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ABSTRACT (THAI) 
 กรณัฏฐ์ นฤนาทธนาเสฏฐ์ : การตัดแยกและจำแนกเม็ดเลือดแดงจากภาพถ่ายจากกล้อง

จุลทรรศน์ด้วยวิธีการเรียนรู้ของเครื่อง. ( Red Blood Cell Segmentation and 
Classification from Microscopic Images Using Machine Learning) อ.ที่ปรึกษา
หลัก : รศ. ดร.ธนารัตน์ ชลิดาพงศ,์ อ.ที่ปรึกษาร่วม : รศ. ดร.ดวงดาว ปาละสุวรรณ 

  
การวิเคราะห์รูปร่างของเม็ดเลือดแดงมีความจำเป็นต่อการวินิจฉัยในหลายโรคท่ีเกิดจาก

ความผิดปกติของเม็ดเลือดแดง ขั้นตอนการตรวจสอบนี้ใช้เวลานานและต้องการความเชี่ยวชาญ
และประสบการณ์ ด้วยเทคโนโลยีคอมพิวเตอร์วิทัศน์และการประมวลผลภาพทางการแพทย์มี
ความก้าวหน้าจึงสามารถนำมาใช้เป็นเครื่องมือ เพ่ือช่วยนักโลหิตวิทยาวิเคราะห์ภาพเม็ดเลือดแดง
จากกล้องจุลทรรศน์อย่างอัตโนมัติทำให้ใช้เวลาและค่าใช้จ่ายที่น้อยลง งานวิจัยนี้เสนอวิธีใหม่ใน
การตัดแยกและจำแนกเม็ดเลือดแดงจากภาพถ่ายจากกล้องจุลทรรศน์  ซึ่งขั้นตอนเริ่มจากการเก็บ
ข้อมูลด้วยแอปพลิเคชันที่ได้พัฒนาขึ้นเพ่ือการเก็บข้อมูลเม็ดเลือดที่แม่นยำ การปรับสีภาพโดยใช้
ค่าเฉลี่ยของสีของพ้ืนหลังเพ่ือให้โมเดลเรียนรู้ได้อย่างไม่อคติไปทางสี หลังจากนั้นเม็ดเลือดแดงที่
ซ้อนทับถูกตัดแยกด้วยวิธีใหม่โดยการหาจุดเว้าของเม็ดเลือดแดงและใช้วิธีการหาวงรีที่เหมาะสมใน
การประมาณรูปทรงของเม็ดเลือดแดง ในขั้นสุดท้ายคือการจำแนกเม็ดเลือดแดงออกเป็น 12 ชนิด
โดยใช้ EfficientNet-B1 อย่างไรก็ตามในการจำแนกออกเป็นหลายชนิดโดยใช้การเรียนรู้เชิงลึก 
ปัญหาที่พบบ่อยคือความไม่สมดุลของข้อมูลเพราะตัวอย่างที่ปกติมักมีจำนวนมากกว่าตัวอย่างของ
โรคที่หายาก เทคนิคที่ช่วยในการแก้ปัญหาความไม่สมดุลถูกนำมาวิเคราะห์เพ่ือลดในปัญหานี้  ผล
การทดลองแสดงให้เห็นว่าการใช้เทคนิคการปรับสมดุลของน้ำหนักร่วมกับเทคนิคการเพ่ิมข้อมูล
จากข้อมูลเดิม สามารถช่วยแก้ปัญหาความไม่สมดุล 
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ABSTRACT (ENGLISH) 
# # 6170107821 : MAJOR COMPUTER ENGINEERING 
KEYWORD: red blood cell segmentation, red blood cell classification, 

convolutional neural network (CNN) 
 Korranat Naruenatthanaset : Red Blood Cell Segmentation and 

Classification from Microscopic Images Using Machine Learning. Advisor: 
Assoc. Prof. THANARAT CHALIDABHONGSE, Ph.D. Co-advisor: Assoc. Prof. 
DUANGDAO PALASUWAN, Ph.D. 

  
Red blood cell morphology analysis plays an essential role in diagnosing 

many diseases caused by RBC disorders.  This manual inspection is a long process 
and requires practice and experience. Since recent computer vision and image 
processing in the medical imaging area can provide efficient tools, it can help 
hematologists to automatically analyze images from a microscope in a reduced 
time and cost. This research presents a new method to segment and classify RBCs 
from blood smear images. The process started from data collection, which a new 
application was created for precisely labeling. The normalization was done 
to reduce the color space and allowed the trained model to not be biased on 
color. Then, overlapping cells were separated using a new method to find concave 
points and use direct ellipse fitting to estimate the shape of a single RBC. Lastly, 
classification using EfficientNet-B1 on 12 red blood cell classes was done. However, 
to classify multiple classes with deep learning, imbalance problems are common 
in medical imaging because number of normal samples is always higher than 
number of rare disease samples. The imbalanced handling techniques were 
analyzed to deal with this problem. Experimental results showed that the weight 
balancing technique with augmentation had the potential to deal with imbalance 
problems. 
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1. Introduction 
 

In a hospital, red blood cell (RBC) morphology analysis is a subprocess in the 

Complete Blood Count (CBC) process. This analysis plays an essential role in 

diagnosing many diseases, caused by RBC disorders, such as anemia, thalassemia, 

sickle cell disease, etc. The analysis mainly focuses on the shape, size, color, 

inclusions, and arrangement of RBCs (Ford, 2013). Generally, the normal RBC shape is 

round, biconcave, with a pale central pallor and of 6–8 m diameter. A hematologist 

manually analyzes the blood cells under a light microscope from blood smear slides. 

This manual inspection is a long process and also requires practice and experience. 

Since recent computer vision and image processing in the medical imaging area can 

provide efficient tools, it can help hematologists to automatically and less 

subjectively analyze RBC images from a microscope in a reduced time and cost. 

For the student training process in the Faculty of Allied Health Sciences at 

Chulalongkorn university, to expert in RBC morphology, students need to practice 

with microscopes and be guided by staff and professors that take a lot of time to 

thorough care of every student. The students must take a picture of the RBC slide 

through the microscope lens and learn how to classify RBCs by themself that can 

lead to misunderstanding. Automating RBC counting and classifying would help to 

guide the students so they can learn by themselves which also reduces the 

workload for professors and staff. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

  

Figure 1-1 Students manually take a photo of the blood smear slides using a 
smartphone to do the laboratory test by themself. 

 

Most of the previous RBC imaging research works were to classify RBCs to 

identify the type of RBCs in the images. Normally, the image, captured from a 

microscope, contains many cells so the cell segmentation must be done before 

proceeding to the cell classification process. The previous works have employed 

typically image processing techniques to the recent state-of-the-art deep learning 

techniques which have improved accuracy significantly. However, there are still 

several challenges to achieve this goal. Since RBCs in the image may overlap with 

each other, it is hard to find the edge of the cell. In the manual process, the 

hematologist usually avoids selecting an area that has a lot of overlapping cells. But 

in some situations, especially in automated methods, it is difficult to avoid these 

areas because the cells stick together leading to incorrect predicted results. Thus, 

automated segmentation must be able to handle the overlapping cells so that it can 

cover the real situation. In addition, blood smear slides may not have the same 

environment, such as lighting, zoom scale, and camera. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

Figure 1-2 Sample of RBC image from a microscope. 
 

