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CHAPTER 1
INTRODUCTION

In this dissertation, we study two combinatorial games on simple graphs, namely,
the graph grabbing game and the Toucher-Isolator game. We first recall some
basic definitions in graph theory which will be used for this dissertation and we

then talk about combinatorial game theory.

1.1 Graph Theory

This dissertation follows most of basic graph theory terminology from a textbook
of West [B3] and a textbook of Bondy and Murty [2].

A graph G is a pair of a vertez set V/(G) of G and an edge set E(G), a collection
of 2-subsets of V(G), of G. A subgraph H of a graph G is a graph such that
V(H) CV(G) and E(H) C E(G). An element in V(G) (resp. E(G)) is called a
vertezr (resp. an edge) of G. The vertices u and v are adjacent in G if and only if
{u,v} € E(G). For convenience, we write uv for {u,v}. For a vertex v € V(G), a
vertex u € V(G) is a neighbor of v if and only if wv € E(G). For a graph G and
a set S C V(G), let Ng(S) denote the neighborhood of S, i.e., the set of vertices
having a neighbor in S and we write Ng(v) for Ng({v}). For a vertex v € V(G),
the degree of v is |Ng(v)|, denoted by deg(v). A graph G is even (resp. odd) if
|V(G)]| is even (resp. odd).

The complete graph K, on n vertices is a graph on n vertices in which any two
vertices are adjacent. That is, V(K,) = {vi,ve,vs,...,v,} and E(K,) = {vv; :
1<i<j<n}.
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Figure 1.1: The complete graph K.

The path P, on n vertices is a graph on n vertices whose vertices can be arranged
in a line such that two vertices are adjacent if and only if they are consecutive in

the line. That is, V/(P,) = {v1,v2,v3, ..., v, } and E(P,) = {vv;11 : 1 <i <n—1}.

(%) (o Ve

By

Figure 1.2: The path P.

The cycle C,, on n vertices is a graph on n vertices whose vertices can be
arranged in a circle such that two vertices are adjacent if and only if they are con-
secutive in the circle. That is, V(C,) = {v1,v2,v3,...,v,} and E(C,) = {v;v;41 :
1<i<n—1}U{v,v}.

Ug
(%4 U1
Vg Vg
Us U3
V4
Cs

Figure 1.3: The cycle Cs.



A bipartite graph G with partite classes X and Y is a graph whose vertex set
V(@) can be partitioned into two subsets X and Y and there is no edge having
both endpoints in the same class, i.e., E(G) C {zy: 2z € X,y € Y}. The complete
bipartite graph K,,, is a bipartite graph with |X| = m, |Y| = n and two vertices
are adjacent if and only if they are in different classes, i.e., E(G) = {zy : = €
X,y eY}.

Figure 1.4: The complete bipartite graph K, 3.

For a vertex v € V(G) and a subset S C V(G), we write G — v (resp. G — 5)
for the subgraph obtained by deleting the vertex v (resp. the set §). A graph
G is connected if for any x,y € V(G) there is a path from z to y; otherwise G
is disconnected. A vertex v of a connected graph G is a cut vertex if G — v is
disconnected.

A forest is a graph with no cycle. A tree is a connected graph with no cycle.

Figure 1.5: A tree.

A weighted graph G is a graph G with a weighted function w : V(G) — RTU{0}.
Unless stated otherwise, [k] means the set of the natural numbers from one

to k.



1.2 Combinatorial Game Theory

As defined in a textbook of Seigel [B1], a combinatorial game is a two-player game
with perfect information and no chance elements, such as a dice, shuffled cards,
or a roulette. This includes well-known games such as the Tic-Tac-Toe game, the
Dots and Boxes game, the chess game, the checkers game and the Go game.

Recently, there are many research studies about combinatorial game on graphs
For example, the Maker-Breaker games (see [[13, [14, [17, 18]), the cop and robber
games (see [, 22, B2]) and the graph coloring games (see [3, 5, [7]).

In this dissertation, we study two combinatorial games, i.e., the graph grab-
bing game and the Toucher-Isolator game. The graph grabbing game is played
on a non-negatively weighted connected graph by Alice and Bob who alternately
claim a non-cut vertex from the remaining graph, where Alice plays first, to max-
imize the weights on their respective claimed vertices. Seacrest and Seacrest [30]
conjectured that Alice can secure at least half of the total weight of every weighted
connected bipartite even graph. Later, Egawa, Enomoto and Matsumoto [10] par-
tially confirmed this conjecture by showing that Alice wins the game on a class of
weighted connected bipartite even graphs called K, ,-trees. We extend the result
on this class to include a number of graphs, e.g. even blow-ups of trees and cycles.

In the Toucher-Isolator game, introduced recently by Dowden, Kang, Mikalacki
and Stojakovié¢ [9], Toucher and Isolator alternately claim an edge from a graph
such that Toucher aims to touch as many vertices as possible, while Isolator aims
to isolate as many vertices as possible, where Toucher plays first. Among trees with
n vertices, they showed that the star is the best choice for Isolator and they asked
for the most suitable tree for Toucher. Later, Rity [28] showed that the answer
is the path with n vertices. We give a simple alternative proof of this result. The
method to determine where Isolator should play is by breaking down the gains and

losses in each move of both players.



CHAPTER II
GRAPH GRABBING GAMES

2.1 Introduction

The graph grabbing game is played on a non-negatively weighted connected graph
by two players: Alice and Bob alternately claim a non-cut vertex from the remain-
ing graph and collect the weight on the vertex, where Alice plays first. The aim of
each player is to maximize the weights on their respective claimed vertices at the
end of the game when all vertices have been claimed. Alice wins the game if she
gains at least half of the total weight of the graph.

The first version of the graph grabbing game appeared in the first problem in
Winkler’s puzzle book (2003) [34], where he gave a winning strategy for Alice on
every weighted even path and he observed that there is a weighted odd path on
which Alice cannot win. In 2009, Rosenfeld [29] proposed the game for trees and
call it the gold grabbing game. In 2011, Micek and Walczak [24] generalized the
game to general graphs and call it the graph grabbing game. They showed that
Alice can secure at least a quarter of the total weight of every weighted even tree
and they conjectured that Alice can in fact secure at least half of the total weight
of every weighted even tree. Later in 2012, Seacrest and Seacrest [30] solved this
conjecture by considering a vertex-rooted version of the game and they posed the

following conjecture.

