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CHAPTER I
INTRODUCTION

For random variables X and Y with continuous distribution functions Fx and
Fy, respectively, and joint distribution function Flyy, the copula Cxy of X and
Y is the function on I? := [0, 1] for which

Fxy(z,y) = Cxy(Fx(z), Fy(y)) for z,y € R.

By the probability integral transform, it is evident that Cxy captures marginal-
free dependence structure between X and Y [9, 13].

Copulas can be constructed from measure-preserving transformations. For
measure-preserving transformations f and g on Lebesgue measure space (I, Z(I), \),
the copula Cf}4 is defined by [4]

Crolz,y) = A(f71([0,2]) N g~ ([0,9])) -

In fact, every copula can be constructed in this way [4]. This form of copulas
is quite well-suited for the Markov product, introduced in [5] as a tool to study
Markov processes. The generalized Markov product was later introduced in an
attempt to solve the compatibility problem. For a parametric class of copulas
A = {Ai}icpp,1), the generalized Markov product [17] is a binary operation on the
set of bivariate copulas of C' and D, defined by

C o D(:Jc,y):/o A(0,C (2, 1), O, DIt ) dt

for z,y € [0, 1].

Complete dependence between X and Y happens when one is a Borel func-
tion of the other almost surely. If continuous random variables X and Y are
completely dependent, then their copula is called a complete dependence copula.
Every complete dependence copula can be written in the form C,  or C . for some
measure-preserving transformation f [9, 21]. Despite its simplistic and determin-
istic nature, complete dependence copulas are ubiquitous and useful in theoretical
studies of copulas [[19, 20, 21].

Less studied but more stochastic is the notion of implicit dependence which

occurs when the two random variables are equal almost surely after applying a



corresponding pair of Borel transformations. If continuous random variables X
and Y are implicitly dependent, then their copula is called an implicit dependence
copula. To the best of our knowledge, there have never been any characteriza-
tions of implicit dependence copulas. In this work, we prove that some implicit
dependence copulas can be written as the product of some complete dependence
copulas. More precisely, C' is the copula of random variables X,Y ~ U(0, 1) for
which Ag(X) = Ap(Y) almost surely if and only if C' = C, 5, %4 Ch, . for some
class A of sub-copulas on {0,6,1}? which extend to copulas by Sklar’s theorem.
Here, Ag(z) = min (£,1=%) where 6 € (0,1). The only if part can be generalized
from Ay to measure-preserving transformations « on [0, 1] that can be partitioned
by P = {0 = ag,ay,...,a, = 1} into strictly increasing bijections from (a;_1, a;]

onto [0, 1]. We call such measure-preserving functions « simple.



CHAPTER 11
PRELIMINARIES

2.1 Copulas

First, we introduce the notions of 2-increasing and grounded which are used to
define copula. Let I denote [0, 1].

Definition 2.1. ([13]) Let Sy and S; be nonempty subsets of I, and let H be a two-
dimensional real-valued function whose domain is S; x Sy. Let B = [z, 2] X [y1, ¥2]
be a rectangle all of whose vertices are in S; X Ss. Then, the H-volume of B is
given by

Vi(B) = H(w2,y2) = H(x2,y1) — H(21,y2) + H(z1,91). (2.1)

H is said to be 2-increasing, if Vi (B) > 0 for all rectangles B whose vertices lie
in Sl X SQ.

Definition 2.2. ([13]) Let S; and Sy be nonempty subsets of I such that S; has a
least element a and S5 has a least element b. A function H : S; x Sy — I is called
grounded if

H(z,b) =0= H(a,y) (2.2)

for all (z,y) € S1 x Ss.
Now, we define subcopulas and copulas.
Definition 2.3. ([13]) A subcopula is a function C” with the following properties.
1. Domain of C" is S; x Sy where S;, Sy C I contains 0 and 1.
2. (" is grounded and 2-increasing.
3. For any x € S1,y € Sy, C'(x,1) =z and C'(1,y) = y.
Definition 2.4. A copula is a subcopula C' whose domain is I?.

Definition 2.5. The copula C" is called the transpose of a copula C'if C'(x,y) =
C(y,x) for (z,y) € I2.



Definition 2.6. The support of a copula C is defined by
supp(C) = I* U{R = (a,b) x (c,d) CTI?: Vo(R) = 0}.
Example 2.7. Listed below are some important copulas.

1. M(x,y) = min{z,y} is called the Fréchet-Hoeffding upper bound (see
Theorem @) We know that M(x,y) =z if (z,y) € {(z,y) €e*: x <y} :=
Ay and M(z,y) =y if (z,y) € {(z,y) € 2:y < x} := Ay. Then, Vj;(R) =0
for any rectangle R := (a,b) X (¢,d) C A; U A, ; otherwise, Vi (R) # 0. That
is, supp(M) = {(z,x) : x € T}.

2. W(z,y) = max{x+y—1,0} is called the Fréchet-Hoeffding lower bound
(see Theorem @) Then, W(x,y) =0if (x,y) € {(z,y) ePP:ax+y <1} :=
By and W(z,y) =z +y—11if (z,y) € {(z,y) e : 2 +y—1> 0} := Bs.
Then Vi (R) = 0 for any rectangle R := (a,b) x (¢,d) C By U By; otherwise,
Viv(R) # 0. That is, supp(W) = {(z,1 —z) : z € I[}.

3. II(x,y) = xy is called the independence copula (see Theorem ) For
any nonempty rectangle R := (a,b) x (¢,d) C I Vg(R) = (a —b)(c—d) >0
which implies that supp(Il) = I%.

4. Cy(x,y) = pM(z,y)+ (1 —p)W(z,y) where p € (0,1). It can be shown by a
similar argument as above that supp(Cy) = supp(M) U supp(W).

Next, we present some properties of copulas.

Theorem 2.8. (Fréchet-Hoeffding bounds) ([13]) For every copula C and
(z,y) € T2,
Wi(z,y) < Clz,y) < M(z,y). (2:3)

Theorem 2.9. (/|13]) The first partial derivatives 0,C and 02C' of a copula C' exist

almost everywhere and are Borel-measurable. For any x,y € I,
0<0,C(t,y) <1 and0 < hC(x,t) <1
for almost every t € 1.

The next theorem demonstrates the significance of copulas in probability and
statistics. It explains the relationships between a copula and a joint distribution

function of random variables.



Theorem 2.10. (Sklar’s Theorem) ([13]) Let X,Y be random variables, H be
the joint distribution function of X,Y with margins F and G, respectively. Then
there exists a copula C such that for all x,y € R,

H(x,y) = C(F(x), G(y)).

If F and G are continuous, then C' is unique and denoted by Cx y; otherwise, C

is uniquely determined on Ran(F) X Ran(G).

Definition 2.11. ([9, 15]) A nonempty subset I' of R? is said to be comono-
tonic if for all (z1,v1), (x2,92) € T, (x1 — x2)(y1 — y2) > 0 and is said to be

countermonotonic if for all (z1,y1), (z2,y2) € I', (21 — 22)(y1 — y2) < 0.

A random vector (X,Y) is called comonotonic if its support is comonotonic

and is called countermonotonic if its support is countermonotonic.

Definition 2.12. Let X and Y be random variables. X and Y are independent
ifP(X € AY € B)=P(X € A)P(Y € B) for any set A, B € B(R).

Theorem 2.13. (9, |15]) Let X,Y be random wvariables with copula Cxy and

continuous marginal distributions.
1. (X,Y) is comonotonic if and only if Cxy = M.
2. (X,Y) is countermonotonic if and only if Cxy = W.
3. XY are independent if and only if Cxy = 1I.

Theorem 2.14. (Probability integral transformation)([9]) Let X be a random
variable whose distribution function is given by F. If F' is continuous, then F'o X

is uniformly distributed on 1.

Theorem 2.15. (/9/) A copula can be extended to a joint distribution function

whose marginals are uniformly distributed on 1.

2.2 Measure-preserving Transformations

In this section, we introduce a construction method of copulas from measure-

preserving transformations.

Definition 2.16. Let (I, Z(I), \) be the Lebesgue measure space. A mapping
f : T — I is said to be measure-preserving if A\(f~!(B)) = \(B) for every set
B e #A(1).



Example 2.17. 1. Let e be denotes the identity function on I, i.e., e(z) = =

for all x € I. It is clear that e is measure-preserving.

2. For 0 € (0,1), we define, the tent function, Ay : [0,1] — [0,1] by

if v <40,

= 8

Ag(x) := (2.4)

—z  ifx>0.

—
>

For any interval [a,b] C I, A, ([a,b]) = [fa,0b] U[1 — (1 — 0)b,1 — (1 — 0)a],
so AM(A;'([a,b])) = 0(b—a) + (1 — 0)(b—a) = b—a = \([a,b]) which implies

that Ay is a measure-preserving transformation.

Theorem 2.18. ([4/) If f, g are measure-preserving transformations on the space

(I, B(1), \), then the function Cy,:1* — I defined by

Cra(@.y) = A(f7(10,a]) N g7([0, ) (2:5)

is a copula. Conversely, for every copula C, there exist measure-preserving trans-
formations f,g such that C' = Cj4.

Example 2.19. The copula with measure-preserving transformations e and Ay is

Ceno(w,y) = A (e ([0, 2]) N Ay ([0, 1))
= A([0,2] 0 ([0, 0y] U [1 — (1 — )y, 1]))

y@ if Ag(ilf) >,
=9z if Ag(x) <yand z <6,

x+y—1 if Ap(z) <yand x> 0.

Hence,
6 if Ag(z) >y,
02Cepn,(7,y) = S0 if Ag(x) <y and z <0, (2.6)
1 if Ap(z) <y and x > 6.