Recently, a deep convolutional neural network for object detection and 

semantic segmentation has begun to be used for RBC detection (Qiu et al., 2019; 

Shakarami, Menhaj, Mahdavi-Hormat, & Tarrah, 2021; Wong et al., 2021). The benefits 

of these deep end-to-end methods are that, first, they allow training a possibly 

complex learning system represented by a single model, bypassing the intermediate 

layers usually found in the traditional pipeline approach. Secondly, it is possible to 

design a model that performs well without deep knowledge about each sub-

problem in the complex system.  However, the end-to-end approach is an infeasible 

option in some cases, for example, a huge amount of data is not available, the 

intermediate results are needed, as well as the computational resources are limited.   

For this research, our goal is to develop the RBC segmentation and 

classification that require low computational complexity resources such as mobile 

phones and tablets so that mobile application can run in reasonable time for the 

hematologist training. Secondly, the application requires to have an interface that 

shows individual cell colored based on its type, for a real-time user interaction 

feature. By using end-to-end deep learning object detection or instance 

segmentation would not be feasible to serve this purpose well comparing to the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 
very efficient and accurate traditional low-level computer vision approach we 

proposed in this research. 

Although deep learning has shown remarkable results in computer vision, 

these approaches still need lots of data to achieve a good outcome. Nevertheless, 

RBC datasets are difficult to collect because some RBC types can only be found in 

specific diseases, and these may only be found in specific geographic regions. 

Accordingly, each dataset usually has an imbalance problem. Moreover, even then 

different specialists might give different results, depending on their expertise, and so 

shifts the analytical balance towards being subjective. 

This research presents a new framework for RBC data collection, RBC 

segmentation using ellipse fitting, and classification via the use of EfficientNet (Tan & 

Le, 2020). The main contributions of this thesis are: (i) an application for helping 

labelers to label the ground truth in blood smear images, (ii) a new method to 

separate the overlapping cells based on the concave points of the border of RBCs, 

and (iii) RBC classification with analysis of imbalanced datasets using data 

augmentation, weight normalization, upsampling, and focal loss (Lin, Goyal, Girshick, 

He, & Dollár, 2018) on multi-class classification. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

Figure 1-3 (a) Input image, (b) Expected output image



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1. Aims and Objectives 
The objective of this study is to develop a method for red blood cell 

segmentation and classification from microscopic images. 

 

1.2. Scope of study 
- The images that were used to train and test in this study were collected and 

labeled by specialists from the Faculty of Allied Health Sciences, 
Chulalongkorn University. 

- This study focuses on RBCs in the image that do not rip by borders of the 
image and RBCs are not overlapped by other objects such as scale bar and 
pointer from microscope software. 
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2. Literature Survey 
 

In this chapter, previous studies that are related to this study are reviewed.  

We organize the chapter into three sections.  The first section summarizes recent 

related works in the literature in order of published year. The next two sections 

review techniques used in RBC segmentation and classification respectively. The 

conclusion of each topic technique is then described at the end of this chapter. 

2.1. Previous studies 
(Ritter & Cooper, 2007) proposed RBC segmentation on blood smear slides of 

canine blood using graph algorithm-based to find the edge of the RBCs. The 

algorithm firstly threshold the greyscale images. Then, connected components were 

found by Dijkstra’s shortest path algorithm. 47 images were tested with both normal 

and diseased RBCs with 97.3% accuracy and 51 images also were tested with 99.0% 

accuracy. The proposed method is faster than prior works. The results work well for 

single cells and torching cells. It cannot handle or separate overlapping cells. 

(Khashman, 2008) presented blood cell classification which classifies into 3 

major blood types, RBC, white blood cell (WBC), and platelet. The classifier is an 

artificial neural network (ANN) with 196 neurons for input, 40 neurons for one hidden 

layer, and 3 neurons for output. Global pattern averaging, by dividing the image into 

196 blocks then the pixels in the block were average, was used to extract features 

from a single cell image as the input for ANN. 99.17% accuracy was achieved with 60 

training images and 300 testing images. 

(Soltanzadeh & Rabbani, 2010) presented 3 types of RBC classification, 

ovalocytes, dacrocytes, and burr cells using average and variance distance from mass 

center to edges of the cell. The results were tested with 100 single cell images from 

each RBC type that shows a low error rate in all 3 types. This work used only 2 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

statistic values to classify 3 types. To classify more classes, this method needs more 

features to improve predict more types of RBC.  

  (Kareem, Morling, & Kale, 2011) proposed a counting method without 

preprocessing.  First, the image was converted to grayscale.  Next, dilation was used 

to remove small objects such as platelets or noises, using a ring shape kernel with 

70% of RBC size.  According to the image without preprocessing, the background 

pixels had higher values than object pixels, so dilation made objects smaller or 

disappearing.  Then, erosion using a disk shape kernel recovers the cell from the 

previous step.  The image was converted into a ratio transformed image in which the 

center of RBC has high intensity by average values of pixels in the ring shape kernel 

to disk shape kernel inside the ring.  Finally, the result was achieved by counting the 

peak intensities. This method seems to be suitable for RBC with a circular shape 

because it used a circle base for dilation, erosion, and finding the ratio.  However, 

there can miss detecting RBC that is not a circular shape such as sickle cell, 

ovalocyte, etc.  

 (Habibzadeh, Krzyzak, Fevens, & Sadr, 2011) segment using Watershed 

algorithm on grayscale and classify RBC and WBC using the size of RBCs. This work 

also did de-noising with Bivariate wavelet and edge-preserving with Kuwahara filter. 

Better counting result was shown compared with the Otsu threshold and Canny edge 

algorithm in 10 blood smear images. They were claimed better performance and 

lower complexity than previous works but did not show accuracy results. 

 (Cai, Wu, Zhang, Fan, & Ruan, 2012) proposed an RBC segmentation using an 

active appearance model (AMM) which can extract the cells from the background 

precisely. The output was shown that it can use for counting and measurement of 

the cell. The AMM was built from training images and landmarks which work quite 

well in the study because of the circular shape of RBC. Though the work does not 
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provide statistical results, only showed output sample images. For other RBC types, 

the single AMM cannot totally match all RBC types. 

 (Rakshit & Bhowmik, 2013) presented a detection of sickle cell anemia. Sobel 

edge detection was used on grayscale, and only one manual roundness feature was 

used to classify 2 classes: normal cells and sickle cells. The accuracy is 95.8% on 5 

samples which is quite lower than other works. 

 (Mazalan, Mahmood, & Razak, 2013) used the circular Hough transform (CHT) 

to count RBCs from blood smear images. This algorithm is a circle finding which is 

work best on circular shape object with a known radius, so it is work best for Normal 

cells.  This work has achieved 91.87% accuracy from 10 sample images. The miss-

detected cells were overlapping cells and non-circular RBC.  