Conjecture 2.1 ([30]). Alice wins the game on every weighted connected bipartite

even graph.

In 2018, Egawa, Enomoto and Matsumoto [[10] gave a supporting evidence for
this conjecture. They generalized the proof of Seacrest and Seacrest by consider-

ing a set-rooted version of the game to prove that Alice wins the game on every



weighted even K, ,-tree, namely a bipartite graph obtained from a complete bi-
partite graph K, ,, on [m + n] and trees 11,75, T, . .., T4y by identifying vertex
i of K, with exactly one vertex of T; for each i € [m + n|.
For a graph GG with vertices vy, vo, v3, . .., vy and non-empty sets Vi, Vo, Vs, ..., Vj,

a blow-up B(G) of G is a graph obtained from G by replacing vy, vs, v, . . ., v, with
Vi, Vo, Vs, ..., Vi, respectively where, for each ¢, j € [k], vertices x € V; and y € V
are adjacent in B(G) if and only if v; and v; are adjacent in G. For a graph G on
[k] and trees Ty, Ty, T3, ..., Tk, a G-tree is a graph obtained from G by identifying
vertex i of G with exactly one vertex of T; for each ¢ € [k]. For a tree T, we note
that a B(T')-tree and B(Cy,) are connected bipartite graphs, and a B(T')-tree is a
K,n-tree when T is the path on two vertices, (see Figure @)

U3
U1 V2

Us
() Vg U7

T

B(T')-tree

Figure 2.1: Examples of a tree T', a blow-up B(7") and a B(T')-tree.

In this chapter, we partially confirm Conjecture Ell as follows.

Theorem 2.2. Alice wins the game on every weighted even B(T')-tree, where T is

a tree.
Corollary 2.3. Alice wins the game on every weighted even B(C,,).

The proof is based on the method of Egawa, Enomoto and Matsumoto [10],
where their main lemmas dealt with the score of the game on a kK, ,-tree rooted
at a partite class. We generalize their method by considering instead the scores of
the game on an H-tree rooted at V; and the game on the H-tree rooted at Ny (V;),

where H is a blow-up of a tree.



The rest of this chapter is organized as follows. In Section @, we recall some
observations and a lemma on K,,,-trees given by Egawa, Enomoto and Mat-
sumoto [L10]. Section @ is devoted to proving Theorem @ and then applying it

to prove Corollary @ In Section @, we give some concluding remarks.

2.2 Preliminaries

In this section, we prepare some observations and a lemma on K,, ,-trees which
will be useful for the proof of Theorem @

We first give definitions of a rooted version of the graph grabbing game and
some related terms introduced by Egawa, Enomoto and Matsumoto. For a weighted
graph G, a root set S of GG is a set of vertices intersecting every component of G
and the game on G rooted at S is a graph grabbing game, where each player does
not have to claim a non-cut vertex, but instead they claim a vertex v such that
every component of G — v contains at least one vertex in S. Therefore, a move v
in the game on G is feasible it G — v is connected, and a move v in the game on
G rooted at S is feasible if every component of G — v contains at least one vertex
in S. A move v in the game on G (rooted at S) is optimal if there is an optimal
strategy in the game on G (rooted at S) having v as the first move. The first (resp.
second) player is called Player 1 (resp. Player 2). The last (resp. second from last
player) is called Player —1 (resp. Player —2). For k € {1,2,—1, -2}, assuming
that both players play optimally, let N(G, k) denote the score of Player k in the
game on G and let R(G, S, k) denote the score of Player k in the game on G rooted
at S and we write R(G,v, k) for R(G,{v},k). For a set S and an element z, we
write S — z for S~ {z}.

Egawa, Enomoto and Matsumoto [10] observed some relationships between
the scores of both players in the normal version and the rooted version of the
game. Note that the equation/inequality in the brackets in each observation is
an equivalent form of the first one because of the fact that, assuming that both

players play optimally, the sum of their scores equals the total weight of the graph.



Observation 2.4 ([10]). If z is a feasible move in the game on G, then
N(G,2) < N(G—-uz,1) (& N(G,1)> N(G —z,2) + w(x)).
If x is an optimal move in the game on G, then
N(G,2)=N(G—=z,1) (& N(G,1)=N(G —x,2) + w(x)).

Observation 2.5 ([10]). Let S be a root set of G. If x is a feasible move in the

game on G rooted at S, then
R(G,S,2) < R(G—z,S—=z,1) (& R(G,S,1)> R(G—z,5 —x,2) + w(x)).
If x is an optimal move in the game on G rooted at S, then
R(G,S8,2)=R(G—z,S—x,1) (& R(G,S,1)=R(G—2,5 —x,2) + w(x)).
Observation 2.6 ([10]). If v is a root of G, then
R(G,v,—2) = R(G—v, Ng(v),-1)(& R(G,v,—1) = R(G—v, Ng(v),—2)+w(v)).
The next lemma is a part of their main results which will help us in the proof.

Lemma 2.7 ([10]). Let G be a K, ,-tree with partite classes X,Y of sizem,n > 1,

respectively. Then

R(G,Y,-2) < N(G,=2) (& R(G,Y,—1) > N(G, -1)).

2.3 Proofs of Theorem 2.2 and Corollary 2.3

In this section, we start by proving Lemma @ which will be used repeatedly in the
proof of our main lemmas, namely, Lemmas @ and . We then prove Theo-
rem @ by applying the main lemmas and deduce Corollary from Theorem @

The following lemma shows the relationship between the scores of both players

in the game on an even graph rooted at two different sets of some structure.