Figure 2.1: The value of C. z,(x,y).

Some properties of the copulas Uy, are given next.
Theorem 2.20. (/9/) Let f,g be measure-preserving transformations on I. Then
1. Cf,=Cyy.
2. Cpqg =M if and only if f =g a.s. on L.
3. Cte=0Cye if and only if f =g a.s. on L.
Example 2.21. C p,(7,y) = C! 5, (4, 2) = Cp,o(y, 1), 50 02C 5, (7,y) = 01Ch,e(y, ).

Theorem 2.22. (/9]) If a copula C = Cjy,4, then f,g are random variables on
(L, B(L), ) whose joint distribution function is given by C.

Theorem 2.23. (/6/) Let f,g be measure-preserving transformations. Then, the

following conditions are equivalent:
1. Cf,g = H,‘
2. f and g, when regarded as random variables on the standard probability space
(I, B(1), \), are independent.
2.3 Dependence Copulas

We will divide this section into two parts.



2.3.1 Complete Dependence Copulas

Definition 2.24. Random variables X and Y are said to be completely depen-
dent if there exists a Borel function f such that ¥ = f(X) a.s. or X = f(Y)

a.s.

Definition 2.25. Let ' = Cxy be the copula of random variables X,Y with
continuous marginal distribution functions. C'is called a complete dependence

copula if X and Y are completely dependent.

Theorem 2.26. (|9, 21]) Let C = Cxy be the copula of random variables X,Y
with continuous marginal distribution functions. Then the following conditions are

equivalent:

1. X and Y are completely dependent;

2. there exists a measure-preserving transformation ¢ on I such that C' = C,
or C = Cy.
Example 2.27. 1. C..(x,y) = A([0,2] N [0,y]) = min{z,y} = M(z,y). Then

M is a complete dependence copula.

2. Let g(z) = 1—z. Then C, 4(x,y) = A([0,z]N[1 -y, 1]) = max{z+y—1,0} =

W (z,y), so W is a complete dependence copula.

3. Since Ag(x) is a measure-preserving transformation, C, 5, is a complete de-

pendence copula.

2.3.2 TImplicit Dependence Copulas

Definition 2.28. Random variables X and Y are said to be implicitly depen-
dent if there exist Borel functions f and g such that f(X) = g(Y) a.s.

Definition 2.29. Let C' = Cxy be the copula of random variables X,Y with
continuous marginal distribution functions. C' is called an implicit dependence

copula if X and Y are implicitly dependent.

Definition 2.30. We call the copula C is symmetric implicit dependence
copulas via function f if there exist random variables X and Y are uniformly
distributed on I such that f(X) = f(Y) a.s. and C = Cxy.

Example 2.31. Let X ~ U(0,1) and Z ~ Ber(p), where p € (0,1), be indepen-
dence random variables and define Y = §1(Z) X +¢(Z)(1—X). Then Y ~ U(0,1),
A0_5(X) = A05(Y) and CX,Y = pM + (]_ — p)W



Solution. First, we will show that Y ~ 2/(0, 1).
PY <y) = P(0:(2)X +60(2)(1 = X) <)
— Pl-X<y|Z=DP(Z=1)+PX <y|Z=0)PBZ=0)
= (1-(0-wp+y(l-p =y
It is easy to see that Ags(1 — X) = Ags5(X), so Ags(Y) = Ags(X). Next, we
will compute the copula of X, Y.
Cxy(r,y) = P(X <2,V <y)
PX <z, X<yl|Z=1)P(Z=1)
+P(X <2,1-X<y|Z=0)P(Z=0)
= p-min{z,y} + (1 — p)max{z +y — 1,0}
= p-M(z,y)+ (1 =p)-W(z,y)

Example shows that pM + (1 — p)W is an implicit dependence copula for
0 < p < 1. Evidently, their support is supp(M) U supp(W). However, there are
many other implicit dependence copulas with this support. We shall give thier
characterizations in Chapter .

2.4 The Markov Product

Let € be the class of all copulas. In [3, B, 14], the Markov product, defined as
a binary operation on %, was studied in many aspects, especially its relationship

with the Markov processes. It is then later called the Markov product in [9].

Definition 2.32. The Markov product is the binary operation on % defined,
for A,B € €, by

1
Ax B(z,y) = / 0o A(z,t)01 B(t,y)dt (2.7)
0
for all z,y € [0, 1].

The next theorem says that the Markov product of copulas is a copula, as well

as some properties of the Markov product.

Theorem 2.33. (/9/) Let A, B, C be copulas and «, 5 € [0,1] such that a+ 3 = 1.
Then:

1. Ax B 1is copula.

2. Ax (aB+pC)=a(AxB)+ pB(AxC).
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3. (aB+ pC)x A=a(BxA)+ B(C * A).

4. MxC=C=CxM.

5. I«C =11=C=xIlL

6. Ax(BxC)=(AxB)*C.

7. WxW =M.

In fact, the copula M is the identity of the Markov product.

Definition 2.34. A copula A is called a left inverse of a copula C' if AxC' = M
and is called a right inverse of a copula C if C'x A = M.

Definition 2.35. Let A be a copula. A is right invertible if there exists a copula
B such that Ax B = M.

Definition 2.36. Let B be a copula. B is left invertible if there exists a copula
A such that Ax B = M.

Theorem 2.37. (/9/) Let C be a copula. The inverse of C' (if exists) must be C*.

The copulas satisfy some nice properties under the Markov product. Recall
that e is the identity on I.

Theorem 2.38. (/9]) Let f, g, h be measure-preserving transformations on 1. Then
1. Cpg=ChexCey.
2. Cre*Cye=Cloge and Ce g% Ce g = Co fog-
3. Oy 1s right invertible and C. s is left invertible.

Definition 2.39. Let A = {A;}icj01] be a parametric class of copulas. The
generalized Markov product of copulas C' and D with respect to A is defined

as

C x4 D(x,y) = / A(0,C (1), D, D(t, y))dt (2.8)

0
for all (z,y) € [0, 1]* at which the integral exists.

Notice that if A, = II for all ¢t € [0, 1], then the generalized markov product
reduces to the Markov product. In general, the measurability of the integrand in
@ needs to be verified. See [9, [17].

Theorem 2.40. (/17]) If the map (t,x,y) — Ai(x,y) is Borel measurable, then
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(%) for all x,y € [0,1] and for all C, D € €, A(0:C(x,t),0,D(t,y)) is Lebesgue

measurable in t € [0,1]
and hence C x4 D is a well-defined function on IZ.
Let M denote the collection of families {A;} such that (x) holds.

Theorem 2.41. ([17]) Let A € M. For every copulas C and D, C %4 D is a

copula.

In this thesis, the word Markov will be omitted and we shall call the Markov
product simply as the product and the generalized Markov product as the gen-
eralized product or the {A;}-product.

2.5 Conditional Expectation

In the last section, we will review some properties of conditional expectation
and some main tools used in next chapter. By the Radon-Nikodym theorem, we

recall the definition of conditional expectation.

Definition 2.42. ([2, []]) Let X be a random variable on a probability space
(Q,.7,P) with finite expectation and let ¢4 be a sub-c-algebra of .#. The condi-
tional expectation of X given ¢, written E[X | ¢], is the random variable on
(Q,%) satisfying

/Xd]P’:/E[XHf]d]P’ (2.9)
A A
forall A e ¥.

In general, there are many random variables that satisfy the equation (@), all
of which must, of course, be equal P-a.s. Any one of them is called a version of
the conditional expectation E[X | ¢].

Definition 2.43. Let X be a random variable on a probability space (2, .%#,P)
and let ¢ be a sub-o-algebra of .. X and ¢ are independent if P(X € B | G) =
P(X € B) for every B € Z(R),G € ¥.

Theorem 2.44. ()2, |7]) Let X,Y be random wvariables on a probability space
(Q, .7, P) with finite expectations and let G be a sub-c-algebra of % . Then

1. If X and 9 are independent, then E[X | 4] = E[X] a.s.

2. If X and Y are independent, then E[X | Y] = E[X] a.s.
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3. Fora,b € R, E[aX +bY |¥9] =aE[X | 9]+ bE[]Y | 9] a.s.

4. If X is 9-measurable and E[| XY|] < oo, then E[XY | ¥] =
XEY | ¥9] a.s.

5. E[E[X | 4] = E[X] a.s.

Definition 2.45. Let (€2,.%,P) be a probability space, & a sub-o-algebra of .%#
and B € .#. The conditional probability of B given by ¢ is

P(B|9) =E[ly | 9). (2.10)

Definition 2.46. ([10, 12]) Let (©4,.%1) and (£, %5) be measurable spaces. A
mapping K : ; x % — R is called a Markov kernel (from Q; to %) if
wy — K(wy, B) is Z-measurable for every fixed B € %, and B — K(wy, B) is a
probability measure for every fixed w, € €2;.

Theorem 2.47. (Regular conditional distribution)([10,|12]) Let X, Y be real-valued
random variables on a common probability space. Then there exists a Markov
kernel, called a reqular conditional distribution of Y given X, K : Rx #(R) — [0, 1]
satisfying

K(X(w),B) =P € B| X)(w) P-a.s.

Remark 2.48. (see [10, 12])

1. For every random vector (X,Y), a regular conditional distribution K(-,-) of

Y given X exists.