 (Tomari, Zakaria, Jamil, Nor, & Fuad, 2014) proposed RBC detector and 

classifier.  First, they used the Otsu threshold on a green channel of a blood smear 

image to extract RBC regions from the background. They perform three steps for 

post-processing to remove other objects, morphological operation (erosion and 

dilation), connected component labeling, and bounding box filter.  Besides, the 

overlapping cells were identified by finding large regions.  After that, features were 

calculated from RBCs to train a neural network.  There were two main features, 

compactness, and moment invariant (seven Hu moments).  The neural network was 

trained on 100 images and tested on 50 images to classify into two types, normal 

and abnormal.  The accuracy, precision, and recall were 83%, 82%, and 76% 

respectively. They ignored the overlapping cells by selecting the cells that have a 

size approximate to a normal cell, then classified only single cells.  The neural 

network had only one hidden layer.  According to the number of features and the 

number of layers in this model, it might need more features and layers to increase 

accuracy or classify more types. 
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 (Lee & Chen, 2014) proposed the hybrid neural network architecture for RBC 

classification.  First, the overlapping cells were segmented and separated by finding 

edges inside the cells.  The top cell was extracted by considering the smoothness of 

endpoints between the edge. After that, RBCs were extracted by applying a closed 

region mask based on edge.  Then, the features were generated from RBCs for 

feeding into the neural network.  The features were divided into two groups, shape 

feature, and texture feature.  Both features were used in the hybrid neural network.  

The difference between a neural network and this network is this network predicts 

the cells that are normal or abnormal cells by shape features with higher priority 

than texture features.  Finally, both features had the same priority to classify four 

types if the cell was abnormal. In this study, overlapping segmentation was 

described, but it was not evaluated.  The result of classification into five types is 

better than the neural network with the same number of layers which is 88.25% 

accuracy on 200 single-cell images.  This architecture seems to make sense with a 

human visual concept.  The method used a small neural network and manual 

feature extraction.  Therefore, it might not be sufficient to classify more types 

according to the number of layers. 

 (Chandrasiri & Samarasinghe, 2014) used Otsu thresholding to segment RBC 

and used rule-based with 4 features to classify 5 types of RBCs. To separate 

overlapping cells, extended-minima transform is used to find markers and separate 

touching cells, then, Euclidean distance transform following by Watershed 

transformation. The segmentation accuracy on 10 images is 99.68% which is better 

than only distance transform, marker controlled, and Blob detection. In the 

classification step, 4 features were created to classify Normal cells, Macrocyte, 

Spherocyte, and Microcyte. The features involve length, diameter, area, the ratio 

between cell area and central pallor. The accuracy of 4 abnormal types is in the 

range of 91% - 97% but the Normal cell is not evaluated. In this study, the features 
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are created to only classify these RBC types which make sense for the shape of the 

selected RBC types. It might classify more types if it does not have more features. 

 (González-Hidalgo, Guerrero-Peña, Herold-García, Jaume-i-Capó, & Marrero-

Fernández, 2015) proposed a method to separate overlapping cell clusters using 

concave points.  First, RBC contours were extracted from a background image using 

an edge finding.  The k-curvature technique was used to find the concave points by 

considering a slope of the interesting point.  After that, the curve between concave 

points was used to estimate an ellipse by the ellipse fitting method with the 

proposed constraints. This study was tested on three different types of images, 

generated ellipse cluster images, real RBC images, and synthetic images.  The 

synthetic images were generated by single-cell combining.  The result seems good 

for all tested images, and the accuracy was 100% on synthetic samples and 96.52% 

on real images with 2– and 3-object clusters.  However, the undetected objects 

occurred due to non-detect of concave points or highly overlapping. 

 (Nugroho, Akbar, & Murhandarwati, 2015) proposed a method to detect 

malaria cells. First, the blood smear image was converted from RGB to HSV color 

space, then selecting the S channel because of the quality of contrast. Next, to 

enhance the images, the contrast stretching method is followed by a median filter 

for denoising. In the segmentation process, the K-means algorithm was used to 

separate the cells of background, however, the study does not show how to select 

the K parameter or evaluate the performance. To classify 3 types of malaria, a neural 

network with 1 hidden layer was used. 6 features were calculated as an input. The 

overall accuracy is 87.8 on 60 images. It used K-cross validation to evaluate the 

performance, but it does not tell how to separate the dataset. 

 (Sharma, Rathore, & Vyas, 2016) proposed a method to detect sickle cell 

anemia and thalassemia.  First, the blood smear image was pre-processed by the 

median filter.  Next, the marker-controlled watershed was used for segmentation.  
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Finally, the k-nearest neighbor was used to classify the cells into four types using 

metric value, aspect ratio, and radial signature between radial distance and polar 

coordinate.  The accuracy was 80.6%. In this study, the classifier was trained and 

tested using 100 images.  It might overfit the result because there are only a few 

images.  For segmentation, it used manual points to make seed points before 

applying the watershed method.  It takes time for pointing to the entire image. 

 (Romero-Rondón, Sanabria-Rosas, Bautista-Rozo, & Mendoza, 2016) proposed 

a method to detect overlapping cells that was based on K-means clustering. The first 

step is a preprocess which removes WBCs and platelets by applying subtraction 

between the image and morphologic operation on the S channel in HSV. To 

separated overlapping cell contour, the number of cells in contour determines by 

cell area distribution between 1 – 3 cells. For more than 3 cells in a cluster, the 

Hough circle transform was used for the trade-off between the number of cells 

defined by area.  After that, to find the marker for using Watershed, 3 approaches 

were used: erosion, Hough, and K-means respectively. The last step after applying 

Watershed, Bézier was used to estimate the missing edge. The sensitivity is 98.37% 

tested on 50 images. The study shows error images that occurring on the wrong 

marker number. 

 (Ahmad, Abdullah, & Sabudin, 2016) compared 3 overlapping cell algorithms: 

Iterative randomized irregular circle detection (IRIC), Circle Hough transform (CHT), 

and Edge drawing circle (EDCircle). IRIC shows the best result while the lowest is 

EDCircle on 2 – 5 overlapping cells. 

 (Liang et al., 2016) detected malaria cells using a convolutional neural 

network (CNN). The network has 6 convolutional layers, 2 pooling, and 3 connected 

layers. The output is sigmoid for binary classification: uninfected and infected cells. 

This dataset has 27,578 single RBC images with a 1:1 ratio for both classes. 97.37% 

accuracy was achieved with 90% training and 10% testing sample on 10-fold cross-
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validations. The study also shows better performance compared with the transfer 

learning model which is the AlexNet model pre-trained on the CIFAR-100 dataset. 