Lemma 2.8. Let Gy and Gy be subgraphs of an even graph G such that V(G1) and
V(G3) partition V(G). If Uy = V(G1)NNg(V(Gs)) and Uy = V(G2) N Ng(V(G))
are root sets of G1 and Go, respectively, and every vertex in Uy is joined to every

vertex in Uy, (see Figure 232), then



2.8.1 R(G,U1,1) > R(Gy,Up, —2) + R(Ga, U, —1).

2.8.2 R(G,Uy,1) > R(G,Us, 2).

Gl U1 U2 GQ

Figure 2.2: The graph GG in Lemma @

Proof. First, we shall prove Lemma by considering a strategy for Alice who
plays first in the game on G rooted at U;. She plays optimally as Player —2 in
the game on (G; rooted at U; and plays optimally as Player —1 in the game on G5
rooted at Us,. Since |V(G1)| + |V(G2)| is even, she plays as Player 1 in one game
and as Player 2 in the other. Now, we check that Alice’s moves are feasible in the
game on G rooted at U, and Bob’s moves are feasible in the game on G rooted
at U; and the game on G5 rooted at U,. Indeed, after each move of Alice, every
remaining component of GG; and G5 contains a vertex in U; and Us, respectively.
Together with the fact that every vertex in U, is joined to the remaining subset
of Uy, we can conclude that every remaining component of G contains a vertex in
U;. That is, her moves are feasible in the game on G rooted at U;. On the other
hand, after each move of Bob, every remaining component of G' contains a vertex
of U;. Since the edges between (G; and (G5 have endpoints only in U; and Us, every
remaining component of GG; or G contains a vertex in Uy or Us, respectively. That
is, his moves are feasible in the game on G; rooted at U; and the game on G,

rooted at Uy. Hence
R(G7 U17 1) > R(Gla U17 _2) + R(GQa U27 _1)7
which completes the proof of Lemma . By symmetry, we have

R(G7 U27 1) Z R(Gla U17 _]-) + R(GQa U27 _2)7
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which is equivalent to
R(G7 U27 2) < R(Gh U17 _2) + R(GQa U27 _1)7

by considering the total weight of G, G; and G5. Together with Lemma , we

have
R(G7 U27 2) S R(G17 U17 _2) + R(G27 U27 _1) S R(G7 U17 1)7
which completes the proof of Lemma . ]

We are now ready to prove the main lemmas which generalize the results on
K, n-trees to B(T')-trees relating the scores of both players in the normal version

and the rooted version of the game.

Lemma 2.9. Let H be a blow-up graph of a tree with sets of vertices Vi, Vo, V3, ...,V
and let G be an H-tree.

2.9.1 For a vertexv € V(G), R(G,v,—2) < N(G, —2)
(& R(G,v,—1) > N(G,-1)).
2.9.2 For each i € [k], R(G,V;,—2) < N(G, -2)
(& R(G,V;,—1) > N(G,-1)).
2.9.3 For each i € [K], R(G, Nu(Vi),~2) < N(G,~2)
(& R(G, Nu(Vi), =1) = N(G, —1)).

Lemma 2.10. Let H be a blow-up graph of a tree with sets of vertices Vi, Vo, Vs, ..., Vi

and let G be an even H -tree.

2.10.1 For a vertex v € V(G), R(G,v,1) > N(G,2)
(< R(G,v,2) < N(G,1)).
2.10.2 For eachi € [k], R(G,V;,1) > N(G,?2)

(& R(G,V;,2) < N(G,1)).



2.10.3 For each i € [k], R(G,Ny(V;),1) > N(G,?2)

(& R(G, Nu(V;),2) < N(G,1)).

11

We prove Lemmas @ and .10 simultaneously by induction on n = IV (G)].
It is easy to check that Lemmas @ and hold for n < 2. Now, we let n > 3
and suppose that Lemmas @ and hold for |V(G)| < n. We remark that the

following fact will be used throughout the proofs: Let G be an H-tree, where H

is a blow-up of a tree and let v be a vertex in G. Then G — v is an H'-tree, where

H' is a blow-up of some tree if and only if G — v is connected.

Proof of Lemma 2O, Let v € V(G).

Case 1. @ is even.

Let a be an optimal move in the game on G rooted at v. Therefore, a # v and

a is feasible in the game on G. Thus G — a is connected. Then

R(G,v,—1=2) = R(G —a,v,1 = —1) (Observation @)
>N(G—a,-1=1) (Lemma by induction)
> N(G,2=-1) (Observation @)

Case 2. (G is odd.
Let b be an optimal move in the game on GG. Thus G — b is connected.
Case 2.1. b #v.

Now, b is a feasible move in the game on G rooted at v. Then

R(G,v,—2=2) < R(G — b,v,1 = —2) (Observation @)
< NG—-b,-2=1) (Lemma by induction)
= N(G,2=-2) (Observation @)

Case 2.2. b=v and v is a leaf.
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Let u be the unique neighbor of v. Then

R(G,v,-2) = R(G —v,u,—1 = 2) (Observation @)
< N(G —wv,1) (Lemma by induction)
=N(G,2=-2) (Observation @ and b = v).

Case 2.3. b = v and v is not a leaf.

Therefore, v € V; for some i € [k] and Ng(v) = Ng(V;). Then

R(G,v,—2) = R(G — v, No(v) = Ny (V;), =1 = 2) (Observation p.4)
< N(G —w,1) (Lemma by induction)
=N(G,2=-2) (Observation @ and b =v)..J

Proof of Lemma 2292, Let ¢ € [k]. If |V;] = 1, then we are done by Lemma .
Now, suppose that |V;| > 2.
Case 1. (G is odd.

Let b be an optimal move in the game on G. Thus G — b is connected. Since
|Vi| > 2, we have V; — b # @. Therefore, b is a feasible move in the game on G

rooted at V;. Then

N(G,—2=2)=N(G—b1=—-2) (Observation p.4)
> R(G—-0bV;=b,—2=1) (Lemma by induction)
> R(G,V;,2 =-2) (Observation @)

Case 2. ( is even.
Let a be an optimal move in the game on G rooted at V;.
Case 2.1. a is a feasible move in the game on G.

Thus GG — a is connected. Then

R(G,V;,-1=2)=R(G—a,V;—a,1=—1) (Observation @)
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>N(G—-a,—1=1) (Lemma by induction)
> N(G,2=-1) (Observation @)

Case 2.2. a is not a feasible move in the game on G.

Vi
Vi

Figure 2.3: The graph G in Case 2.2 of Lemma .

