆3

𝑎
−
2𝜆3
2

𝑎
+ 𝜆3

2𝜎𝐵
2   

4𝑇2

𝑦2
(∆1
2 − 2∆1∆2𝜆3 + 𝜆3

2∆2
2)  =   𝑐 −

𝑏2

𝑎
− 2𝜆3𝜇𝐵 +

2𝑏𝜆3

𝑎
−
𝜆3
2

𝑎
+ 𝜆3

2𝜎𝐵
2   

4𝑇2

𝑦2
(∆1
2 − 2∆1∆2𝜆3 + 𝜆3

2∆2
2)  =   𝑑 − 2𝜆3 (𝜇𝐵 −

𝑏

𝑎
) + 𝜆3

2 (𝜎𝐵
2 −

1

𝑎
)   

4𝑇2

𝑦2
(∆1
2 − 2∆1∆2𝜆3 + 𝜆3

2∆2
2)  =   𝑑 − 2𝜆3∆1 + 𝜆3

2∆2   

4𝑇2∆1
2 − 8𝑇2∆1∆2𝜆3 +

4𝑇2𝜆3
2∆2
2  

=   𝑑𝑦2 − 2𝜆3∆1𝑦
2 + 𝜆3

2∆2𝑦
2  

 

0  =   𝑑𝑦2 − 2𝜆3∆1𝑦
2 + 𝜆3

2∆2𝑦
2 − 4𝑇2∆1

2 + 8𝑇2∆1∆2𝜆3 − 4𝑇
2𝜆3
2∆2
2   

0  =  (∆2𝑦
2 − 4𝑇2∆2

2)𝜆3
2 − (2∆1𝑦

2 − 8𝑇2∆1∆2)𝜆3 + 𝑑𝑦
2 − 4𝑇2∆1

2   

0  =  (∆2𝑦
2 − 4𝑇2∆2

2)𝜆3
2 −

2∆1

∆2
(∆2𝑦

2 − 4𝑇2∆2
2)𝜆3 + 𝑑𝑦

2 − 4𝑇2∆1
2   

0  =  𝜆3
2 −

2∆1

∆2
𝜆3 +

𝑑𝑦2−4𝑇2∆1
2

∆2𝑦2−4𝑇2∆2
2 . (A28) 

𝜆3  =  [
2∆1

∆2
±√

4∆1
2

∆2
2 − 4(

𝑑𝑦2−4𝑇2∆1
2

∆2𝑦2−4𝑇2∆2
2)] /2   

𝜆3  =  
∆1

∆2
±√

∆1
2

∆2
2 −

𝑑𝑦2−4𝑇2∆1
2

∆2𝑦2−4𝑇2∆2
2   

𝜆3  =  
∆1

∆2
±√

∆1
2𝑦2−4𝑇2∆1

2∆2

(𝑦2−4𝑇2∆2)∆2
2 −

𝑑∆2𝑦2−4𝑇2∆1
2∆2

(𝑦2−4𝑇2∆2)∆2
2    

𝜆3  =  
∆1

∆2
±√

𝑦2(∆1
2−𝑑∆2)

(𝑦2−4𝑇2∆2)∆2
2   

𝜆3  =  
∆1

∆2
±
𝑦

∆2
√
∆1
2−𝑑∆2

𝑦2−4𝑇2∆2
 . (A29) 
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Define 𝑧 = 𝜇𝑝 − 𝜇𝐵. Substitute 𝜆1 from (A24), 𝜆2 + 𝜆3 from (A30), and 𝜆3 

from (A29) to (A23) and compute 𝑥′𝐸, we get: 

As equation (A15) derived from the maximization problem is the same as 

equation (A31) which is derived from the minimization problem, we can find 

portfolio’s weight in any portfolios on CTF from MATLAB’s numerical search by 

setting minimize/maximize portfolio’s expected return given TE. 

 

 

-𝑥′𝐸  =  − (−
1

𝜆2+𝜆3
) (−𝐸 + 𝜆1𝑖 + 𝜆3Ω𝑞)′Ω

−1𝐸   

−𝑥′𝐸 − 𝑞′𝐸 + 𝑞′𝐸  =  
1

𝜆2+𝜆3
(−𝐸 +

𝑏−𝜆3

𝑎
𝑖 + 𝜆3Ω𝑞) ′Ω

−1𝐸     

−𝜇𝑝 + 𝜇𝐵  =  
1

𝜆2+𝜆3
(−𝐸′Ω−1𝐸 +

𝑏−𝜆3

𝑎
𝑖′Ω−1𝐸 + 𝜆3𝑞′ΩΩ

−1𝐸 )   

−𝑧  =  
1

𝜆2+𝜆3
(−𝑐 +

𝑏−𝜆3

𝑎
𝑏 + 𝜆3μB )   

−𝑧  =  
1

𝜆2+𝜆3
((−𝑐 +

𝑏2

𝑎
) + (𝜇𝐵 −

𝑏

𝑎
) 𝜆3)   

−𝑧  =  
1

𝜆2+𝜆3
(−𝑑 + ∆1𝜆3)   

−𝑧  =  ± (−
1

2
)√

𝑦2−4𝑇2∆2

∆1
2−𝑑∆2

(−𝑑 + ∆1 (
∆1

∆2
±
𝑦

∆2
√
∆1
2−𝑑∆2

𝑦2−4𝑇2∆2
))   

±2𝑧√
∆1
2−𝑑∆2

𝑦2−4𝑇2∆2
  =  −𝑑 +

∆1
2

∆2
±
𝑦∆1

∆2
√
∆1
2−𝑑∆2

𝑦2−4𝑇2∆2
   

±2𝑧∆2√
∆1
2−𝑑∆2

𝑦2−4𝑇2∆2
  =  −𝑑∆2 + ∆1

2 ± 𝑦∆1√
∆1
2−𝑑∆2

𝑦2−4𝑇2∆2
   

±(2𝑧∆2 − 𝑦∆1)√
∆1
2−𝑑∆2

𝑦2−4𝑇2∆2
  =  −𝑑∆2 + ∆1

2    

±(2𝑧∆2 − 𝑦∆1)  =  √(𝑑∆2 − ∆1
2)(4𝑇2∆2 − 𝑦2)    

±(2𝑧∆2 − 𝑦∆1)  =  √(∆1
2 − 𝑑∆2)(𝑦2 − 4𝑇2∆2)    

4∆2
2𝑧2 − 4∆1∆2𝑦𝑧 + ∆1

2𝑦2  =  ∆1
2𝑦2 − 4𝑇2∆1

2∆2 − 𝑑∆2𝑦
2 + 4𝑑𝑇2∆2

2    

4∆2
2𝑧2 − 4∆1∆2𝑦𝑧  =   4𝑑𝑇

2∆2
2 − 𝑑∆2𝑦

2 − 4𝑇2∆1
2∆2    

4∆2𝑧
2 − 4∆1𝑦𝑧  =   4𝑑𝑇

2∆2 − 𝑑𝑦
2 − 4𝑇2∆1

2    

0  =   4∆2𝑧
2 − 4∆1𝑦𝑧 − 4𝑑𝑇

2∆2 + 𝑑𝑦
2 + 4𝑇2∆1

2    

0  =   𝑑𝑦2 + 4∆2𝑧
2 − 4∆1𝑦𝑧 − 4𝑇

2(𝑑∆2 − ∆1
2). (A31) 
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