 (Tyas, Ratnaningsih, Harjoko, & Hartati, 2017) compared the results between 

ANN and CNN. The ANN has 43 inputs computed from Invariant moments, GLCM 

(Grey Level Co-occurrence Matrix), and color features. It has 1 hidden layer with 10 

maximum neurons in experiments. CNN is based on the LeNet-5 model. The CNN 

input images are 32*32 pixels. However, the accuracy on ANN is better than CNN, 

93.22% and 92.55% respectively. The dataset consists of 256 single-cell images. In 

this study, the dataset quite has a small number of samples. The CNN model needs 

more samples for training to achieve high accuracy. 

 (Xu et al., 2017) proposed a method to segment touching cells, and classify 

RBC using the convolutional neural network (CNN) into 8 types.  First, to segment the 

RBCs, the entropy of grayscale level was computed within overlapping sliding 

windows, then, high entropy was extracted as an ROI mask image.  They separated 

touching cell contours using a distance transform to find seed points for each cell.  

Then, the seed points were used for the segmentation of the cell by the random 

walk method.  As a result, it could separate touching cells but not for overlapping 

cells.  Lastly, the image was normalized and fed into CNN with ten layers to classify 

into eight types. The mean accuracy of 5-fold cross-validation is 87.50% on 7224 

single cells. 

 (Acharya & Kumar, 2017) presented a method to classify 11 types of RBC 

disorders. First, WBCs were identified by the minimum intensity of the L layer in LAB 

color space, and platelets also were removed by erosion operation with a disk shape 

element. The blood smear images were segmented by Otsu’s thresholding. To 

separate overlapping cells, the modified distance transform was applied and the 

“regionprops” function was used for recovering the cell area. For classification, ruled 

based operation was used to classify 11 types using 8 features. The features are 
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mostly based on geometric shapes. The accuracy was 98% on over 1000 single cells 

with 8 blood smear images. However, the data is imbalanced, mostly normal cells, 

macrocytes, and spherocytes, with only a few sickle cells, hypochromia, and 

elongated cells. The difference in this study is the types that were selected are 

concerned with central pallor based on the focused diseases, such as normocyte 

and normocyte with central pallor, etc. 

 (Zhang, Li, Xu, & Li, 2017) used deformable U-net to segment and classify a 

sickle cell (normal cell and sickle cell).  U-net is a fully CNN that is popular in 

medical computer vision research for the semantic segmentation problem. Also, it 

can classify the image at a pixel level. The architecture of U-net can be divided into 

2 parts, encoder, and decoder. The encoder performs convolution operation 

following by max-pooling to down-sampling the data which reduces the resolutions 

but increases depths. The decoder performs a deconvolution operation to up-

sampling the data which increases resolution but reduces depts back to the same as 

the input. Though, the deformable convolution was used instead of normal 

convolution which can help the U-net model robust for translation and rotation. This 

technique is better than augmentation on training times. The dataset has 128 

samples, 88 for training and 40 for testing. The result of this network is better than 

the baseline U-net model, 82.7% over 73.1% for classification and 97.8% over 94.7% 

for only segmentation. However, this model also used four times longer of training 

than U-net. In this study, in a single RBC, the model can predict 2 types because it 

classifies every pixel. 

 (Durant, Olson, Schulz, & Torres, 2017) proposed a very deep CNN for 

classifying ten types of RBC (including overlapping cells).  This network had more 

than 150 layers with dense shortcut connections, called DenseNet (Huang, Liu, van 

der Maaten, & Weinberger, 2018).  The shortcut connection helps CNN avoiding a 

vanishing gradient problem on the very deep networks.  Accordingly, the problem 

occurs when CNN has a lot of layers; the gradient will be led to zero after applying 
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many non-linear functions. The dataset has 4032 labeled cell images which is divided 

into 2989 training data and 748 testing data. The result was shown with 90.60% 

overall accuracy. However, the dataset is highly imbalanced. Further evaluation was 

done that on low sampling class had low F1-score, precision, and recall. 

 (Gopakumar, Swetha, Siva, & Subrahmanyam, 2018) presented automated 

slide scanner to detect malaria cells using CNN. The proposed method started with 

Otsu’s thresholding ROI out of the background. To separate overlapping cells, the 

distance transform was used to locate the RBCs as markers, and Watershed was used 

to segment the cell area from the markers. For classification, 4 manual designed CNN 

was used to classify non-infected and infected cells. The low CNN layer was 

designed for low-performance edge computing. The evaluation was compared with 

SVM with 14 feature inputs: 4 texture, 4 statistics, 2 computed gradients, and 4 

computed subregions constituting. The CNN outperforms SVM by 98.81% and 96.38% 

sensitivity on 11,200 training images. 

 (Alom, Yakopcic, Taha, & Asari, 2018) used Inception recurrent residual 

convolutional neural network (IRRCNN) to classify WBC and RBC. The model is a 

hybrid deep CNN based on inception, residual networks, and recurrent neural 

network. For RBC classification, the model classified 10 RBC classes which is a dataset 

of (Durant et al., 2017). The accuracy is 99.94% that outperformed all previous 

studies. 

 (Sadafi, Radolko, Serafeimidis, & Hadlak, 2018) used Fully-AlexNet deep 

learning model to segment RBCs from blood smear images. The model was 

converted from AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) which is for 

classification by (Long, Shelhamer, & Darrell, 2015). The images were divided into 

multiple tiles that have overlapping parts, then, fed into the network. The accuracy is 

93.12% on 52 blood smear images which 10% is for validation. However, the 

limitation of the segmentation method for RBCs is the overlapping cells. In this study, 
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it did not have post-processing to separate the overlapping cells but, from 

observation on sample ground truth images, the labels were done by keeping a 

space between the cells that closed to each other. For this cause, the results seem 

to not have a perfect shape, but it can identify the location of RBCs. 

 (Aliyu, Razak, & Sudirman, 2019) compared RBC segmentation techniques for 

sickle cells. The segmentation techniques are Watershed, edge detection, Laplacian 

of Gaussian, and Otsu thresholding. The result was shown that the Otsu thresholding 

had the highest accuracy, sensitivity, and specificity among the rest on 30 blood 

smear images. 

 (Qiu et al., 2019) proposed multi-label RBC detection which is an object 

detection problem using Faster R-CNN (Ren, He, Girshick, & Sun, 2016). Faster R-CNN 

is an object detection based on a region proposal network. For this study, Resnet-101 

(He, Zhang, Ren, & Sun, 2015) was used as a backbone of the classification model. 

Normally, other studies used multi-class problems, 1 object for 1 class. In a multi-

label task, 1 object can have multiple classes. The evaluation was done with 313 

blood smear images with 0.899 average precision (AP). Further analysis also was done 

on multi-label classification using Resnet-50. The best accuracy is 0.932. However, 

the Faster R-CNN identified overlapping cells as 1 connected component. Watershed 

seems to separate the overlapping cells better. Moreover, U-net, which is FCNN, was 

discussed that it can segment the precise shape of RBCs but still cannot separate 

overlapping cells. 