Thus G — a is disconnected. Since a is a feasible move in the game on G rooted
at V;, we have a € V; for some j € [k] and Ng(V;) = Ny (V;). Since G — a is
disconnected, V; = {a} and a is not a leaf. Suppose that ¢ = j. Then every
component of G — a does not contain a vertex in V;, a contradiction. Hence i # j.
Suppose that there is a vertex set Vj, where ¢ ¢ {i,5}. Then either G — a is
connected or there is a component of G — a which does not contain a vertex in V,
a contradiction. Hence V; = {a} for some j # i, Ny(V;) = V; and Ny(V;) =V},
(see Figure @) Therefore, G'is a K,, ,-tree with partite classes V; and V;. Then,

by Lemma @,
N(G,—-1) < R(G,V;, —1). [

Proof of Lemma ZZ93. We remark that the proofs of Lemmas bQﬂ and t292i do
not use Lemma . Let ¢ € [k]. If |[Ng(V;)] = 1 or Ny(V;) = V; for some
j € [k], then we are done by Lemmas or , respectively. Now, suppose
that |Ng(V;)| > 2 and V; is joined to at least two sets in Vi, Vo, Vi, ..., Vj.

Case 1. (G is odd.

Let b be an optimal move in the game on G. Thus G — b is connected. Since

INg(V;)| > 2, we have Ny (V;) — b # @. Then b is a feasible move in the game on
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G rooted at Ny (V;). Then

N(G,-2=2)=N(G —b,1=-2) (Observation @)
> R(G — b,Ny(V;) —b,—2=1) (Lemma P.9.3 by induction)
> R(G,Ng(V;),2 = -2) (Observation @)

Case 2. (G is even.
Let a be an optimal move in the game on G rooted at Ny (V;).
Case 2.1. a is a feasible move in the game on G.

Thus GG — a is connected. Then

= R(G —a,Ng(V;) —a,1 =—1) (Observation @)
>NG—-a,—1=1) (Lemma by induction)
> N(G,2=-1) (Observation @)

Case 2.2. a is not a feasible move in the game on G.

( 1)

NH(‘/z' N Vj

Vi
G1 :Hl % G2 H2

(. J
(. J

Figure 2.4: The graph G in Case 2.2 of Lemma .

Thus G — a is disconnected. Since a is a feasible move in the game on G rooted
at Ny (V;), we have a € V; for some ¢ € [k] and Ng(V;) = Ng(V,). Since G — a
is disconnected, V;, = {a} and a is not a leaf. Suppose that i # ¢. Since V; is
joined to at least two sets, V; and Ny (V) lie in the same component of G — a,

but other components of G —a do not contain a vertex in Ny (V;), a contradiction.
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Hence V; = {a}. Let V; C Ny (V;) and let G be the union of components in G —a
containing some vertices of V; and let G5 = G —a — (1. By assumption, G is not
empty.

First, we shall show that

by considering a strategy for Bob who plays second in the game on G rooted
at Ny (V;) after Alice grabs a. He plays optimally as Player —1 in the game on
G rooted at V; and plays optimally as Player —1 in the game on G5 rooted at
Ng(V;)\V;. Since |V (G1)|+ |V (G2)| is odd, he plays as Player 1 in one game and
as Player 2 in the other. Now, we check that Bob’s moves are feasible in the game
on G rooted at Ny (V;) and Alice’s moves are feasible in the game on G rooted at
V; and the game on G, rooted at Ny (V;) \ V;. Indeed, after each move of Bob,
every remaining component in Gy or Gy contains a vertex in V; or Ny (V;) NV},
respectively. Then every remaining component of G contains a vertex in Ng(V;).
That is, his moves are feasible in the game on G rooted at Ny (V;). On the other
hand, after each move of Alice, every remaining component of G contains a vertex
in Ny (V;). Then every remaining component of G or G contains a vertex in V;
or Ny (Vi) NV}, respectively. That is, her moves are feasible in the game on G;

rooted at V; and the game on G rooted at Ny (V;) N V;. Hence
R(G,Ng(V;),—1) > R(G1,V;, —1) + R(G2, Nu(V;) \ V;, —1). (2.1)

Next, we let H; = Gy and Hy = G—G;. We observe that V; = V(H;)NNg(V (H2))
and {a} = V(Hy) N Ng(V(Hy)) are root sets of Hy; and Ha, respectively, and a is

adjacent to all vertices in Vj, (see Figure @) Hence

R(G,V;,—2=1)

> R(G1,V;,—2)+ R(G — Gy,a,—1) (Lemma )
= R(G1,V;,—2) + R(G2, Ng(V;) N V;,—2) + w(a) (Observation @),



16

which is equivalent to

R(G> ‘/}’ _1) < R(Gl’ Vj? _1) + R(G27 NH(VZ) ~ V}, _1)7 (2'2)

by considering the total weight of G, G; and G5. Then

N(G,-1) < R(G,V;,—1) (Lemma )
< R(G1,V;,—1) + R(Gy, Ny (V) ~ V3, —1)  (Inequality (2.))
< R(G, Ny (Vi), -1) (Inequality (.1)). O
Nu(Vi)
( N
Vi
G2 Gl

Figure 2.5: The graph G in Lemma .

Proof of Lemma EI03. For i € [k], let G be the union of components of G —
V; containing some vertices of Ny(V;) and let G = G — G;. We observe that
Ny(V;) = V(G1) N Ng(V(Gy)) and V; = V(G2) N Ng(V(G1)) are root sets of Gy
and G, respectively, and every vertex in Ng(V;) is joined to every vertex in V;,

(see Figure @) Then

N(G,2=—1) < R(G,V;,—1 = 2) (Lemma P.9.9)
< R(G, Ny (Vi), 1) (Lemma P.8.9). O

Proof of Lemma EI0A. For i € [k], let G be the union of components of G —
Ny (V;) containing some vertices of V; and let Gy = G — G;. We observe that
Vi = V(G1) N Ng(V(G2)) and Ny (V;) = V(Gs) N Ng(V(G1)) are root sets of Gy

and G, respectively, and every vertex in V; is joined to every vertex in Ny (V}).
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Then
N(G,2 = —1) < R(G, Ny (V;), —1 = 2) (Lemma 2.9.3)
< R(G,V;, 1) (Lemma ) O

Proof of Lemma EI0. Let v € V(G).