2. K(-,-) is unique Px-a.s. where Py is the probability measure induced by X:
Px(B) = P(X~}(B)).

3. K(-,-) only depends on the distribution of (X,Y").

Theorem 2.49. (Disintegration) (|10, 12]) Let X,Y be real-valued random vari-
ables such that P(Y € - | X) = K(X,-) for some Markov kernel K and let f be a
Borel function on Z(R?) with E[|f(Y,X)|] < co. Then

E[f(Y, X) | X] = /Rf(s,X)K(X, ds) a.s. (2.11)

Let C' be the copula of random variables X and Y uniformly distributed on I.
We denote by Kq(+,+) a version of the regular conditional distribution of Y given
X.

The next theorem shows a relationship between copulas and Markov kernels.
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Theorem 2.50. Let XY be random wvariables uniformly distributed on 1 with
copula C'. Then

C = mK ds.

(@) = [ Kels.0.4)ds

Proof. Using f(Y,X) = 1axp(X,Y) where A =[0,2] and B = [0,y]. Then,
C(r,y) =P(X € A,Y € B) =E[f(Y, X)]

Since E[E[f(Y, X) | X]] = E[f(Y, X)], by disintegration, we have

B0 = E | [ S5 X0 Ke(X.ds)

E { /B 14(X)Ko(X, ds)}

= /A /B Kolt, ds)dt

A
]

Next, we recall some theorems in approximating the conditional probability
given X = x by the conditional probability given X € E; where £} is a sequence
that shrinks to x nicely.

Theorem 2.51. (/16]) Let X be a random variable on (2, %, P) and let B be a set
in F. Then there exists a function P(B | X = x) such that for each A € B(R),

P(BN{X € A}) — / P(B | X = 2)dPx(x).

Definition 2.52. ([18]) Suppose x € R. A sequence {E;} of Borel sets in R is

said to shrink to z nicely if there is a number a > 0 with the following property:

There is a sequence of ball B(z,r;), with lim r; = 0 such that E; C B(z,r;) and
1—00

M E;) > aX(B(x,r;))
fori=1,2,....

Theorem 2.53. ([18]) For each x in R, let a sequence {E;(x)}32, shrink to x
nicely and let f € L*(R). Then, at almost every ,

f(z) = lim

1
_— d\.
oo A(Ej(7)) /Ej(x) !
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The next theorem is a consequence of Theorem and E.53. We use this

theorem to show some properties in the next chapter (see Lemma @)

Theorem 2.54. Let X,Y be random variables and A € B(R) and {E;(v)}32, be

a sequence that shrink to x nicely. Then,

P(YEA|X=2)=lmP(Y cA|Xe€E,).
Jj—oo
Proof. We apply Theorem to the function f =P(Y € A | X) and obtain

| 1 -

By Theorem , we have

Q/PWEAMX:WWA®:MY6AXGEQ

Hence,
. PYeAXcE)
PYeA|X=x)=1 ’ J
YVedlX =2 =lm =5 er,
=lmPY e€A|XeE).

j—00




CHAPTER III
Symmetric Implicit Dependence Copulas Via Tent

Functions

3.1 Generalized Products of C. », and C),. are implicit de-

pendence copulas

In this section, we show that the generalized products of some complete depen-

dence copulas are implicit dependence copulas. We shall consider only the complete

dependence copulas C., and Cy, . where Ag(z) = min{F, %} for 0 < 60 < 1.
For 0 < 6 < 1, we define injections Aj, A7 : T — R by Aj(z) := % and
1

Ai(x) = 1;_‘5, so that Ag = Ajljg + AZ1s1. Denote Aj := (A))~' o A). In

particular, Aj*(z) = {%;(1 — z) and AZ'(z) = 1 — 5%z, Technically, A}* and A2

map I onto [0, ﬁ} and [2"0%1, 1}, respectively. But they are usually considered as

AR(0, ) = (A}) ™ (AZ([O’M:(Aé)_lqﬁ’ﬁb:{%ﬂ—y%%A

and

30,0 = (0 (ab(10.0h) = 4 ([o0.5]) = 1= 250w

Lemma 3.1. Let A := {Ai}ico) be a class of copulas. If Ay(0,0) is measurable
int, then, for every x,y € I, Ay(02Cep, (2, 1), 02Ccn,(y,1)) is measurable in t, i.e.,
Cen, ¥4 Crye is a copula.

Proof. Notice from Example M that
0 if Ay ([L’) >y,

02Cen,(7,y) = S0 if Ag(x) <y and z <0,
1 if Ap(z) <yand z > 6.
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Let g(z,t) = 09Ce p,(z,t) and f(z,y,t) = Ai(g(z,t), g(y,t)). Then

0 if g(z,t) =0 or g(y,t) =0,
Fegt) = Ay(0,0) ?f gla,t) =0 =g(y,1),
0 if (9(x,1),9(y. 1)) = (6,1) or (1,0),
|1 if g(z,t) =1=g(y,t).

Let 5 € R and consider the set B :={t: f(z,y,t) < }.

Case 1: 5> 1. Then, B = |0, 1] is measurable.
Case 2: 6 < 8 < 1. Then,
B=10,1]~{t:g(z,t) =1=g(y,t)}

[0,1] ~ {t: t > max{Ay(x),Ao(y)}} ifz>60andy >0
[0, 1] otherwise

[0, max{Ag(z), Ng(y)}] ifx>0andy >0
[0, 1] otherwise.

Thus, B is measurable.

Case 3: 0 < 8 <. Then, B={t: f(x,y,t) =0} U{t:0 < f(z,y,t) < 8}. Denote
By ={t:0< f(z,y,t) < B}. Then,

By ={t:0< A(0,0) < B,t < Ng(x),t < Ng(y)}
={t:0< A(0,0) < 5} N[0, min{Ag(x), Ag(y)}] .

By assumption, we have that B; is measurable and

{t :t>min{Ag(z),Ag(y)}} fx<Bory<b,

%} otherwise

{t: fz,y,t) =0} =

min{Ag(x), Ap(y)},1] ifx <Oory<b,
%) otherwise.

Then, B is measurable.

]

Theorem 3.2. Let A := {Ai}icpa) be a class of copulas such that A,(6,0) is
measurable in t. Then, C.x, x4 Cy, . s an implicit dependence copula, i.e., there
exist random variables X and Y uniformly distributed on [0,1] such that Ap(X) =
A(Y) a.s. and Cep, x4 Cr,ye = Cxy.
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Proof. Denote C" := C,p, *4 Cp,.. By Lemma @, (" is a copula. Let Q be the
Borel probability measure extension of Vv to %(1?). Define functions X and Y
on I? - I by X(z,y) := x and Y (x,y) := y, which are both random variables on
the probability space (I?, Z(I?), Q). Then,
C'(z,y) = Vo ([0, 2] x [0,y])
=Q (XN ([0,2z]) nY([0,4]))
=Q(X <7,V <y).

Thus, €’ is the joint distribution function of X and Y. Since

QX <o) = Q(X ([0, 2]))

= VC/<[0,$] X [0, 1])

2 (' (=
and, similarly, Q(Y <y) =y, X and Y are uniformly distributed on [0, 1]. Hence,
C'=Cxy.

We will prove the final claim that Ap(X) = Ag(Y) Q-a.s. Since {Ayg(X) =

A(Y)} = {(z,y) € I? : Ap(x) = Ap(y)} =: A, it suffices to show that Vi (B) = 0
for all rectangles B C I? . A. Note that

A= {(:p,y) Ly = 7 ong= (1 LY 0x> Lo (2) + %(1 _ x)ﬂ(e,”(x)}

(see the blue line in Fig @) Observe that each rectangle in I \ A can be written

as the difference between two rectangles in 12 \. A both of which have one side

lying on the boundary S of I?. For instance, if all four corners of a rectangle

B := [x1,x2] X [y1,ys] are in the triangular region 2 bounded above by the line
y = A3!(z) and bounded below by the line y = z, then B = By \. B, where both
By :=[0,29] X [y1,y2] and By := [0, 21] X [y1,y2] lie in the same region 2. So, it

suffices to show that Ve (B) = 0 for every rectangle B C 12 \. A whose one side
lies in S. Our proof naturally splits into four cases, depending on the region that
B lies in. The four regions are partitioned by the graphs of y = z,y = A3!(x) and
y = A}*(z), illustrated in Figure @

Case 1: B = [z1,75] X [0,y] C I* \ A. Equivalently, both (z;,v), i = 1,2, lie below
y=zandy = A}*(z). So, fori =1,2, z; > y and A}*(z;) > y. Consequently,
y < 0 and A2'(y) > z;. Thus

1
C'(z4,y) :/ A (05Ce p, (x4,1), 01Cn, (¢, y) ) dt
0
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Region 3

T T

Figure 3.1: The four regions of I? \. A.

1
= / Ay (82Ce py (3, 1), 0:Ce n, (y, 1)) dt
0
u 1
—/eAt(H,G)dt—l—/ A(02Ce p, (21, t),0)dt
0 5

Y

:/”Axamﬁ.

0

In the third equality, we separate the interval [0, 1] into [0, %] and [%, 1}
because, by equation (@), the value of ,C, A, (y,t) on intervals [O, %] and
[4,1] are different. Hence, Ver(B) = C'(21,0) — C'(22,0) — C'(z1,y) +

Cl('r27 y) =0.

This case is similar to case 1. B = [0, 2] X [y1, 2] C I? \ A. Equivalently,
both (z,y;), i = 1,2, lie below y = z and y = AZ'(z). So, for i = 1,2,
y; > x, A3t (z) > y;. Consequently, z < 6 and Ay*(y;) > z. Thus

1
C'(z,y,) Z/ A (05Ce p, (2, 1), 02Ce p, (i, 1)) di
0

% 1
:/‘&@mﬁ+/ﬂﬂaaqm@ﬁmt
O xT

0

- /9 A4(0,0)dt.

