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ABSTRACT
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solution

In this work, the low-temperature methanol fuel processor (MFP) was
developed by the uses of Au-hased catalysts in both steam reforming (SRM) and
preferential carbon monoxide oxidation (PROX) units in order to produce the rich
hydrogen (H2) production with ultra-low carbon monoxide (CO) concentration,
which was the suitable feed for the use of proton exchange membrane fuel cell
(PEMFC). A direction of this development tended to optimize the SRM unit at the
first goal, and then moved to optimize the PROX unit. Initially associated with the
use of Au/Ce02-Fe20 3 catalysts, prepared by deposition-coprecipitation (DCP), the
SRM unit was operated under the window-temperature range of 200-400 CC. A
variety of catalyst preparations and steam-to-methanol feed ratios were obviously
effective to the change in SRM activity. For the catalyst preparation effect, the most
suitable Ce/Fe composition of 1/1 in Ceo 2-Fe2Cs mixed oxides provided the
corporation of Fe3+ inside Ce4+ lattice to form a homogeneous solid solution, also
representing a strong Ce-Fe interaction, which was the active site for the reaction.
However, the rich-Fe sample led to the lack of solid solution since the segregation of
Fe3t from the Ced' lattice was more favorable. The selection of calcination
temperature at 400 ¢ was necessary for the creation of Ceo 2-Fe203 solid solution,
while the lower calcination temperatures weakened the Ce-Fe interaction with the
appearance of free-Fez03 particles; another cause of non-uniform solid solution.
Furthermore, an amount of Au loading on the catalyst significantly affected the Au
particle size with no drastic change in Ceo 2-Fe203 solid solution; the highest Au



content of 5 wt% led to the sintering of Au particles, which worsened the SRM
activity, when compared with that of 3 wt% Au. During varying the steam/methanol
ratio from 1to 4, the optimal ratio of 2 provided the complete methanol conversion at
400 °C, whereas higher ratios depressed both methanol conversion and hydrogen
concentration due to the existences of carbonate and formate species, which block the
active surface of the catalyst. Afterwards, the 3 wt% Au/Ceo2-Fe203 calcined at 400
¢ was tested on its stability, and the result showed that the complete methanol
conversion and 74 % hydrogen yield were obtained at the first hour of the
experiment, and then they deactivated rapidly until the end of the experiment,
according to the transformation of an unstable solid solution and the coke deposition.
All of the results described that the drawback of using Ceo2-Fe203 solid solution as
the support site was being no longer stable for the SRM reaction or less thermal
stability. Even though the ( 2 pretreatment was applied in the spent catalyst in order
to diminish the coke deposit, its activity was not still recovered as much as expected.

To overcome the problem of being less life-time catalyst, the Ceo2"Zro2
mixed oxide was considered as another interesting support that was known to form
the solid solution with high thermal stability. As the creation of uniform solid
solution depends on the preparation route, the comparison between coprecipitation
(CP) and sol-gel (SG) preparations was firstly investigated on Ceo2-ZrCs under 3
wt% Au before testing the stability. Again, the uniform Cei-xZrxC2 solid solution was
dependent on the Ce/Zr ratio for both preparations, where the incorporation of ZrH
into the Ce4+ lattice with a ratio of 3/1 resulted in smaller ceria crystallites and better
reducibility, which were found to be efficient for SRM activity. The catalytic activity
was suppressed when applying rich Zr contents, which led to the Zr segregation and
Au agglomeration. The CP technique was considered as the suitable technique for
support preparation since it provided both smaller ceria crystallites and All particles
than those of SG. As the SRM activity was still not improved much in the whole
studied temperatures, the idea of adding some precious metals into the Au site to
form bimetallic catalyst was found to be interesting to enhance SRM activity hy
active metal site.