Case 1. There is a cut edge uv incident to v.

Figure 2.6: The graph G in Case 1 of Lemma .

Let GGy be the component of G — uv containing v and let Gy = G — G;. We
observe that {v} = V(G1) N Ng(V(G2)) and {u} = V(G2) N Ng(V(Gy)) are root
sets of G1 and Gy, respectively, and v is adjacent to u, (see Figure @) Then

R(G,v,1) > R(G,u,2 = —1) (Lemma )
> N(G,—=1=2) (Lemma )

Case 2. There is no cut edge incident to v.
Then v € V; for some j € [k] and Ng(v) = Ny (V).
Case 2.1. |V}| > 2.
Therefore, v is a feasible move in the game on G. Thus G — v is connected.

Then

R(G,v,1=-2) = R(G —v,Ng(v) = Ny(V;),—-1) (Observation @)
>NG—-v,—1=1) (Lemma by induction)
> N(G,2) (Observation @)

Case 2.2. |V}| = 1.
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Then, by Lemma ,
R(G,v,1) = R(G,V;,1) > N(G,?2). O

We proceed to prove our main theorem.

Proof of Theorem 2. Let G be an even B(T)-tree, where T is a tree and let
v € V(G). Then, by Lemmas b9ﬂ and b.lO.]J, it follows that

N(G,2=—1) < R(G,v,—1 =2) < N(G, 1).

Therefore, Alice wins the game on G. [
We now deduce Corollary from Theorem @

Proof of Corollary Z23. We give a proof by induction on the number of vertices.
Let G be an even blow-up of a cycle. We note that every vertex of GG is a non-cut
vertex. Alice claims a maximum weighted vertex of G in her first move, say a
vertex a. Let b be the vertex claimed by Bob in his first move. Then G — {a, b} is
an even blow-up of either a path or a cycle. If G — {a,b} is an even blow-up of a
path, then Alice wins the game on G — {a, b} by Theorem @ Otherwise, Alice
wins the game on G — {a,b} by the induction hypothesis. In both cases, since

w(a) > w(b), Alice wins the game on G. O

2.4 Concluding Remarks

We provide two new classes, namely B(7T)-trees and B(Cs,), of bipartite even
graphs which satisfy Conjecture @ However, this conjecture is still open. It
was shown in [10] that Lemmas and are not true for general bipartite
graphs, therefore this method cannot be directly used to solve the full conjecture.
There are several variants of the graph grabbing game, for example, the graph

sharing game (see [0, 8, [16, 20, 25]), the graph grabbing game on {0, 1}-weighted
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graphs (see [11]), and the convex grabbing game (see [23]), where a few problems

are left open.



CHAPTER I11
TOUCHER-ISOLATOR GAMES

3.1 Introduction

A Maker-Breaker game, introduced by Erd6s and Selfridge [12] in 1973, is a posi-
tional game played on the complete graph K, on n vertices, by two players: Maker
and Breaker, who alternately claim an edge from the remaining graph, where Maker
plays first. Maker wins if she can build a particular structure (e.g., a clique [[, [15],
a perfect matching [19, 26] or a Hamiltonian cycle [19, 21]) from her claimed
edges, while Breaker wins if he can prevent this. There are several variants of
Maker-Breaker games, many of which are studied recently (see [13, 14, 17, 18]).

The Toucher-Isolator game, introduced by Dowden, Kang, Mikalacki and Sto-
jakovié [9] in 2019, is a quantitative version of a Maker-Breaker game played on a
finite graph by two players: Toucher and Isolator, who alternately claim an edge
from the remaining graph, where Toucher plays first. A vertex is touched if it is
incident to at least one edge claimed by Toucher, and a vertex is untouched if all
edges incident to it are claimed by Isolator. The score of the game is the number
of untouched vertices at the end of the game when all edges have been claimed.
Toucher aims at minimizing the score, while Isolator aims at maximizing the score.
For a graph G, let u(G) be the score of the game on G when both players play
optimally.

The above mentioned authors gave general upper and lower bounds for u(G),
leaving the asymptotic behavior of u(C,) and u(P,) as the most interesting un-
solved cases. Later in 2019, Réty [27] determined the exact values of u(C,,) and
u(P,), showing that

n+1
5

uc = |

| o= 222

bt
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Moreover, the first set of authors showed that for any tree 7" on n > 3 vertices,

n+2§u(T)§n—17
8 2

where the upper bound is tight when 7' is a star, but the only tight example they
found for the lower bound is a path on six vertices. Therefore, they asked whether
there is an infinite family of tight examples for lower bound, or if it can be improved
for large n.

Later in 2020, Réty [28] improved the lower bound for «(7") by showing that

the path P, is the most suitable tree on n vertices for Toucher.

Theorem 3.1. Let T be a tree on n > 3 vertices. Then

w(T) > L";SJ

In this chapter, we give a simple new proof of this theorem. The argument
proceeds as follows. The strategy for Isolator is that he claims an edge which
immediately creates an untouched vertex in every move for as long as he can (see
Figure @: left). When no such an edge exists, we modify the graph before the
game continues. The vertices which are incident to only edges claimed by Isolator
become untouched vertices. These vertices and the edges claimed by Isolator can
be deleted as their disappearance does not change the touched /untouched status of
any vertex (see Figure @: middle). Observe that the leaves of the remaining tree
are touched otherwise Isolator would have claimed the edge incident to it. Then we
delete the edges e claimed by Toucher one by one and, in order to keep the game
equivalent to the original game, we replace the edges u v, usv, usv, . .., uv sharing
a vertex v with e by new edges wujvy, ugvs, ugvs, . . ., u;v; keeping their respective
Toucher/Isolator status, where the new vertices vy, vy, vs,...,v; are considered
touched. The resulting graph is a forest all of whose leaves are considered touched
(see Figure @: right).