0

HGHCG, VC’(B) = Cl(oayl) - C,(xayl) - C,(O7y2) + C,(x>y2) =0.
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1 1 1 1
I I
I I
0 0
t] /i . t| /i .
y I I z I I
GZ I I HZ I I
I I I I
I I I I
xr X
0O Yyr1 0 2A§1(y) 1 0 Y10 92A31(x) 1

Figure 3.2: The value of 0,C, 5, (z,t) in case 1 (left) and 2 (right).

Case 3: B = [11,75] X [y, 1] C I? \ A. Equivalently, both (z;,v), i = 1,2, lie below
y =z and y = AZ(z). So, for i = 1,2, y > x;, A3'(z;) < y. Consequently,
y > 0 and A}*(y) < z;. Thus,

1
Cl(xh y) = / At (8206,A9 (Q?i, t)? aQCe,Ag (y7 t)) dt
0

1—

1=y 1
:/ eAt(Q,G)dt+/ A (05Ce p, (4, 1), 1)dt
0 1

)

1=
1—y 1

:/GAMﬂW+/ 0,C, n, (i, ),
0

1—y

1-6

2

where in the third equality, we separate the interval [0, 1] into [O, %} and
H%g, 1] because, by equation (@), the value of 0,C.a,(y,t) on intervals

[0, %] and [%, 1} are different. We have

1
C'(w1,y) — C'(x2,y) = [y D2Ce py (21, 1) — 02Ce,n, (2, 1) dl

1

1 _
= Cepy(21,1) — Cep, (9617 1—_Z>

1 _
- Ce,Ag (132, 1) + Ce,Ag (132, —y>

1—-4
o 1 _
=T — To+ 81067/\9 (t, ﬁ) dt

2
:xl—x2+/ Odt:ZL’l—JZQ.

1

Hence, Vo (B) = C'(z1,y) — C'(x2,y) — C'(w1,1) + C'(x2,1) = 0.
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Figure 3.3: The value of 0,C, a,(z,t) and 02C. p,(,t), respectively, in case 3.

Case 4: This case is similar to case 3. B = [z,1] X [y1, 2] C I? \ A. Equivalently,

both (z,y;), i = 1,2, lie below y = z and y = A}*(z). So, for i = 1,2,
x> y;, Aj?(x) > y;. Consequently, x > 6 and A2'(y;) < z;. Thus,

1
(s ) / A(05Ce n. (,8), BsC, (s, 1))t
0

1—x

= \
/ At(ig,@)dt—F/ At(l,ﬁgCe,Ag(yi,t))dt
0 11—z

1-6

1—z

i=e 1
= / " A0,0)dt + / 8sCon, (yi, )L
0 =

=,
1-6

We have

- 820671\9 (yh t) - a206,1\9 <y27 t)dt

x

') =) = .

1—6
l1—=x
= Ce,Ae (yh 1) - Ce,Ag (yl, m)
11—z
— Ceny(Y2, 1) + Ceny | Y2y
1-06
Y2 1—=z
=y — Yo+ 01 Ce p, <t, ﬂ) dt
Y1 -
Y2
:yl—y2+/ 0dt = y1 — yo.
Y1

Hence, Vi (B) = C'(z,y1) — C'(x,y2) — C'(1,y1) + C'(1,y2) = 0.
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Figure 3.4: The value of 0,C; a,(z,t) and 02C. p,(,t), respectively, in case 4.
[

3.2 Generalized Factorizability of C'xy where Ag(X) = Ay(Y)

In this section, we will write some implicit dependence copulas as the products
of two complete dependence copulas. We will consider only the implicit dependence
copulas of random variables X and Y where Ay(X) = Ap(Y) a.s.

First, let random variables X,Y ~ U(0,1) be such that Ay(X) = Ag(Y) a.s.
where Ay is defined in equation (@) and Ag = Al + A3l

Let A1 ={X <6,Y <0},A, ={X <0,Y >0},A3 ={X > 0,Y <60} and
Ay ={X > 0,Y > 0}. Since Ag(X) = Ag(Y) a.s., we have that X = Y a.s. in
AU Ay, AY(X) = A2(Y) as. in Ay and AZ(X) = A}(Y) a.s. in Asz. So,

Y = Xla, + A (X)), + AP (X) 14, + X1y, as. (3.1)

By equation (@), for s < 6 and using change of variable with ¢ = Ag(s), we

have
0 if Ag(x) > Ag(s),

92Cen,(,Ag(5)) = § 0 if Ag() < Ag(s) and = < 6, (3.2)
1 if Ag(x) < Ap(s) and = > 6.
Next, for a.e. s, we denote
wi(s) =E [ﬂ{ygg} | X = s] and wq(s) =E []l{y>9} | X = s] )
Since K(s,-) is a probability measure, we have wy(s) + wa(s) =1 a.s.

Lemma 3.3. Let random variables X andY uniformly distributed on [0, 1] be such
that Ag(X) = Ag(Y) a.s. For s <0, wi(s) + Z2wi(1 — 52s) =1 as.
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Figure 3.5: The value of 0,C, 5, (z, Ag(s)).

Proof. Let s < 6,t = Ag(s) and A;(t) := (t - %,t—i— %) N [0, 1] shrink to ¢ nicely.
By Theorem , we have

P(Y < 0] Ag(X) =¢) = lim P(Y < 0] Ag(X) € 4;(t)) ace. t.

Let the event B;(t) := {Ap(X) € A;()} = {X € (Aj) 1 (A;(1)JU{X € (A3) 1 (A4;(1))}.

Then the event {X € (A§)7'(A4;(t))} and {X € (A2)"'(A;(¢))} are disjoint as
J — o0. Thus, by conditional probability,

P(Y < 0| Ag(X) = 1)
= lim P(Y < 0] B,(1))

R <o)

T P(B()

szaXem-ﬂ&@»+mysaXemﬁ%&@w
)

= lim
Jj—00

= lim
Jj—00

. P(B;(1))
P(X € (M) (4;(1))
P(B;(1))

P(X € (A))~(4;(1))
P(B;(1)) '

)MXEM%%&ww

= lim
Jj—00

P(Y <0] X € (Ag) " (4;(1)) -

+P(Y <0 X € (M) (4;(1)) -

Since X ~ U(0,1) and Ay is measure-preserving, we have

P(X € (Ag) "' (4;(1) = A(Ap) ' (4;(1))
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and

By Theorem , for a.e. t,

lim DX € Aa) <)AJ( D) (AW1(t) = for i = 1,2

j=00 P(B;(t)

and

L B(X € AD N (4;(0)

o P(By(D)) =We) ) =1-6

The sequence (A})~'(4;(t)) = <6t —Q. ,0t + g) shrinks nicely to 0t := a and

(Ap) (A1) = <1 - (1= 9)15 -6 71— (1-0)t+ —lf(’) shrinks nicely to b :=
J
1 —(1—6)t. By Theorem R.54 as j — 00,

P(Y <60, X € (AD)H(4;(t) = P(Y <6, X =a)

and
P(Y <0,X € (Ag)‘l(Aj(t))) —PY <60,X =b).

Hence, for s < 6,

P(Y <O Ag(X)=1)=0P(Y <O|X =a)+ (1—0)P(Y <0| X =b)

—OP(Y <O| X =s)+(1—0)P

1-0
Y<0|X=1- 7 s)

9

= Owi(s) + (1 — 0wy

\_//\

Similarly, we have

0
(33)

Next, we find the value of P(Y < 6 | Ap(X) = t). Since Ag(X) = Ay(Y) a.s., we

have

]P’(YSH|A9(Y):t):GIP(Y§0|Y:s)+(1—9)IP><Y§6’\Y:1—1_93).

P(Y < 0| Ag(X) =) =P(Y < 0| Ag(Y) = 1)

1—
ZHIP’(YSO\st)—i—(l—@)]P’(YSH\Y:l— 993)

=0.

The second equality holds because of equation(@) and the last equality holds

because for s < 6, 1 — 1525 > 0. Hence, § = fw;(s) + (1 — O)w; (1 — 2s) . O
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Lemma 3.4. Let random variables X, Y ~ U(0,1) be such that Ag(X) = Ap(Y)
a.s. Then,

Ke(s,[0,y]) = wi(s) L ynp.0 () + wa(8)Lasz(o,y)no.61(5)
+ wl(S)ﬂAgl([o,y])m(e,u (s) + wa(s) Loy, (5)-

Proof. By equation (@), we have YV = X114, + A2 (X)1a, + AJP2(X)1a, + X4,
a5, Since 0 < / Ly oy (@)d P(w) < / Ly oy (@)dP(w) = P(Y = 0) = 0 for all
A Q

A € o(X), we have E [1y_q; | X = s|] = 0. To prove the lemma, it is sufficient
to consider 1y, o Y. Observe that for any J C (0,1] and a random variable Z
taking values in [0,1], 1,0 (Z14,) = (15 0 Z)14, for every i = 1,2,3,4. Thus,

1(07y] o (X]]-A1) = (I]-(O,y] O X) I].Al,

Lo © (A" (X)La,) = (Log 0 A5 (X)) Las,
Loy © (A5 (X)1a,) = (Lo © 5" (X)) La,
and
Log) © (XLa,) = (Liogy © X) La,-
We can derive that

(Lo 0 49" (X)) L, = (ILAé?((o,yD 7 X) La,

and
(Lo © 5" (X)) Lay = (ILAzl((o,y]) o X ) Lag.
Thus,

E (Lo, 0Y | X] = E [(Loyi © X) Loy | X] +E [ (Lapoan © X) Las | X]