 (Pasupa, Vatathanavaro, & Tungjitnob, 2020) used a focal loss (Lin et al., 2018) 

for 3 class canine RBC classification which helped to improve the performance on 

the imbalance dataset. First, the blood smear images were segmented based on the 

Hough circle transform. Next, for classification, ResNet-50 and DenseNet-121 were 

evaluated the performance with normal cross-entropy loss and the focal loss. The 

result was shown that DenseNet-121 with the focal loss performs the best accuracy 
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and f1-score, 95.60% and 92% respectively. The dataset has 22 dog blood smear 

images contained 3392 single cells, which divided into 70% training data and 30% 

training data. Moreover, Over-sampling and under-sampling techniques also were 

evaluated. It was shown that the over-sampling had slightly lower performance than 

the focal loss. 

 (Batitis et al., 2020) used a decision tree to classify 10 types of RBCs. The 

process started with finding contours using Canny edge detection on grayscale. For 

classification, 6 features were calculated for the input of the decision tree. The 

decision tree has 9 nodes for classifying 10 RBC types. The evaluation was done on 

40 blood smear images that have 600 labeled single cells. The average accuracy is 

89.31%. The computed reliability of each node in the decision tree was also shown. 

The lowest performance is on Target cells and Stomatocytes because the difference 

in both types is on central pallor which difficult to segment the precise shape. 

However, the dataset is highly imbalanced, the minimum is only 3 cells, but the 

maximum is 173 cells.   

 (Parab & Mehendale, 2020) used the CNN to classify 10 types of RBC. The pre-

processing was used Canny edge detection on grayscale for extracting the edge of 

RBCs. For classification, the CNN model had only 2 convolution layers. The 

performance was tested on a validation set which has 5000 images, 500 for each 

type. The accuracy is 98.5. However, the study was described the training dataset, 

validation dataset, and testing dataset, but it does not specify the number of RBCs, 

only in the validation dataset.  

 (Abdulkarim, Razak, Sudirman, & Ramli, 2020) used AlexNet model to classify 

15 RBC types. First, the individual RBC was extracted from blood smear images by 

Otsu thresholding. The dataset has over 9,000 single RBC images which each type has 

750 cells from 130 patients. The accuracy is 95.92%. In this work, the abnormal types 
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contained a cluster of RBCs which is different from other works that focus on only 

single cell types. 

 (Alzubaidi, Fadhel, Al-Shamma, Zhang, & Duan, 2020) proposed 3 type RBC 

classification using CNN including normal, sickle cells, and others. Three CNN models 

were designed and compared the performance. The best model has 23 layers and it 

was trained on 3 different datasets including the dataset from (González-Hidalgo et 

al., 2015). The model achieved 99.54% accuracy and 99.98% accuracy on the model 

plus a multiclass SVM classifier. The model also used transfer learning and several 

augmentation techniques to overcome the small dataset for training. 

 (de Haan et al., 2020) proposed an automated screening for sickle cells using 

semantic segmentation. The proposed method has 2 U-net models. The first model 

is for enhancing the blood smear images. The second model is for segmentation into 

2 types which are normal and sickle cells. For the results, the method was evaluated 

on 96 patients including 9,630 RBCs and achieved ~98% accuracy. 

 (Delgado-Ortet, Molina-Borrás, Alférez, Rodellar, & Merino, 2020) used fully 

convolutional neural networks to segment RBCs from blood smear images and CNN 

to classify malaria. The segmentation model has 7 layers including down-sampling 

and up-sampling layers. The classification model has 13 layers. Both models are self-

designed. The evaluation was done on 331 images dataset with 98.72% and 75.39% 

accuracies on segmentation and classification, respectively. 

 (Rahman et al., 2021) proposed 15 type RBC classification using a rule-based 

method on color, morphology variation, and central pallor of RBCs. First, the blood 

smear image was preprocessing and segmented WBCs, RBCs, and platelets by XOR 

operation between a binary image and a cell mask. After that, each feature was 

extracted by image processing. Then, the rule-based condition was used to classify 

into each RBC type. The performance was tested on 250 blood smear images. The 

average accuracy was 97%. 
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 (Shakarami et al., 2021) used YOLOv3 to detect RBCs, WBCs, and platelets. 

EfficientNet was used as the backbone of the YOLOv3. The dataset in this work has 

364 images with 3,943 cells and 945 cells for training and testing. The activation 

function also was modified to the Swish activation function instead of LeakyReLU. 

The average precisions are 90.25%, 80.41%, and 98.92% for platelets, RBCs, and 

WBCs respectively. 

 (Wong et al., 2021) proposed RBC classification with 3 methods. Our dataset 

also was used in this work. First, to segment RBCs from blood smear images, Otsu 

thresholding was used and then SVM for dividing a single cell and overlapping cells. 

SVM and TabNet were used as a classifier for 11 RBC types with 78.2% and 73.0% 

average F2-scores for SVM and TabNet respectively. To overcome the imbalance 

problem, SMOTE with cost-sensitive learning was used while training. Lastly, U-net 

was used to classify 6 RBC types which achieved a 78.2% F2-score. 

 

 From our survey, most of blood smear imaging research works can be divided 

into 3 groups (Hegde, Prasad, Hebbar, & Sandhya, 2018) based on subtypes of blood 

cells: RBCs, WBC, and platelets. Most of the works have a common objective which is 

to help hematologists who must count and analyze RBCs manually to detect 

diseases. The number of research apparently correspond to the degree of the 

disease. WBCs studies mostly focus on leukemia. RBCs studies focus on malaria, 

sickle cell disease, and other abnormalities. Platelet studies are only counting and 

classification on normal and abnormal.  

 In the next sections, previous works on RBCs segmentation and RBCs 

classification, which are the area that this thesis focuses on, are reviewed. 
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2.2. RBC Segmentation 
 

The objective of RBC segmentation is to extract RBCs from blood smear 

images. The images are usually captured from a microscope at several magnification 

levels. The scale suitable to observed RBC is 400x to 1000x. The 400x magnification 

level can see an area with 0.45mm, or 450 microns (m) diameters while the 1000x 

can see an area with 180 m diameters. The RBCs normally have a diameter around 

6 – 13 m. Although, the RBC shape is a biconcave disk, in the microscope, it looks 

like a donut, circular shape with a white area in the middle as central pallor. The 

color of the cells is red to slightly purple which is much high contrast compared to 

the background which has lower contrast.  

 Table 2-1 summarizes the segmentation and overlapping cell separation 

methods used in the previous research. The methods can be divided into 2 groups: 

traditional image processing, and deep learning methods. 

For traditional image processing methods, the first step of segmentation 

usually was converting the color blood smear images to grayscale. Then, image 

normalization, blurring, and thresholding were performed to enhance the 

segmentation. To extract the precise shape of RBCs, several methods had been 

proposed such as thresholding, edge detection, and circular shape detection 

algorithms. After that, the overlapping cell separation was performed to separate 

single cell from a group of the RBC contour. The characteristics of clusters of RBCs 

are used to detect and split each cell such as the circular shape of individual RBC or 

concave point of overlapping cells. Then, morphology operation was done for 

extracting RBC contours.  