Therefore, this motivates us to study the non-leaf Isolator-Toucher game on a
forest F' which is a variant of the Toucher-Isolator game on F' where Isolator plays

first and the score of the game is the number of untouched vertices which are not
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leaves of F', at the end of the game. The aim of Toucher is to minimize the score,
while the aim of Isolator is to maximize the score. We remark that this game is
inspired by the proof of the lower bound for «(F,) in [27]. Our main lemma gives
a lower bound for the minimum score a(m, k, ¢) of the non-leaf Isolator-Toucher
game on I’ when both players play optimally, among all forests F with m edges,

k components, and ¢ leaves.

» »
7 7
/7 /7
U U
. ...... .
L] [ [ ] L]
7 /
. g /7 /7
- ’ /
®*--- )—6----0 ®*--- —6 ---0

A=A

(N /N

Figure 3.1: The strategy for Isolator in the Toucher-Isolator game on a tree and

the modification of the graph, where the red dashed and blue dotted edges are

Toucher and Isolator edges respectively.

Lemma 3.2. For non-negative integers m, k and ¢,

a(m. k. 0) > {m+4k—3€+4J
) b) - 5 .

The strategy for Isolator in the non-leaf Isolator-Toucher game is that he claims
consecutive edges which immediately creates an untouched vertex in every move
except the first one for as long as he can, and then he repeats in a different part
of the forest. The key step is to determine which part of the forest is the most
profitable for Isolator to play in. We do this by breaking down the gains and losses
in each move of both players.

The rest of this chapter is organized as follows. Section @ is devoted to proving
Lemma @ and then applying it to prove Theorem El] In Section @, we give
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some concluding remarks and mention related interesting questions.

3.2 Proofs of Theorem 3.1 and Lemma 3.2

Before proving Lemma @ and Theorem El], we give some definitions necessary
for the proofs and make observations regarding how to modify the graph after
deleting some edges, to keep the game equivalent to the original game, and how
much Isolator gains in each move of both players.

For convenience, we first give some names to vertices and edges in a forest.
A leaf is a vertex of degree 1. A small vertex is a vertex of degree 2. A big vertex
is a vertex of degree at least 3. A big edge is an edge incident to a big vertex. A leaf
edge is an edge incident to a leaf. An internal vertexr of a subgraph is a vertex
adjacent to no vertex outside the subgraph.

We also give some names to paths in a forest. A path component is a component
of the forest which is a path. A branch is a path such that the non-endpoint
vertices are internal and both endpoints are big. A twig is a path such that the
non-endpoint vertices are internal and one endpoint is a leaf while the other is big.

Finally, we define some game related terms. A Toucher edge is an edge claimed
by Toucher. An Isolator edge is an edge claimed by Isolator. An Isolator subgraph
is a subgraph whose edges are Isolator edges. An Isolator path is an Isolator
subgraph which is either a path component, a branch or a twig. A partially played
graph is a graph where each edge is either a Toucher edge, an Isolator edge or
an unclaimed edge.

Now we show how a partially played graph should be modified after deleting
a Toucher edge or an Isolator subgraph, in order to keep the game equivalent to
the original game. For a partially played graph G with a Toucher edge wv, we
define G © uv to be the partially played graph obtained from G by

e deleting the vertices u and v, and all edges incident to them,

+ adding new vertices uy, Uz, us, . . . , Udeg(u)—1 and joining u; to u; where N (u)~

{o} ={ui, uh, uj, ... Wyegru)—1 } Such that if uuj has been claimed by a player,
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then we let u;ul be claimed by the same player,

+ adding new vertices vq, V2, V3, . . ., Udeg(v)—1 and joining v; to v where Nea(v)~
{u} = {v1,v5, V5, ..., Uyeer)—1 } SUch that if vo; has been claimed by a player,

then we let v;v; be claimed by the same player,

\* _——— R ) — .—.U2 ’Ul R
\‘. ....... e Us \‘.

Figure 3.2: The partially played graph G © uv, where the red dashed and blue

dotted edges are Toucher and Isolator edges respectively.

For a partially played graph G with an Isolator subgraph H, we define G © H
to be the partially played graph obtained from G by deleting the edges of H and

the internal vertices of H.

..
.. o

° — o o @ <§ — e ° ~<E
°

¢ G GoH

Figure 3.3: The partially played graph G © H, where H is the subgraph induced
by the set of Isolator edges, and the red dashed and blue dotted edges are Toucher

and Isolator edges respectively.

Proposition 3.3. (i) The non-leaf Isolator-Toucher game on a partially played
graph G with a Toucher edge e is equivalent to that on G O e.

(ii) The Toucher-Isolator game on a partially played graph G with an Isolator
subgraph H with r internal vertices is equivalent to that on G © H with an
extra score of r. The non-leaf Isolator-Toucher game on a partially played
graph G with the Isolator subgraph H with r non-leaf internal vertices is

equivalent to that on G © H with an extra score of r.
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(iii) The score of the non-leaf Isolator-Toucher game on a partially played graph
G when both players play optimally is equal to that on G — U, where U 1is the
set of vertices of path components of length 1 in G.

Proof. (i) Clearly, there is a bijection between the edges of G — e and G © e. The
endpoints of the Toucher edge e in the game on G and the new leaves in the game
on G © e are not counted in the score of each game.

(77) Clearly, there is a bijection between the edges of G — E(H) and G © H.
Deleting an Isolator edge does not change the touched/untouched status of its
endpoints. An extra score of r comes from the (non-leaf) internal vertices on H.

(737) A player gains nothing by claiming a path component of length 1 because

its vertices are leaves which are not counted in the score. O]

Next, in order to determine which part of the forest is the most profitable for
Isolator to play in, it is useful to calculate the changes in the number of edges,
components and leaves of the forest when deleting a Toucher edge or an Isolator

path. Moreover, deleting path components of length 1 also produces a profit.

Proposition 3.4. (i) Let G be a partially played graph which is a forest with
m edges, k components and £ leaves, and let uv be a Toucher edge in G.
Suppose that G ©uv is a forest with m + Am edges, k + Ak components and
¢+ Al leaves. Then the change in m + 4k — 3¢ is as shown in Table B and
the profit pr(G,uv) = A(m + 4k — 30) + 3 is non-negative.