In the himetallic catalysts' studies, the co-operation of Au-Cu supported on
Ce07.5Zr0.2502 (CP) was prepared by deposition-precipitation, and many, effective
parameters—pH of depositing, Au/Cu atomic ratio, gas pretreatment, total metal
loading, and calcination temperature— were investigated for the SRM activity. The
superior activities of this bimetallic catalyst were initially evident with complete
methanol conversion and low CO concentration at T < 350 °C due to the formation
of Au-Cu alloy at the metal site. The uses of Au/Cu ratio of 1/3, 7 wt% total metal
loading, and calcination temperature of 300 °c provided the homogeneous Au-Cu
alloy with suitable particle size that was found to be active for SRM. For the stability
observation at 300 °C, this bimetallic catalyst successfully exhibited complete
methanol conversion, 82 % 2 selectivity, and 1.3 % CO selectivity with a long-life
thermal stability of 18 hours and less coke formation, according to the coke
gasification on either Ceo.7sZro2502 solid solution at the support site or Au-Cu alloy
at the metal site.

Consequently, the CO concentration o f-13 000 ppm in the reformate stream
was low enough to continually send to the PROX unit, which was operated under the
temperature range of 90-150 °C over 1 wit% AulCeo: catalyst. The comparison
between the uses of single- and double-stage reactors revealed that the addition of
double-stage significantly improved the PROX performance, especially for 98 % CO
and full O2 conversions, under the optimum conditions— unity 02/CO feed ratio, 02
split ratio = 50:50, total amount of catalyst use = 500 mg, catalyst weight split ratio =
0.35:0.15, T1Sstage - 110 °C, and Tondstage = 100 °C. Nonetheless, the remaining CO
concentration from the overall MFP was ~300 ppm which was not appropriate to
continually apply as the PEMFC feed. It was necessary to further develop better Au
catalyst towards CO oxidation in order to lower the CO amount to be less than 10
ppm, as the limitation of this fuel cell type.
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atomic ratio = 1/3 and Ce/Zr = 3/1). (Reaction conditions;
H20/CH30H, 2/1; reaction temperature, 300 ; and time-
on-stream per sample, 18 h)

XRD patterns of spent 7 \i% AulCu3/Ceo 721025z catalyst
after exposure to reaction compared with the fresh catalyst.
(Reaction conditions: H2Q/CH3OH, ~ 2/1;  reaction
temperature, 300 C; and time-on-stream per sample, 18 h)

.10 TPO profiles of spent catalysts after exposure to reaction

61
6.2

83

84

compared with the fresh catalyst. (Reaction  conditions:
H20/CH30H, 2/1; reaction temperature, 300 °C; and time-
on-stream per sample, 18n)

CHAPTER VIII
Process flow diagram of the methanol fuel processor (MFP).
XRD patterns of the (A) fresh and spent 1 wt% Au/CeCE
catalysts, and (B) 7 wt% Au-Cu/Ceo 2~Zro2 catalyst,
TEM images of the (A) 1wt% Au/CeCE calcined at 400 °c
and (B) 7 1% Au-Cu/CeCE-ZrCE catalysts calcined at 300

TPR profiles of 1 wt% Au/CeCE catalysts calcined at 300
and 400 °c.
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FIGURE

85

8.6

61

g9

g9

Effects of 02/CO molar ratio, calcination temperature, and
amount of catalyst on the single-stage PROX activity under 1
wi% AwCeCU catalysts.

Effect of Oz split ratio on the double-stage PROX activity
under 1wt% Au/Ce02 catalyst calcined at 400 °c. (Reaction
conditions: O2/CO, 1 weight split ratio, 0.25:0.25; T st stage,
110°C.)

Effect of the weight split ratio on the double-stage PROX
activity under 1 wt% Au/Ceo2 catalyst calcined at 400 °c.
(Reaction conditions: 02/CO, L Oz split ratio, 50:50; T:d
age, 110°C.)

Effect of the first-stage reaction temperature on the double-
stage PROX activity under 1wt% Au/Ceo2 catalyst calcined
at 400 °c. (Reaction conditions: 02/CO, 1, Qx split ratio,
50:50; weight split ratio, 0.35:0.15.)