Recently, the deep learning approaches have been used for RBC 

segmentation. The most model used in many works was a fully convolutional neural 

network where input is the blood smear image, and the output is also an image that 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 16 

each pixel is predicted to be either RBC pixel or a background pixel. However, the 

limitation of this method is that it cannot separate a cluster of RBCs or it needs post-

processing for this task. Moreover, creating a dataset for training requires a manual 

label process for all the pixels which is very labor-intensive task. 

 

Table 2-1 Summary of RBC segmentation methods and overlapping separation 
methods of previous research 

Author Segmentation Method 
Overlapping 

Separation Method 

(Ritter & Cooper, 2007) 
Dijkstra’s shortest path on 
RBC border 

- 

(Soltanzadeh & Rabbani, 
2010) 

Otsu thresholding - 

(Habibzadeh et al., 2011) Otsu thresholding Watershed  

(Kareem et al., 2011) Ring dilation and erosion - 

(Cai et al., 2012) 
Active appearance model 
(AAM) 

- 

(Rakshit & Bhowmik, 2013) Sobel edge detection - 
(Mazalan et al., 2013) Circle Hough transform - 

(Lee & Chen, 2014) Otsu thresholding 
Canny edge inside 
contour 

(Tomari et al., 2014) Otsu thresholding - 

(Chandrasiri & 
Samarasinghe, 2014) 

Otsu thresholding 

Extended-minima 
transform, Euclidean 
distance transform, 
Watershed 

(Nugroho et al., 2015) 
K-means with marker based 
on distance 

- 

(González-Hidalgo et al., - K-curvature for 
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Author Segmentation Method 
Overlapping 

Separation Method 
2015) concave point then 

ellipse fitting 
(Sharma et al., 2016) Marker-controlled Watershed - 

(Ahmad et al., 2016) Otsu thresholding 
IRIC, Circle Hough 
transform, EDCircle 

(Romero-Rondón et al., 
2016) 

Otsu thresholding 
erosion, Hough, K-
means 

(Tyas et al., 2017) Histogram equalization  

(Xu et al., 2017) 
The entropy of grayscale 
level on sliding windows 

Distance transform, 
then random walk 
method 

(Acharya & Kumar, 2017) Otsu thresholding Distance transform 

(Gopakumar et al., 2018) Otsu thresholding 
Distance transform, 
then Watershed 

(Sadafi et al., 2018) FCN-AlexNet - 

(Aliyu et al., 2019) Otsu thresholding - 
(Pasupa et al., 2020) Circle Hough transform - 

(Batitis et al., 2020) Canny edge detection - 

(Parab & Mehendale, 2020) Canny edge detection - 
(Abdulkarim et al., 2020) Otsu thresholding - 

(Delgado-Ortet et al., 2020) 
Fully convolutional neural 
network 

- 

(Rahman et al., 2021) XOR with mask - 

(Wong et al., 2021) Otsu thresholding - 
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2.3. RBC Classification 
 

Hematologists can use RBC classification to automate a complete blood 

count (CBC) process leading to time and cost saving. The automatic classifier can also 

help detecting various diseases associated with RBC abnormalities, such as Malaria 

and Thalassemia. The works in this discipline can be split into three categories based 

on their intended use. 

1. Blood cell classification which classifies into RBCs, WBCs, and platelets. 
2. Multi-type RBC classification which classifies into multi types. 
3. Specific disease classifications such as Malaria, Thalassemia, Sickle cell 

disease. 

 Table 2-2 summarizes the methods, datasets, RBC types, and results of 

previous works on RBC classification. Almost every research was evaluated using 

their-own dataset yielding nearly perfect results. Moreover, each research also 

focuses on a different set of RBC types.  Thus, it is hard to compare each method in 

a straightforward way. Below we review the research works on RBC classification 

grouping by approach into 2 groups: traditional image processing techniques and 

modern deep learning approaches. 

 

1. Image processing approaches 

In this approach, the RBCs are classified based on manual features that were 

observed on RBC appearance such as size, roundness, color, etc. After that, the 

features are used to classify on condition probability algorithms such as rule-based 

and decision tree. The limitation of this method is varieties of environments. It might 

not tolerate different environments. To add multiple classes, the complex rule-

based method increases the difficulty of the research. 
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2. Deep learning approaches 

RBC classification using deep learning was started to use on a neural network. 

The manual feature extraction was still used in this step. After that, CNN was used 

since AlexNet outperformed on ImageNet competition.   The CNN model can be 

trained without manual feature extraction. The classification model on general tasks 

can also be used with high performance on other tasks including RBC classification. 

To develop the RBC CNN classification model, the model architecture and RBC 

dataset are the most important parts instead of fully designing all the steps likes the 

previous method. For this reason, the model can classify multiple types with ease 

only provide RBC images.  

In the recent research, semantic segmentation and object detection was used 

to detect and classify RBC which is an end-to-end deep learning. For semantic 

segmentation, the model can segment and classify the whole blood smear image at 

pixel level, but it was difficult to create a dataset for this task. Moreover, the 

research nowadays still has only a small dataset. For object detection, the outputs 

are the type of RBCs and bounding box. The dataset for object detection is easier 

than semantic segmentation.  

To train the RBC classification, the data imbalance is a problem that is 

difficult to avoid when adding multiple RBC types because some rare types, which 

are difficult to find, always have less than normal RBC. This problem also is a 

common problem in a medical classification task. To handle the imbalance problem, 

several techniques can be added to the training step. Augmentation is a must step to 

generalize the model, but it can use to perform upsampling and downsampling to 

handle the imbalanced dataset. In the training step, weight balancing is used when 

backpropagation. Adjusting the loss function also can help the model not bias to the 

main class. 
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3. Related Theories 
 

3.1. Red Blood Cell morphology 

 Red blood cell morphology (Ford, 2013) divides red blood cells into various 

subtypes by abnormalities of RBC shape, and other RBC features such as size, color, 

inclusion, and arrangement.  Shape, size, and color features were focused on the 

classification method in this study.  This thesis will not cover all the RBC types 

because each type can be found in different diseases, so some of RBC disorders are 

difficult to find in some regions making it hard to collect the data.  The interested 

RBC types are described in Table 3-1. 

 

Table 3-1 RBC type images and descriptions 
Image Description 

 

Normal cell 
 The cell has a circular shape with 
circular central pallor. 

 

Macrocyte 
It like a normal cell but bigger. 

 

Microcyte 
It like a normal cell but smaller. 
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Hypochromia 
Central polar is more than 1/3 the 
diameter of the RBC.  

 

Ovalocyte  
RBC with oval shape. 
 

 

Schistocyte 
It is a fragment of RBC. It usually shows 
another shape with no central pallor 
instead of a circular shape. 

 

Spherocyte 
The cell is smaller than normal. There is 
no central pallor. 

 

Sickle cell 
There are several sickle cell shapes. 
Generally, it looks like a boat, or 
crescentic with two sharp endpoints.  

 

Stomatocyte 
The central pallor is linear, rather than 
circular. 

 

Target cell 
The cell has a central area within the 
central pallor. 
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Teardrop cell 
The shape looks like a drop of water. 