Toucher edge uv
Am Ak AV A(m + 4k — 30) pr(G,uw)
U v
small small -1 1 2 -3 0
small big -1 deg(v) — 1 deg(v) deg(v) — 5> -2 >1
small leaf -1 0 0 -1 2
big big —1 | deg(u) + deg(v) — 3 | deg(u) + deg(v) — 2 | deg(u) + deg(v) =7 > —1 >2
big leaf -1 deg(u) — 2 deg(u) — 2 deg(u) —3> 0 >3
leaf leaf -1 -1 -2 1 4

Table 3.1: The profit of deleting a Toucher edge.
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(ii) Let G be a partially played graph which is a forest with m edges, k components
and 0 leaves, and let P be an Isolator path of length r + 1 in G. Suppose
that G © P is a forest with m + Am edges, k + Ak components and { + Al
leaves. Then the change in m + 4k — 3¢ is as shown in Table B2 and the
profit pr(G, P) = A(m + 4k — 3() +r — 1 is non-negative.

u, v-Isolator path
Am Ak | AC | A(m+4k—=30) | pi(G,P)
u v
leaf leaf —(r+1) -1 -2 —r+1 0
big leaf —(r+1) 0] -1 —r+2 1
big big —(r+1) 1 0 —-r+3 2

Table 3.2: The profit of deleting an Isolator path.

(7ii) Let G be a partially played graph which is a forest with m edges, k components,
¢ leaves, and let U be a set of q path components of length 1. Suppose that
G — U is a forest with m+ Am edges, k+ Ak components and ¢ + Al leaves.
Then the change in m + 4k — 30 is as shown in Table B33 and the profit
pr(G,U) = A(m + 4k — 30) is equal to q.

Am | Ak | AC | A(m+4k-30) | pu(G,U)

—q —q | —2q q q

Table 3.3: The profit of deleting ¢ path components of length 1.

Proof. The calculation steps are shown in the tables. The profit pr(G,uv) >0
since the term 43 in the definition of py (G, uv) comes from (—1) times the mini-
mum value of A(m + 4k —3¢) in Table @ The profit p;(G, P) > 0 since the term
+(r — 1) in the definition of p;(G, uv) comes from (—1) times the minimum value

of A(m + 4k — 3() in Table @ O

We are now ready to prove our main lemma which provides a lower bound for

a(m, k, £) of the non-leaf Isolator-Toucher game on a forest.
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Proof of Lemma BZ1. We use induction on the number of edges m in a forest. Let
F be a forest with n vertices, m edges, k components, ¢ leaves, a small vertices and
b big vertices. First, we suppose that all path components have lengths at most 2,
all branches have lengths at most 2, and all twigs have lengths at most 1. In this

mtdk—3t+4 4"“5_ 3644 | < 0, and thus there is nothing to prove. Since

case, we shall show that L
> ver deg(v) = 2m = 2(n—k), we have (+2a+3_ 1. (,)>3 deg(v) = 20+2a+2b—2k.
Then £ =} 0 n)>3 deg(v) —2b+2k and thus £ > b+2k. Since every edge in a non-
path component is adjacent to a big vertex and every path component contains at
most 2 edges, it follows that

m < Z deg(v) + 2k =0+ 2b < 30 — 4k

deg(v)=>3

as required.

Now, we suppose that there is either a path component of length at least 3,
a branch of length at least 3, or a twig of length at least 2.

Isolator’s strategy is to keep claiming consecutive edges, for as long as he can, to
form an Isolator path. Therefore, he only plays within a path component, a branch,
or a twig, say P. We label the edges of P by e, es,€3,...,¢es respectively starting
from a big edge (if exists). Note that we shall use this convention to label any
path component, branch, or twig in this proof. Assuming he has claimed the edges
€4, €111, €112, - -, Epir, he then claims e; 1 or e;y,4 if it is available, otherwise he
stops. That is, he stops if (t = 1 or e;_; is a Toucher edge) and (t+1r = s or e; 4,11
is a Toucher edge).

Suppose Isolator stops with edges ey, €;11, €149, - . ., €. Then these edges form
a path @). So far, both players have claimed r + 1 edges each since Isolator plays
first, and the score is r since Isolator creates an untouched vertex in every move
except the first one. We note that the case where Toucher has claimed only r
edges because all edges had been claimed, can be proved similarly. Let G be the
partially played graph at this step. If fi, fo, f3, ..., fr11 are the Toucher edges in
G, thenlet Gi =GO f10 foO---O f,41 be a forest with m; edges, k1 components

and /1 leaves, let Go = G7 © @ be a forest with my edges, ky components and
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Uy leaves, and let G3 = Gy — U be a forest with mgs edges, k3 components and /3
leaves, where U is the set of vertices of path components of length 1 in GS.

By Proposition @, the game on G is equivalent to the game on G which is
equivalent to the game on (G5 with an extra score of r, and the score of the game on
(G5 when both players play optimally is equal to that on G3. Therefore, it follows
that

(m k g) Z + « mg,k3,€3>
ng + 4]{?3 363 + 4J

| V

(by the induction hypothesis)

m—|—4k 3£+4 Ar(m+4k —30)  Ay(m+ 4k — 30)
K 5 * 5

T+

m+4k 3€)J

_|_
- Lm+4k 3e+4+Z;O(—3+pT(G@f1@---@fi,fm))
- 5

+

—r+14+p1(G1,Q)  pr(Gy, U)J
5 A 5

(by Proposition @ since () is an Isolator path in G)
m+4k—-30+4 —3(r+1)+ —r+1+
—r 4+ { = ( )+ pr 4 pr +Z£J

5 5 5 5
B {m+4k—3£+4+r+pT+p1+pL—2J

3 5

where

(
Ag(m + 4k — 36) = (mg + 4l€2 — 352) — (m1 + 4/{51 — 361),
Ag(m + 4k — 36) = (M3 + 4]{?3 - 3€3) - (mg + 4]{32 - 362),
)

pPr = ZPT(G O fiO--0Ofi, fi1), pr = p1(G1,Q) and pr = pr(Ga, U).