+E | (Lagiop © X ) Lag | X] +E (Lo 0 X) L, | X].
Since 1,y © X, Laz((og)) © X and Lpzigy) o X are o(X)-measurable, we have
]E |:<1A12 ((0,y]) @] > ]lAg | Xi| = <1Aé2((0,y]) OX) E[1A2 | X],

E |:(1]'A21 (Oy O

X)1a, | X] = (LoyoX)E[Ly, | X],

TLa, | X} = <]1Agl((o,y]) o X) E [T, | XT,

and
E [(Loy 0 X) La, | X] = (Loy o X)E[1a, | X].
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We can show that

E[la, | X] =E [Lix<ov<oy | X] = Lix<oy E [Liy<oy | X],

E 14, | X] =E [Lix<oy>0 | X] = Lix<oy E [Liysoy | X],

Ela, | X]=E [Lixsov<or | X] = Lixs0  E [Liy<oy | X],
and

E 14, | X] =E [Lixsoy>0 | X] = Lixs0 E [Lysay | X].
Hence,

Ke(s,[0,y]) =E [Lpy oY | X = 5]

= w1(8)Ljoynp0(s) + w2(3>1Aé2([0,y})ﬂ[0,9](S)
+ wi($)Laz1 (joyn(o,11(8) + w2(8) Lioyin(o,1 (5)-

]

Lemma 3.5. Let random variables X,Y" be uniformly distributed on [0,1] with
copula C' such that Ng(X) = Ag(Y) a.s. Then Kqo(s,[0,s]) = Ka(s,[0,y]) for all
s < 0 satisfying No(s) < Ag(y) where y € [0, 1].

Proof. Since A;

= (s -1 s] shrinks nicely to s as j — oo and the sets Ay ((s,y]) C
(Ag(s),1] and Ay ((s — 2 s]) (Ag(s - —) Agy(s)|, we have

1
P(Y e (s,y],X € Aj(s)) <P (Ag(Y) € Mg ((s,y]),Mg(X) € Ay <<5 — 5,5])) =0
for j large enough. Therefore, P(s <Y <y | X =s) = 0. O

Next, we will show that simple implicit dependence copulas can be written as

generalized products of complete dependence copulas.

Theorem 3.6. Let random variables X,Y ~U(0,1) be such that Ag(X) = Ag(Y)
a.s. Then there exists A = {Ai}iejo) such that Cxy = Cen, ¥4 Cpye-

Proof. For each s € [0,0], let Ap,(s) be the subcopula on {0,6,1}* defined by
Apys) (0,0) =0 - Kc(s, 0, s]).

We can extend subcopula Ay, ) to copula by Sklar’s theorem. Since s < 0, Ag(s) <
1 = Ap(0) and K¢ (s,[0,0]) is measurable in s, by Lemma @, we have K¢ (s, [0, s]) =
Kc(s,[0,0]) is measurable in s. Thus, A;(6,0) is measurable in ¢ where t = Ay(s).
By Lemma @, A (02Ce p, (2,1), 02Cc p, (y, 1)) is measurable in .
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The generalized product of C.y, and Cy,. with respect to A = {At}te[m] is

1
Cenp %4 Chge(,y) = / Ap(0Ce o (2,1), DCe (1)) dt (3.4)
0

0

1

= [ A0 OCon (0 A0(3)), e (ol 5. (3.
0

The last equality uses the change of variable t = Ay(s) = g for s € [0, 0).

The proof of this theorem will be divided into four cases. Using the equation
(@), the values of 02C, z,(x, Ag(s)) in equation (@) and Lemma @, at the end of
each subcase, Theorem gives [ Kc(s,[0,y])ds = Cx,y (2, y) which completes
the proof.

Case 1: =,y <46.

1. If © <y, then C, p, %4 Cp,e(z,y) is

v 1 o0l 1
= / EAAQ(S)(9,9>dS + / EAA@(s)(O;Q)dS + / 5AA9(S)(070)d8
0 x Yy

_ /0 Ko(s, [0, 5])ds
zéﬂa@mam&

The first equality uses the equations (@) and (@) and the last equality

uses Lemma @
2. Ify < z, then by Table@and Lemma @, we have/ Keo(s,[0,y]) ds =
v
0 and Cep, ¥4 Cr,e(z,y) is

v 71 |
:/ EAAG(S)W,Q)CZS—F/ EAAG(S)(Q,O)CZS—F/ EAAB(S)(O,O)dS

0 Y T

Yy
:/ Ko(s, [0, 5]) ds

0

Yy T
z/KM&MW%+/1%@MMMS

0 Yy
:/ KC(Sa [Ovy]) ds.

0

The first equality uses the equations (@) and (@) and the third equal-

ity uses Lemma @
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B s € (y, x]
[0,y] N[0, 6] 0
Ag([0,9]) N [0, 0] 0
AgH([0,y)) N (0, 1] 0
[0,y] N (6, 1] 0

Table 3.1: The values of 15(s) for given sets B at s in the interval in subcase 1.2.

Figure 3.6: The value of 0,C; 5, (2, Ap(s)) in subcase 1.1 (left) and 1.2 (right).

Case 2: z < 0,y > 6. Consider b := A (y) = 1%;(1—y) € [0,6] and use the fact that
Ag (b) = Ap(y)-

1. If © < b, then Cea, %4 Cp,e(x,y) is
T b1 91

= —AAG(S)(Q, Q)dS -+ _AAQ(S) (0, H)ds + —AAG(S)(O, 1>d8
0 0 T 0 b 0

— [ Kels.0.5)ds
0

- / KC’(S7 [Oa y])dS
0

The first equality uses the equations (@) and (@) and the last equality
uses Lemma @

2. If b < z, then by Table B.2 and Lemma @, we have

/bm Ke(s,[0,y])ds = /bx wi(s) + wa(s)ds =z — b

and Cea, x4 Ch,c(z,y) is

x

1 v 1 1
:/ EAAQ(S)(Q,Q)der/ EAAG(S)(Q,l)ds+/ A (0, 1)ds
0 b
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/ Ko(s, [0, 5])ds + (z — b)

/ Ke(s, [0, ds+/ Kea(s,10,9])
_ / Ke(s, [0,3])ds
0

The first equality uses the equations (@) and (@) and the third equal-

ity uses Lemma

Figure 3.7: The value of 0,C; 5, (z,Ag(s)) in subcase 2.1 (left) and 2.2 (right).

B s € (b, 7]
N

[
(6, 1]
0,910 (6, 1]

(
1
0, 6] 1
0
0

Table 3.2: The values of 15(s) for given sets B at s in the interval in subcase 2.2.

Case 3: z > 0,y < 6. Consider a := Af*(z) = 1&;(1 — z),y € [0,6] and use the fact
that Ag(a) = Ag(l’)

1. Ify < a, then by Table @ and Lemma @, we have / Ke(s,[0,y])ds =
Yy
0 and Cep, %4 Ch,e(x,y) is

v “1 1
:/ (9AA9 s)((9 9)d8+/ éAAg(s)(e,O)dS +/ gAAe(s)(LO)dS
Yy a

- / " Ke(s, [0, 5))ds
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= /Oy Kc(s,]0,y])ds + /ac Ke(s, [0, y])ds
_ / " Ke(s, [0,y])ds.

The first equality uses the equations (@) and (@) and the third equal-
ity uses Lemma @

2. If a < y, then by Table @ and Lemma @, we have

lf%y
/ Ko(s, [0, y])ds = 0,
Yy

/ " Ko(s, 10, g))ds + / C Kelt,[0,y))dt

1-6
=

:/aywl(s)der/:l_g wy (t)dt

[3

y
y Y 1—
:/ wi(s) + 7 0w1 (1 3 93) ds

where we have made a change of variable t =1 — %s and

&5 Y1
Ce,A9 * 4 CAe’e(.’L',y) = /0 EAAB(S)(G,Q)CZS —|—/ EAAQ(S)(l,Q)dS

a

1
+/ EAAQ(S)(]‘?O)CZS
Y

_ /0 Ke(s,[0,8])ds + (y — a) + 0
— /Oa Ko(s, [O,y])dsJF/ley Kc(s,[0,y])ds
+ (/y Ke(s,[0,y])ds + /:wy Ke(s, [O,des)

_ /0 Ko(s, 0, 4])ds.

The first equality uses the equations (@) and (@) and the third equal-

ity uses Lemma @



30

Figure 3.8: The value of 0,C, 5, (2, Ap(s)) in subcase 3.1 (left) and 3.2 (right).

s€ (ya] ||| s€(ay]|s€ AW | se A (y)a]
[0,4] N[0, 6] 0 1 0 0
AR([0,y]) N [0, 6] 0 0 0 0
A2([0,y]) N (0,1] 0 0 0 1
[0,y] N (6, 1] 0 0 0 0

Table 3.3: The values of 15(s) for given sets B in subcases 3.1 (left) and 3.2 (right).