 

Burr cell 
The cell has serrated edges projection 
off its surface. 
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3.2. Ellipse Fitting 

To estimate ellipse shape from a set of coordinate, (Aw Fitzgibbon & Fisher, 

1995) proposed ellipse fitting algorithm minimizes an algebraic cost function on an 

ellipse equation  

 

With a constraint  

 

 

where x, y are the coordinate of each point and a, b, c, d, e, f are coefficients of the 

ellipse equation. This problem can be solved using the least-squares approach. The 

algorithm is well known and low resource computing. However, the algorithm can 

return a general conic shape, not specific on only the ellipse shape.  

 After that, (A. Fitzgibbon, Pilu, & Fisher, 1999) proposed a direct least-square 

fitting of the ellipse by adding a new constrain. 

 

 

The new algorithm ensures that the result will be an ellipse even on the noisy set of 

points which is very robust. 
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3.3. Convolutional Neural Network (CNN) 

 The convolutional neural network was evolved from an artificial neural 

network that makes up of multiple neurons that have weights and biases.  The 

architecture of the neural network is shown in Figure 3-1 consisting of an input layer, 

hidden layers, and an output layer.  Each neuron receives values from the previous 

layer then performs a dot product follow by a non-linear function (optional).  The 

data is put through the network called "forward propagation".  After that, the network 

is trained by calculus-based called "back propagation" which learns how to correct 

the result comparing with ground truth. 

 

Figure 3-1 Artificial neural network 
  

To implement image classification with the neuron network, the input layer is 

the set size of input neurons equal to the size of pixels of the image. In this case, the 

hidden layers will have a large number of neurons making it is computationally 

expensive.  However, CNN solves this problem.  CNN consists of 2 groups, feature 
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extractor layers, and fully connected layers.  The architecture of CNN is shown in 

Figure 3-2. 

 

 

 

Figure 3-2 CNN architecture 
  

The Feature extractor layers have 2 components, convolution, and pooling. 

Convolution is done by the dot product between each feature map and kernel then 

apply a non-linear function.  The dot product is shown in Figure 3-3. Pooling is used 

to reducing the size of the feature map by reducing the layer size.  There are two 

traditional types, max pooling, and average pooling.  Pooling samples are shown in 

Figure 3-4. 

 

 

Figure 3-3 Sample of convolution between 6x6 feature map and 2x2 kernel 
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Figure 3-4 (a) 2x2 max pooling (b) 2x2 average pooling 
 

 The fully connected layers are the final step for predicting the result.  This 

layer like the typical neural network which connects every neuron from the previous 

layer.  For image classification, typically convolution and pooling are connected and 

repeated multiple times then a few fully connected layers are placed at the end 

which the last one has a size equal to the class size.  In the early layer of 

convolution, each kernel detects low-level objects such as line, edge, curve, etc.  In 

later layers, it will detect more complex objects.  The CNN reduces computationally 

cost compare to the typical neural network because each kernel applies to all entire 

images to reduce unnecessary connections in the early layers and add more kernel 

making the network can go more in-depth instead. 
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3.4. Image Classification Model 
 

3.4.1.  AlexNet 

AlexNet (Krizhevsky et al., 2012) was introduced to the world in 2012 with the 

winner in the ImageNet Large Scale Visual Recognition Competition (ILSVRC) which is 

an image classification competition. The AlexNet model outperformed all non-deep 

learning algorithms with a significant margin. The model has 8 layers, as shown in 

Figure 3-5. The convolution layers in this model are 11x11, 5x5, and 3x3 in dimension 

sizes. The total parameters to be trained are 60 million parameters. In addition, the 

ReLU activation function was introduced in AlexNet for the first time instead of TanH. 

The ReLU helps the model has to reach a lower error rate and also trains 6 times 

faster than TanH.  

 

 

Figure 3-5 Architecture of AlexNet (Krizhevsky et al., 2012) 
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3.4.2.  VGGNet 

VGGNet (Simonyan & Zisserman, 2015) was introduced in 2014 as the winner 

in ILSVRC 2014. The VGGNet increases the number of model layers to 16 and 19, as 

VGG16 and VGG19 respectively. The model uses only 3x3 convolution layers instead 

of a larger convolution size because multiple 3x3 convolution layers have the same 

effect to one larger layer, but it needs fewer parameters to be trained.  The total 

parameter for VGG16 is approximately 138 million parameters and for VGG19 is 

approximately 144 million parameters. 

 

Figure 3-6 Architectures of VGG16 and VGG19 (Simonyan & Zisserman, 2015) 
 

3.4.3.  ResNet 

ResNet (He et al., 2015) is the first CNN model that shows better than human 

performance. It was introduced as the winner in ILSVRC 2015 and COCO2015. 

Previous research had shown that the deeper CNN can achieve higher performance. 

However, training a model needs backpropagation. The gradients that pass through 

the deep model become smaller and show insignificant updates to the model, 

called the vanishing gradient problem. To handle this problem, ResNet uses the 

residual block, as shown in Figure 3-7, that adds a skip connection between the first 

layer of the block to the last layer of the block. These skip connections are the 

shorter paths to send back the gradient when backpropagation. The ResNet is a 
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connection of the residual block and it can go deep up to 150 layers, called 

ResNet152 which has 60 million parameters. 

 

Figure 3-7 the Residual block in ResNet (He et al., 2015) 
 

3.4.4.  DenseNet 

DenseNet (Huang et al., 2018) is a connection of dense blocks. Within the 

block, each layer connects to all previous layers, as shown in Figure 3-8. Instead of 

summing the previous layer like ResNet, DenseNet concatenates all previous feature 

maps, so the model does not need wide layers and it can reduce the number of 

feature maps. The DenseNet201, which has 201 layers, outperforms ResNet152 with 

fewer parameters and higher performance. 
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Figure 3-8 Dense block in DenseNet (Huang et al., 2018) 
 

 

3.4.5.  EfficientNet 

Previous CNN architecture usually is a manual desired. EfficientNet was 

proposed with a set of models, EfficentNet-B0 – EfficientNet-B7, to fit a resource. Not 

only increase the deep layer of the model, the EfficientNet balances the width, 

depth, resolution of the model, as shown in Figure 3-9 using AutoML. The AutoML 

performs a grid search to find a relationship to scale the baseline network, which is 

mobile inverted bottleneck convolution (MBConv). For the performance, EfficientNet 

beats all previous models and also has lower computational power. 
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Figure 3-9 (a) is a baseline network, (b)-(d) show scaling in only one dimension, (e) 
compound scaling, including: wide, depth, and resolution, that was used in 

EfficientNet (Tan & Le, 2020) 
 

 

 

 

 

 

 

3.5. Imbalance handling techniques 

The most common problem for image classification in the medical area is an 

imbalanced dataset. Abnormal cases always have lower samples than normal cases. 