Therefore, it suffices to show that r + pr + pr + pr > 2. Since every term in
the sum r+>  pr(GO f10---O f;, fix1)+pr+pr is non-negative by Proposition @,

we shall find a subset of terms whose sum is at least 2. Recall that there is either
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a path component of length at least 3, a branch of length at least 3, or a twig of
length at least 2. The proof is divided into five cases.
Case 1. There is a path component of length 3.

Isolator claims the edge es in his first move. If Toucher claims the leaf edge e,
or ez in some move, then pr > 2 by Proposition @ Otherwise, Isolator claims
the edges e; and ez, hence r = 2.

Case 2. There is a path component of length at least 4.

Isolator claims the edge es in his first move. If Toucher claims the leaf edge
e1; in some move, then pr > 2 by Proposition @ If Toucher claims the edge
e in some move (but not e;), then Gy has a path component e; of length 1 and
thus pr, > 1 by Proposition @ Clearly, r > 1, hence it follows that r» 4+ p;, > 2.
Otherwise, Isolator claims the edges e; and ey, hence r > 2.

Case 3. There is a branch of length at least 3.

Isolator claims the edge ey in his first move. If Toucher claims the big edge e,
in some move, then pr > 1 by Proposition @ Clearly, » > 1, hence it follows
that » + pr > 2. If Toucher claims the edge e3 in some move, then p;y > 1 by
Proposition @ since Isolator claims the big edge e;. Clearly, r = 1, hence it
follows that r 4+ p; > 2. Otherwise, Isolator claims the edges e; and ez, hence
r > 2.

Case 4. There is a twig of length 2.

Isolator claims the edge e; in his first move. If Toucher claims the leaf edge ey
in some move, then pr > 2 by Proposition @ Otherwise, Isolator claims the edge
es, hence p; > 1 by Proposition @ since Isolator claims the big edge e;. Clearly,
r = 1, hence it follows that r + p; > 2.

Case 5. There is a twig of length at least 3.

Isolator claims the edge ey in his first move. If Toucher claims the big edge e;
in some move, then pr > 1 by Proposition @ Clearly, r > 1, hence it follows
that » 4+ pr > 2. If Toucher claims the edge e3 in some move, then p; > 1 by
Proposition @ since Isolator claims the big edge e;. Clearly, r = 1, it follows that

r + pr > 2. Otherwise, Isolator claims the edges e; and ez, hence r > 2.
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This completes the proof of Lemma @ O

We now prove Theorem @ which improves the lower bound for w(7") of the
Toucher-Isolator game, by applying the result on the non-leaf Isolator-Toucher

game in Lemma @

Proof of Theorem Bl. Let T be a tree with m > 2 edges and ¢ leaves. We shall

show that
m+ 4

iz |74

For a partially played graph G, a meta-leaf in G is a leaf in the graph obtained
from G by deleting all Isolator edges, and a meta-leaf edge in G is an edge incident
to a meta-leaf in G.

Isolator’s strategy is to keep claiming an edge which produces a new untouched
vertex in every move, i.e., he claims a meta-leaf edge in the current partially played
graph if it is available, otherwise he stops (see Figure @: left). That is, he stops
when all meta-leaf edges are Toucher edges. We note that he always obtains a
score of one in every move because if he claims the edge uv where u is a meta-
leaf, then all already played edges incident to u are Isolator edges, and thus u
becomes untouched. If the process stops after Isolator’s move, i.e., all edges have
been claimed by both players, then Isolator obtains a score of L%J > LmTHJ, as
required. Therefore, we may assume that the process stops after Toucher’s move,
and in particular, m > 3.

Suppose that Isolator stops after » moves. Let G be the partially played graph
at this step. Then G has r 4+ 1 Toucher edges and r Isolator edges since Toucher
plays first. Let H be the Isolator subrgaph of G formed by all Isolator edges, and let
G1 = GOH be a forest with m; edges, k1 components and ¢; leaves (see Figure @:
middle). Since Isolator claimed only meta-leaf edges and all meta-leaf edges in G
are Toucher edges, GG; is a tree all of whose leaves are touched, and k; = 1. By
m > 3, each leaf of G is incident to a distinct Toucher edge, and so r + 1 > /¢;.
Let f1, fo, f3,..., fr+1 be the Toucher edges in G, and let Go = G, 0 f1O---O fr11

be the forest with my edges, ko components and ¢ leaves (see Figure @: right).
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By Proposition @ and the fact that the leaves in G are touched, the Toucher-
Isolator game on G where Isolator plays first is equivalent to the non-leaf Isolator-
Toucher game on G which is equivalent to the non-leaf Isolator-Toucher game on

G5 with an extra score of r. Therefore, it follows that

( + o m27k27€2)
> {m+4 —3€+4+A1(m+4—3£)+A2(m+4k—3€)J
5 5
(by Lemma B72)
o { m+4— 3€+4+ (ml—m)+4(k15— 1) =306, — 1)
Z ol 3+pT(G1@f1 'Ofiafi+1))J
5
{m 3+8 (=r)+4(0) =3, —¢) —=3(r+1)+ 2€1J
> + +
5 5
(by Proposition @ since (G has ¢ leaf edges)
o m—+r— 61 +5
B 5

> V@T”J (r+1>0)

where

Ay(m + 4k — 30) = (mq + 4k — 3¢,) — (m +4 — 3() and

Ag(m + 4k — 36) = (m2 + 4k2 — 362) — (m1 + 4]{?1 — 361) O

3.3 Concluding Remarks

As a result of Theorem @, for any tree T on n > 3 vertices,

where S,, is a star on n vertices. Moreover, Theorem @ implies that, for a forest
with k trees, u(F) > Zle | 222 | where n; is the number of vertices of the i'" tree

in F' because, in each move, Isolator can play optimally on the tree Toucher just
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n+3k

= J is not possible because for example,

played. However, the lower bound of [
u(kP3) = k where kP; is the disjoint union of k copies of P;. Many interesting
questions about the Toucher-Isolator game are still open (see [9]). For example,
find a 3-regular graph G with n vertices that maximizes u(G). Dowden, Kang,

Mikalacki and Stojakovié¢ [9] showed that the largest proportion of untouched ver-

tices for a 3-regular graph is between ﬁ and %.
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