Case 4: z,y > 0. Consider a,b € [0,60] and use the fact that Ay(a) = Ay(z) and

Ag(b) = Ap(y). Notice that z —a = %2 and y — b= %Z-

1. If # <y, then by Table @ and Lemma @, we have
/ Ke(s,[0,y])ds = / (wi(s) +wals)) ds =a—1b,
b b

T 0 x
/ Ke(s,[0,y])ds = / (w1(8)+wa(s)) ds+/9 (w1(8)4wa(s)) ds =x—a

and Cea, x4 Ch,c(z,y) is

1 “1 1
= / —AAQ(S)(Q, H)ds + / —AAQ(S)(G, 1)d8 + / —AAQ(S)(l, 1)d8
o ¢ b 0 o 0

_ /Och(s, [0, s])ds + (a — b) + (T:Z>

-/ " Ko, [0,y])ds 1 / " Keo(s,[0,y])ds + / " Ke(s,[0,9])ds
:/OmKO(S, 0, y])ds.
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The first equality uses the equations (@) and (@) and the third equal-

ity uses Lemma @

2. If y < z, then by Table B.4 and Lemma B.4, we have
[%uamwwzliaﬁm+z%M@+m@wk
3fwwwwm»w+[3wws
= /abwl(s) ds—i—/:wl(t) dt+ (y —b)
:/abwl(s)—i— 1;% (1— 1595) ds + (%)

:(b—a)+(31’—:z>,

where we have made a change of variable t =1 — %s and

@] b1
Ceng ¥4 Chye(T,y) = /O 74005 (0, 0)ds +/ g n0(s) (1, 0)ds
01 ¢
+/ EAAe(S)(L 1)d8
b
a y _ 0
= / Kc(s,]0,s])ds+ (b—a) + | ——
: 1-0

IKUQ@MW¢+/U@@mw%
zlﬁwamww

The first equality uses the equations (@) and (@) and the third equal-

ity uses Lemma @

0 ;

0O bag = Y 1 0 apbs Y x 1

Figure 3.9: The value of 0,C, 5, (z, Ap(s)) in subcase 4.1 (left) and 4.2 (right).



B se (bal | se€(a,z s € (a,b] | se(bx]
[0,4] N0, 0] 1 Lo (1-2)0) 1 Lo 1y
Ag([0,y]) N [0, 6] 1 Lo (12)0) 0 Lo 140
AZH([0,9]) N (0, 1] 0 L6,2] 0 L(,2]
[0,y] N (6, 1] 0 Lo,0) 0 Lo
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Table 3.4: The values of 1(s) for given sets B in subcases 4.1 (left) and 4.2 (right).

]



CHAPTER IV
Symmetric Implicit Dependence Copulas Via Simple

Functions

In this chapter, we will generalize the result in section @ by giving a suffi-
cient condition on the measure-preserving transformation «, replacing Ay, under
which the implicit dependence copulas Cx y, where a(X) = a(Y'), are generalized
factorizable.

Let a be a measure-preserving (Borel) transformation on [0, 1] for which there
is a partition P := {0 = ag, aj, ag,...,a, = 1} such that, fori = 1,...,n, a; :== o]y,
is one-to-one where I; := (a;_1, a;]. By [11], a; ! is also Borel measurable and hence
each oy == «; Lo «; is an injective Borel functions from I; into I;. Note that o is
the identity on I;; «; is onto I; provided that o;(1;) = a;(I;); and oy; is an empty
map if o;(I;) Naj(l;) = @. Clearly, @ = """ o1, on (0,1]. In this chapter, we
assume further that each «; is strictly increasing and maps I; onto (0,1]. Under
these additional assumptions, every ay; is a bijection (in fact, a strictly increasing
function) from I; to I;. Hence, all o;’s and ;’s are differentiable a.e. on their
domains. Such a measure-preserving function « satisfying all above assumptions

will be called simple.

Figure 4.1: An example of simple functions a.
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Remark 4.1. For s € (0,1] and i = 1,2,...,n, let s denote the unique number
in I; such that a(s;)) = a(s). Obviously, sq) < s2) < -+ < 5,,); and that s = s;)
if and only if s € I;. Consequently, if s € I;, then s;) = ;;(s). Since every a; is
strictly increasing, it holds that s;) < t(;) if and only if s;) < t(;). It is also the
case that o~ (0, a(s)]) = UL, (@i, a7 (a(s)] = Ur, (as, )

Let random variables X,Y ~ U(0,1) be such that a(X) = a(Y) a.s. for some
simple measure-preserving transformation « on [0,1]. For each i = 1,...,n and
j=1,...,n,denote A;; := {X € [,,Y € I;} on which o;(X) = a;(Y) a.s. Hence
Y = aj;(X) as. on A;; and

Y =) ai(X)la, as. (4.1)

j=1 i=1

For convenience, we denote w;(s) := K¢y , (s, I;) which is equal to E [1yey | X = ]
for almost every s € [0,1]. Since K¢, (s,) is a probability measure for all s and
Ui, I = (0, 1], we always have >""  w;(s) = 1.

Next, we introduce Lemma - @ which are counterparts of Lemma @ - @
In section

Lemma 4.2. Let random variables X andY be uniformly distributed on [0, 1] such
that a(X) = a(Y) a.s. for some simple measure-preserving transformation « on
[0,1]. Then, fork=1,2,...,n and a.e. s € I,

n

1 1
—— P(Yei|X=sp) = . (4.2)
¢Z1 O/(S(i)) ( ) O/(S(k))

Proof. Let t = a(s) and A;(t) = (t n %,t + %) shrinks to ¢ nicely. By Theorem

, we have

P(Y €Iy | a(X) =t) = lim P(Y € I, | a(X) € A4;(t)) ae. t.

j—00
Let the event B; := {a(X) € A,(t)} = UZ{X € o7 '(4;(t))}. Notation |J mean

disjoint union. Thus, by conditional probability, for a.e. ¢

P(Y € I | a(X) =t) = lim P(Y € I, | B))

j—0o0

&Py e L, X € (A1)
= jm ; P(B;)
L i P(Y € I, X € o] "(A4;(1) P(X € o] ' (4;(1)
T | & P € a; (4() P(B))




Jj—00

= lim ZH:P(Y €| X € oy (A1) -

Since X ~ U(0, 1) and o is measure-preserving, P(X € o; ' (A4;(t))) = A (a; ' (4;(1)))
and P(B;(t)) = A (a1 (A;(t))) = A (A;(t)). Therefore, by Theorem @, for a.e. t,

P el (A0) gy
= —Ea) @) 0=

Since the sequence o; '(4;(t)) = (a; ' (t — %), ot (t+ %)) shrinks nicely to s as

J — 00, we have by Theorem @ that
P(Y €I | X € o ' (4;(1) = P(Y € I | X = s(3))-

Hence, P(Y € I | o(X) =t) = >0 | BiP(Y € I | X = 5()).

Since a(X) = a(Y) a.s., wehave P(Y € I;, | a(X) =t) =P(Y € I | a(Y) =)
which, by the same arguments as above, is equal to > 1" | B;P(Y € I}, | Y = 5(;).
Finally, as it is clear that P(Y € I, | Y = s;)) = 1if i = 1 and 0 if ¢ # 1, we
obtain that

Y BPY €L | X =s3) =B
=1
O

Lemma 4.3. Let o be a simple measure-preserving transformation on [0,1] and
random variables X, Y ~ U(0, 1) with copula C = C'xy and such that a(X) = a(Y)
a.s. Then, fory € Iy, k € {1,...,n} and a.e. s € [0,1],

(&
ij(s) if s € (a;—1,Y@)) for some 1,
j=1

Ke(s, [0,y]) = (4.3)

k1
ij(s) if s € (Y, as) and k > 2 for some 1,
j=1

0 if s € (yu), a;) and k=1 for some i.

\
Proof. Recall from (@) that Y =77 | > L) @ji(X)1a,; as.
Since 0 < / Ly oy (@)dP(w) < / Ly oy (@)dB(w) = P(Y = 0) = 0 for all
A Q
A € (X)), we have E [1{y_o; | X] =0 a.s. To prove the lemma, it is sufficient to

consider Lo, oY . Observe that for any J C (0, 1] and a random variable Z taking
values in [0,1], 1y 0 (Z14,;) = (Ly o Z)14,, for every i, j. Thus, for every i, j,

H(O,y} e} (aji(X)ﬂAij) = (1(071/] O aﬂ(X)> ]lAij a.s.
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Then

TgyoY = Z Z (Lo © si(X)) 1a,, as.

=1 i=1

Since «; is bijective on I; for each 4, we have that a;(X) € (0,y] if and only if

X € aij((O, y]) Thus, ﬂ(gyy]OY = Z Z (ﬂaij((o,y})<X)) ]]‘Aij a.s. Since ]]‘aij(((],y])OX
j=1 i=1
and 1, o X are o(X)-measurable, we have
E [(Haz‘j((O,y]) © X) Lag | X] =E [(Haij((O,y]) © X) 1, (X)15;(Y) | X]
= (Lo © X) E [Iyey, | X]
= Wj(X) (ﬂaij((o,y])ﬁh 9 X) a.s.

Hence,

Kc(s,[0,9]) :E[ﬂoy]oY | X = s]

7 ZZ% Loz (s) as.

7=1 =1

Next, we will consider s € I, s0 K (s, [0,y]) = > 27 wi(5) Loy o)) (5)- 15 <k,
then ;;((0,9]) = o; *([0,1]) = I;, so ]1% (0 o) (s) = 1. For j > k, since a; define on
Ij7SO aj((ovy]):®7 then CYU((O,y]) = ( ) g, 1ie. ]]-azj(((]y])( )_O It j =k,

i

then ay;((0,4]) = a7 ([0, a(y)]) = (ai—bym]v € Lo (04)(5) = Lai_yy) (). This
completes the proof of equation (@) ]

Lemma 4.4. Let o be a simple measure-preserving transformation on [0,1] and
random variables X,Y uniformly distributed on [0,1] with copula C = Cxy such
that a(X) = a(Y) a.s. Then, forik=1,...,n,y € I}, and a.e. s € [0, 1],

1. Kc(sa), [0, 5m)) = Ka(sa), [0,y]) if sgy < y; and
2. Ko(s3), [0, sg-1)]) = Ko(saw, [0,9]) if sy >y

Proof. Equivalently, it suffices to show that P (s(k) <Y <y|X= s) = (. Since
A= <s — %, s} shrinks nicely to s as j — oo and the sets

a((s@),y]) C10,a(y) U (alsw), 1]

and
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are eventually disjoint. Note the use of the assumption that o can be partitioned

into finitely many «a;’s. Hence,

POV € (sua] X € A46) < (a0) €0 (s ]) o) €0 (1= 1))

J
=0,

for j large enough. Therefore, P (S(k) <Y <y|X= 8) = 0 which proves the

claim. u

Lemma 4.5. Let o be a simple measure-preserving transformation on [0,1]. For

x €l and a.e. s € I,

— = i1 ifx < s,
02Ce o(z,0(s)) = ¢ =1 (4.4)

74 N
Z N B; if © > 5(j).

Proof. By definition, C. o(z,y) = A (UjZ,[0, 2] N (ai—1, ;' (y)]). Let € I;. Then,

the intersection is empty for ¢ > 7 and
Z(O%_l(y) —a;i1) + (z—aj1) ifz < sy,

Z(O‘;I(Zﬁ — Q1) if ¥ > s(5).