Stahility observation on the MFP process for 24 h. (Reaction
conditions of double-stage PROX: 02/CO, 1; Oz split ratio,
50:50; weight split ratio, 0.35:0.15; Tig stage, 110 °C; Tard
stage, 100 °C.)

810 FTIR analysis of 1 wi% Au/Ceo2 catalysts calcined at

400 °C: (A: 2000-3800 cm'l B; 700-1800 cm') (a) Fresh
catalyst. After exposure to the PROX reaction: (b) spent
catalyst from the first stage and (c) spent catalyst from the
second stage.
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AFC

Al
Al20s
Al

C

Ce

Ce02
chdo
chy
CH3OH
CH3OClI3
C2HsOH
CO

02
cod
CP
CRM

Cu

CuO
DCFC
DCM
DCP
DEH
DM
DME
DP
DTGS

g

Fe

ABBREVIATIONS

Alkaline Fuel Cell
Aluminium

Aluminium Oxide or Alumina
Gold

Carbon atom

Cerium

Cerium Oxide or Ceria
Formaldehycde

Methane

Methanol

Dimethylether

Ethanol

Carbon monoxide

Carbon dioxide

Carhonate group (Specie)
Co-precipitation

Combined Reforming of Methanol
Copper

Copper (I) Oxide

Direct Carbon Fuel Cell
Methanol Decomposition
Deposition-co precipitation
Dehydration

Methanol Decomposition
Dimethylether
Deposition-precipitation
Deuterated Triglycerinesulfate
Electron

Iron

XXVII



Fea0 3
FD
FT-IR
FT-Raman
GHSV
H

H+

h2
HCOO"
HCOOH
h2o
HTS

LH
MCFC
MFP
NOX

02
OH'
OSR
OSRM
PAFC
Pd
PEFC
PEMFC
PID
POM
POX

ppm
PROX

Ferric (1) Oxide

Flame lonization Detector

Fourier Transform Infrared Spectroscopy
Fourier Transform Raman Spectroscopy
Gas Hourly Space Velocity

Hydrogen atom

Protron

Hydrogen gas

Formate group (Specie)

Formic acid

Steam or Water

High Temperature water-gas shift reaction
Langmuir-Hinshelwood

Molten Carbonate Fuel Cell

Methanol Fuel Processor

Oxides of nitrogen

Oxygen atom

Oxygen gas

Hydroxyl group (specie)

Oxidative Steam Reforming

Oxidative Steam Reforming of Methanol
Phosphoric Acid Fuel Cell

Palladium

Polymer Electrolyte Fuel Cell

Proton Exchange Membrane Fuel Cell
Proportional-Integral-Derivative

Partial Oxidation of Methanol

Partial Oxidation

Part per million

Preferential Carbon monoxide Oxidation
Platinum



RWGS
SOFC
SOx
SR
SRM

TCD
TEM
Ti02
TOF
TPO
TPR
UV-vis
VHSV
WGSR
WHSV
XRD
XRF
N
/n0
V|
2102

Reverse Water-Gas Shift Reaction
Solid Oxide Fuel Cell

Oxides of sulphur

Steam Reforming

Steam Reforming of Methanol
Temperature

Thermal Conductivity Detector
Transmission Electron Microscopy
Titanium Oxide or Titania

Turn Over Frequency
Temperature-Programmed Oxidation
Temperature-Programmed Reduction
Ultraviolet-Visible Spectrophotometer
Volume Hourly Space Velocity
Wiater-Gas Shift Reaction

Weight Hourly Space Velocity
X-Ray Diffraction Spectrometry
X-Ray Fluorescence Spectrometry
Zinc

Zinc Oxide

Zirconium

Zirconium Oxide or Zirconia



LIST OF SYMBOLS

Angstrom
Lattice constant or Lattice parameter
Angle width of peak

Mean crystalling diameter

Diameter of Au particle size

Enthalpy of reaction at standard (room) temperature
Scherrer constant

Number of Au particles

The diffuse reflectance from a semi-infinite layer
X-Ray wavelength

Bragg angle of the reflection (degree or radian)
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