Let s € I;. For x < s5(;), a.e. s

I
5

02C, o(x, ()

<. >
1
o
>

[
[
=
Q
Tl
o
o
+
=
|

Q
oL
”5
)

BTN
Il
_

I
—~
L
=

—_
~—
—
L
—~
»
~—
~—

oL e,

[

==
—_

-
Il

Also for x > s(;), a.e. s

. Ceon(m,a(s) +h) — Ce oz, afs))
02C, o(x,0(8)) = }llli% -
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]

Computing Ce o (1, a(s)) in two different ways, i.e., by using (@) and by the

~ 1

boundary condition of copulas, gives 3, = Z 5] =1
7 4 (0 S(i)
=1
k
. 1

For less cumbersome notation, we denote [ := Z ——fork=1,...,n

= @ (s)

and B := {0 = Bo,51,...,Bn-1,8n = 1}. For s € (0,a1), let Ay

B x B by

a (s) (ﬁky ﬁé

and Aues) (Br, 1) = Aas) (1, 6k) = B for k=0,1,...,n

1
0
a(s)
0 s 5@ 5() 1

Figure 4.2: The value of 0;C, o (2, a(s)).

Lemma 4.6. For every s € (0,a1), Aas) s a subcopula on B x B.

Z 0, 10,50]) for ke {1,...,

be defined on

45)
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Proof. 1t is only left to show that A, has 2-increasing property. Let £, < /3, and
B < Bp. For j =k, ¢,

A (s) (Bqa ﬁ]) (ﬁp: ﬁ]

0,10, s(7)])-

i=p+1

S0 Vi) ([Bp, Bl % [Br, Bel) = sy 2oips @i (8) K (50, (1, 5(0)]) 2 0. .
Lemma 4.7. A;(02Ceo(x,t),02Ce 0 (y,t)) is measurable in t € [0, 1].

Proof. Let s € I. For each k,¢ € {1,...,n— 1}, consider

Z 0+ [0, s])-

Since s < ay and s(;) is a linear function of s, by Lemma Q Kc(s@), 10, s0)]) =

) (B, Be) =

Ko (s, [0, a)) is measurable in 5. Hence, Aqs) (Br, Be) is measurable in s. Next,
it is similar to Lemma @ to show that Ay(s)(02Cea(x, a(s), 02Cc oy, (s)) is mea-

surable in s. Using a change of variable ¢ = a4 (s), the proof is complete. [

Theorem 4.8. Let random variables X,Y ~ U(0,1) be such that a(X) = a(Y)
a.s. for some simple measure-preserving transformation « on [0,1]. Then, there
exists A = {Aihec,1) C© € such that Cxy = Ce o %4 Cope.

Proof. For each s € (0,a1), we extend the subcopula A, defined above to a
copula, still denoted by Ay). Ag and A; can be taken to be any copulas as
they do not affect the A-product. By Lemma @ A (D Ce o (2,1), 02C, o (y, 1)) is
measurable in ¢ € [0, 1]. Putting A := {A;}scp0,1), we have

1
Ce,a *A Ca,e<x7 y) = / At(aQOe,a<x> t)a aZCe,a(y7 t)) dt
0
_ / 0 () Aage) (02000, a(5)), 2Cenl(y, a(s)) ds,  (4.6)
0

where the last equality uses the change of variable t = a(s). Denote C' := Cxy
and let K¢ be its Markov kernel. The rest of the proof is devoted to deriving
that (@) equals [ K¢ (s,[0,y]) ds which, by Theorem , is equal to C(z,y).
The proof is divided into four cases according to where (x,y) is. By Lemma
@, if (z,y) € I x I then 0:C. o(z,(5)) = Bpli0,2,))(8) + Bp-111z(,),a1](8) and
DoCe0 (Y, (8)) = ByLi0,y)(8) + By-11py a1 (8) for ace. s € (0,a4].

Case 1: z € [,y € I, whereg=1,...,n
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L1 If & < yqy, then Cp g %4 Coe(z,y) is

T Y1)
:/0 o/ (5)Aas) (b1, By) d8+/ o'(s)Aas) (0, By) ds
+/ o/ (5) Angs) (0. fy_1) ds

Y(1)

fOch( 0,s¢])ds  ifg<n,
fo ﬁldS—fo 1ds if g =n.

The case ¢ = n is done by noting from (@) that Kc(s, [0,y]) = > T w;i(s) =
1. Consider ¢ < n. For s < x < y(y), it follows from Remark that
5() < Y(q)- S0, we have K¢ (s,[0,5(4]) = Kco(s,[0,y]) by Lemma Q

1.2. If # > y(), then C, o *4 Cael(z,y) is

Y x
= [ @A B s [ (a1 By ds (47)
0 Y1)
b [ 0 6) A 0.5,1) ds
Jo" Ke(s, [0, 5])ds ifg=1,
=< JJD Ke(s, [0, 5(9)])ds + fyin Kc(s,]0,s-n])ds if1<qg<mn, (48)
JO 1ds + f;l) Kc(s,10, sq-1)])ds if g =n.

For 1 < ¢ < n, it follows from Remark@ and Lemma Q that Kc (s, [0,5()]) =
KC(S7 [Ovy]) if s < Yy, and KC’( [Ovs(qfl)]) — KC(‘Sv [an]) if Y <s <.
Hence, (@) is equal to fo Kc(s,]0,y])ds.

For ¢ = 1, we obtain by using Lemma @ that K¢ (s, [0, s]) = Ko(s, [0,y]) if
s <yay =y. For yqy < s <z, we have K¢(s,[0,y]) = 0 by Lemma

For ¢ = n, we note from Lemma @ that Kco(s,[0,y]) = >0 wji(s) = 1if

7=1
s < yay, and Ke(s,[0,s4-1)]) = Ke(s,[0,y]) if yay < s < .

Case 2: v € [,,yc I, wherel <p<nand1l<g<n.

2.1. If 21y <y, then Ce o x4 Cue(x,y), for ¢ > 1, is

T(1) Ya)
— [ i (5 8 s + / o/(8) Aty (By1. By) ds
(1)

0

+/ 05 a p 1>Bq 1)d$
Ya)
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a(y) / a(z) /
a(z) a(y)
0 2¥n dw) Y 1 0 Ymz aq vl

Figure 4.3: The value of 0,C, o (z, a(s)) in subcase 1.1 (left) and 1.2 (right).

(1)
/ Zaﬂ K(; 0 S(q d8—|—/ ZO& KC [O S(q )])d

L) 4=1

alp 1
/ Ke(s3, [0, 84-1)])ds
Y1) =1
2y P yay P71
:/ Z% VK (s0) 0, 9] ds+/ > " aly(s)Ko(sa), [0, y])ds
0 1) =1
a1p 1
+ [ 3 aii(s) Koo 0-9ds
Y1) =1

Yy p_l a;
Ko(s, [0,y)ds + Y [ Kc(s, [0,y])ds.
; Yi)

:Z/x(i)KC(s,[O v ds—i—Z/
i=1 ai-1 @

The third equality holds because, by Remark@and Lemma@ Keo(s,[0,5¢)]) =
Kc(s,[0,y]) for s € [0,yq)] and Kea(s,[0,544-1)]) = Ke(s,[0,y]) for s €
(Y1), a1], and the last equality uses the change of variable sy = a;1(s(1))

= sw)-

Case ¢ = 1 is similar to case ¢ > 1 except for that Ay (Bp—1,84-1) = 0.
pfl a;
This case is proved because Z Kc(s,]0,y])ds = 0 by equation (@)

Y@)

(2)

2.2, If xq) > yqy, then C, o %4 Coc(z,y), for ¢ > 1, is

Y(1) Z(1)
= / o' (5)Aa(s) (Bp, By) ds + / o' () Aa(s) (Bp, Bg—1) ds
0

Y



42

a1
+/ O'/(S)Aa(s) (Bp—lvﬁq—l)ds
Z(1)
Y(1) p
/ o1 () Ke(s3y, [0, s(9)] d5+/ Zazl VK (53, [0, 5(-1)])ds
y

(1) =1
/ Zaél(S)Kc(Sw[075<q—1>]>d5

T(1) =1

Yy L zay P
—/ Zazl VKe(s ,[O,y])ds—l—/ > aly(s)Ke(sq, [0, y])ds
Y

1) =1

al

Zan JKc(s SIOF [0, y])ds

(1) =1
YGi) (3)
—Z/ Ke(s,10,9] ds—{—z Ko(s 0y)d8+ / Kc(s,]0,y])ds.
Y(i) L(4)

The third equality holds because, by Remark@and Lemma@ Kc(s,[0,s¢9)]) =
Kc(s,[0,y]) for s € [0,yq)] and Kea(s,[0,5¢-1)]) = Ke(s,[0,y]) for s €
(Y1), a1], and the last equality uses the change of variable sy = a;1(s@))
[= s

Case ¢ = 1 is similar to case ¢ > 1 except for that Aas) (Bp, Bo) = 0 =

CC(Z

Aa(s) (Bp-1,B0). Using equation (@ ), we have Z Keo(s,[0,y])ds =

Y@i)
p—1 a;
0= Z Kc(s,[0,y])ds to complete this case.
i=1 720
| /‘ 1 /‘
a(y) a(z)
a(x) a(y)
0 Thy A 1 0 Ymro ey 1

Figure 4.4: The value of 0,C, o (z, a(s)) in subcase 2.1 (left) and 2.2 (right).

Case 3: v € I,,y € I, where 1 <p <n.
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3.1. If x(1) < Y1), then Ce,a *A Ca,e(xa y) is

Z()

Ya)
= O/(S)AOC(S) (6177 ﬁn) ds + / O/(S>Ao¢(s) (6])—17 Bn) ds

0 x(l)

+ /y(l) a/<s)Aa(8) (Bp-1, Bn-1) ds

/m) ( )i 1 ; +/y<1> ( )% 1 p
= oS —as oS —das
0 — o/ (s(3)) — o/ (s(3))

)

a1 P
+ / i1 () Ko (s, [0, S(n-1)])ds

Y1) i=1

ST alls) R [ al(s) S
- /0 : ds—l—Z/ a/(s(i))ds—i—/ Zaﬂ(s)Kc(s(i),[O,y])ds

a(s
i=1 ( (1)) i=1 Y %) Y1) =1
Y(i) p—1 a

lds+ > [ Kc(s,[0, snop)])ds.

The third equality holds because, by Remark @ and Lemma @, Kc(s,[0,5m-1)]) =
Kc(s,[0,y]) for s € (yq), a1], and the last equality uses the change of variable

o’ (s)

O/(S(i)) 8(1) :

sy = i1 (1)) [= s@5)). Note that dosi(sq)) =

3.2. If 1) > Ya), then Ce,a *A Ca,e(% y) is

Y (1)
= / O/(S)Aoc(s) (B]:n Bn) ds + / O/(S)Aoz(s) (ﬂpa 671—1) ds
0

Y

N / " 0/(5) Aa) (B Par) s

z(1)
Y(1) P 1 za) P
_ / o/(s) ) ———ds + / > aly(s)Ke (s, [0, 8(nep)])ds
0 i=1 /(5 Yy =1
al p—1
+/ > aii(s)Ke(s), [0, 5u-n)])ds
1) =1
P o/ (s) Ty L
— ds+/ o1 (s)Ke(s@y, [0, y])ds
;/0 o/(5) Y ; 1 v
al p—1
+ [ > ah(s)Ke(sw, [0,])ds
T1) i=1

P LYo P p7l e
=3 [T1ase Y [ Kol s+ Y [ Kels 0hds
i=1 v ®i-1 i=1 YY) i=1 Y %)

The third equality holds because, by Remark @ and Lemma @, Kc(s,[0,50m-1)]) =
Kc(s,0,y]) for s € (yqa), a1], and the last equality uses the change of variable
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o'(s)

S(1) = 041'1(8(1))[: S(i)]. Note that dozil (8(1)> = (s (1)-

a(y) / a(z) /
a(z) a(y)
0 TO¥u A Y1 0 YT Yl

Figure 4.5: The value of 0,C, (7, a(s)) in subcase 3.1 (left) and 3.2 (right).

Case 4: v € [,y € I, where 1 < g <n.

4.1. If ) < yq), then Cea ¥4 Ca,e(x,y), for ¢ > 1, is

(1) Ya)
- / a/(S>Aa(s) (6717 Bq) ds + / O‘,(S)Aa(s) (ﬁn—la 6q> ds
0

Z()

+ / | o(5) Aags) (Bn-1 Bg-1) ds

Y

_ /Oxm o/ (s) g

a; n—1
+/ > aiu(s)Ko(sw), [0, 56-1])ds
Y

n—1

Ya)
d8+/ > ai(s)Kc(s@, [0, 5¢q)])ds

TENTY =)

1
o' (53)

1 =1
(1) a 1 yay "t
= a'(s) ds + o1 (s)Ke(say, [0, y])ds
/0 i—1 O/(S(i)) (1) ;

q

n—1 ) n—1 )
z(1) 1 Y(i) a;
= / O/(S)Z d5+ Z/ KC(S7 [Ovy])d8+z KC'(Sa [an])d‘s
0 i=1 ()

i=1 () i=1 YY)

The third equality holds because, by Remark El] and Lemma, @, Keo(s,[0,5¢9)]) =
Kc(s,[0,y]) for s € (zay,yq), and Keo(s,[0,s4-1)]) = Kc(s,[0,y]) for s €
(Y1), a1] and the last equality uses the change of variable sy = a;1(s))
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The first term in the last equality, by Lemma @, becomes

/Oxu) O/(S)Z 1 —ds = /Oxu) O/(S)Z (Z 1 ‘ wi(s(j))> ds.

=1 Oé/<S(Z)) i=1 j=1 Oé,(S(])>

Using the change of variable sy = a;1(s(1))[= 5(;)], we have

(1) 1.2 1 o) I
/ a'(s) Z Z Twi(s(j))ds = Z/ Zwi(s)ds.
0 i=1 j=1 « S(J)) j=1"aj-1 =1
By equation (@),
"o I LI L0
S [ wtes =Y [ Kets. l0.u)ds
j=1v%-1 =1 j=1v%-1
Case ¢ = 1 is similar to case ¢ > 1 except for that Ase) (Bn-1,04-1) = 0.
n—1 a;
Using equation (@), we have Z Kc(s,[0,y])ds = 0. This completes
i=1 YY)

the case.

4.2. If 1y > yq), then Ce o x4 Cye(x,y) is equal to
vy TN
— [ @ i (BB s [ ) a5 ) ds
0 v

+ / 0/(8) Aage) (Bt Bymr) ds

Z(1)

JREC) ey D)y
= oS ~ Rl b o (S —das
0 — o/ (s(i)) — o/ (s(3))

Y@

a; n—1
+/ > ai(s)Ke(sa, [0, 54-1))ds

T i=1
() g 1 z(1) oty
= o(s) ds—l—/ a'(s) ds
/o ; ' (5()) v ; ()
a; n—1
[ 3 ae) Ko 0.u])ds
T i=1
[ oy s [ O et 5 [ Kol 0.1
= o'(s s o (s s c(s,]0,y])ds.
0 = @ (s0) v = @ (s0) i=1 720

The third equality holds because, by Remark @ and Lemma @, Keo(s,[0,84-1]) =
Kc(s,[0,y]) for s € (y(1), a1], and the last equality uses the change of variable

sy = ai(s@))[= s@)-



The first term in the last equality, by Lemma @, becomes

R ‘1 L _ [ o (s : wi(s(; s
[ gyt 0L ( ) @)) !

i=1

and

(S S = a (S Wil S(4 S.
vy — o/(s:) — o/ (s)

Y =1 7=1

Using the change of variable s(1) = ;1 (s1))[= 5(;)], we have

Y 7. 1 Yo I
/0 o (s) ; ; a/(s(j))wi(s(j))ds = ; /a Zwi(s)ds

j—1 =1
and
ON ¢—1" n 1 n ;) 971
[0S s =3 [ Y wspas
ya) i=1 j=1 (@) j=17YG) =1
By equation (@),
Yo I “L[Y6)
Z/ Zwi(s)ds = Z Kc(s,[0,y])ds
j=1"7%-1 j=1 Jg=1+%-1

and

Z /x(j) z_:wi(s)ds — Z T(5) Ko(s. [0.4])ds.

Y6 =1 j=1"Y0)

Case ¢ = 1 is similar to case ¢ > 1 except for that Ay (Bn, Bg-1) = 0
LY IO)
Aa(s) (Bu—1,B4-1). Using equation (@), we have Z Kc(s,[0,y])ds
i=1 YY)
n—1 a

0= " Kols, [0,3])ds.

i=1 Y ¥@)



0 Tmy a4 r 1 0 YT amy 1

Figure 4.6: The value of 0,C, o (z, a(s)) in subcase 4.1 (left) and 4.2 (right).
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CHAPTER V
CONCLUSION

5.1 Our results

We started out trying to characterize implicit dependence copulas and finally
found a relationship between implicit dependence copulas and products of complete
dependence copula.

In section @, we show that generalized products of complete dependence cop-
ulas C, », and C}, . are implicit dependence copulas of some random variables X
and Y uniformly distributed on [0,1] with Ag(X) = Ag(Y) a.s. Vice versa, we
factor some implicit dependence copula into a generalized product of complete de-
pendence copulas, i.e., for every random variables X and Y uniformly distributed
on [0, 1] with Ag(X) = Ag(Y) a.s. and with copula Cxy, there exists a class of
copulas A such that Cxy = Cep, ¥4 Ch,e (section @) Moreover, in chapter E/l,
we generalize the result in section @ from the function Ay to the function a.

5.2 Further studies

Naturally, we conjecture that, for measure-preserving transformations f and
g, C is the copula of implicitly dependent U(0,1)-random variables X and Y
with f(X) = ¢g(Y) a.s. if and only if C' = C. x4 C, . for some class of copulas

A= {At}te[o,l}-
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