To handle the imbalance problem, several techniques have been invented to make 

the model does not bias to the majority classes. This section shows 3 methods that 

were used in this study to handle the imbalanced dataset. 
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3.5.1.  Upsampling & downsampling 

To handle the imbalanced dataset at the data level, all classes in the dataset 

should have samples equally. Downsampling decreases the sample in the classes 

that have many samples while upsampling increases the sample in the classes that 

have a low number of samples. It is easier to decrease the sample than to increase 

the samples. The augmentation technique is usually used to generate new samples. 

 

 

Figure 3-10 (a) Imbalanced dataset (b) Downsapling technique that scales down the 
size of samples until equal to the lowest class (c) Upsampling technique that scales 

up the size of samples until equal to the highest class 
 

3.5.2.  Weight balancing 

Weight balancing balances the training process in the loss function. Usually, 

the weight was assigned by the number of samples, low samples have higher weight, 

high samples have lower weight. The weights are multiplied with the loss to make 

the model less focused on the majority classes. 

 

3.5.3.  Focal loss 

Focal loss is another weight balancing technique that was proposed in (Lin et 

al., 2018). First, it was used for object detection that the background class has much 

more pixels than the objects. However, it was modified to use in the image 
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classification task. The focal loss was modified from the cross-entropy loss, that 

commonly uses in image classification. The loss less focuses on the well-classified 

samples, as shown in Figure 3-11, making the model focuses on the sample with 

higher loss. 

 

 

Figure 3-11 focal loss (Lin et al., 2018)
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4. Proposed Methods 
 

This chapter includes our data collection, normalization, segmentation, and 

classification. It covers a process from the blood smear is captured from a 

microscope to each RBC is classified to a type. The main contribution of this study is 

on data collection, segmentation, and classification. In data collection, we developed 

a software tool that helps experts label the RBCs. To the best of our knowledge, the 

dataset contains most classes of RBCs in the literature, and we plan to share this 

dataset to research community.  In segmentation, a method for overlapping cell 

separation is proposed based on concave point findings. In classification, the 

EfficientNet model, which is the recent state-of-the-art for image classification, is 

employed.   

Although, there have been many deep learning methods used for object 

detection, semantic segmentation, instance segmentation which are fully end-to-end 

learning based.  However, the drawback of these methods is data preparation. To 

train the detection model, it needs bounding boxes and labels on every RBCs, but 

our dataset contains only some RBCs and coordinates. For these reasons, fully 

learning methods might not be suitable for this task. 

 

4.1. Data collection 

 RBC images were collected from DS-Fi2-L3 Nikon microscope at 1000x 

magnification and were saved in the Google firebase database.  After that, we have 

developed an IOS application for the specialist at the Faculty of Allied Health 

Sciences, Chulalongkorn university to label RBC in the images.  It has two pages, a 

listed image view, and a labeled view, as shown in Figure 4-1. 
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Figure 4-1 (a) Listed image view, (b) Labeled view 
 

 In the labeled view, users can select RBC types from the bottom of the 

screen then click on RBCs of that type in the image.  The data will be automatically 

saved on Firebase.  The data, which consists of x-y coordinate and type, were saved 

as JSON files which it can immediately use along with the labeling process. However, 

the abnormal RBCs that have an abnormality in shape can be identified with ease 

but the RBCs that have an abnormality in size are difficult. The blood smear images 

have a different scale when observed from the microscope, smartphone, and tablet. 

It is difficult to identify which cells are normal, microcyte, or macrocyte, even for a 

specialist. Ovalocyte is another type that needs to specify criteria, if the cells are 

slightly ellipse shape, it may confuse the labelers it is oval enough to be the 

ovalocyte.  Moreover, in real-world situations, hematologists are not used tools to 

measure every cell in the slides, they usually use the experience to approximate the 

size of RBCs from the majority size of RBCs in the slides. But for labeling the ground 

truth. Every label needs to have an accurate label because the model in the image 
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classification problem does not have information from other cells, only a single-cell 

input. According to the normal RBCs, it has 6 - 8 microns. We have created a simple 

tool in our label application. The tool has 2 green circles which are calculated to 

have 6 and 8 diameters (16 and 22 pixels respectively) from the microscope 

reference scale. The tool is shown in Figure 4-2.  

 

 

Figure 4-2 Circular shape tool for RBCs measurement 
 

Labelers can move the tool to measure the cell along with marking the type of RBCs. 

The tool can help the labelers to measure 4 types: Normal cell, Macrocyte, 

Microcyte, and Ovalocyte by the rule in following. 

- Normal cell: edge of the RBC needs to align between 2 circles. 
- Microcyte: edge of the RBC needs to align inside the small circle. 
- Macrocyte: edge of the RBC aligns outside the big circle. 
- Ovalocyte: 2 opposite sides of RBC straight out of the big circle while another 

2 opposite sides lie inside the big circle. 

These rules can decrease confusion between each labeler. Before having this 

tool, labelers sometimes unsure whether the cell size is too big or too small 

comparing to the normal cell. The samples of the screen when classifying these 4 

types are shown in Figure 4-3.  
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Figure 4-3 the circular shape tool in the mobile application for RBC measuring (a) 
Normal cell, (b) Microcyte, (c) Macrocyte, (d) Ovalaocyte 

 

 In our experiment using dataset before using this tool explained in the next 

section, the confusion matrix showed that the majority of the wrong predictions are 

especially on Macrocytes and Microcytes. So, relabel process was done on the wrong 

prediction cells. To help the specialist to relabel with ease, we created an image 

with 3 components: a blood smear image with a rectangle box of the cell, an image 

from the rectangle box, and the rectangle box with no background and the circle 

tool. The type of the cell is shown in the lower left corner. Sample images were 

shown in Figure 4-4. The wrong labeling can happen in several causes. As shown in 

Figure 4-4 (a), the interesting cell seems smaller than other cells in the overall image 

so the specialist might think it is normal, but it is still Macrocyte. In Figure 4-4 (b), the 

interesting cell also seems smaller than other cells, but the majority is Macrocyte not 

Normal cell, so labeler assumed it was Microcyte instead of Normal cell. In Figure 4-4 

(c), it is shown that the cell is small but also has an oval shape. For this reason, 

labelers need to agree to the labeling process because it cannot have 2 labels in 1 

cell. The agreement is that abnormal RBC in shape is a priority than the second is 
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size. Similar to Figure 4-4 (c), it was relabeled as the Ovalocyte instead of the 

Microcyte.  

 

 

Figure 4-4 Sample images of relabel process. (a) Macrocyte was labeled as Normal 
cell, (b) Normal cell was relabeled as Microcyte, (c) Ovalocyte was labeled as 

Microcyte 
 

 The collection process did both blood smear image collection from the 

microscope and label the RBCs in parallel. The image collection timeline is shown in 

Table 4-1 and the label process timeline is shown in Table 4-2. As shown in the label 

process timeline, some types were decreased over time because the labeler 

relabeled the previous cells. The huge decreasing between 16/08/2019 and 

06/09/2019 on Microcytes is because of a relabel process with the circle tool 

recorrect Microcyte as Normal cell. 
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Table 4-1 Timeline of blood smear image collection 

Date Number of blood smear images 
13/12/2018 231 

20/03/2019 285 

30/03/2019 389 
20/06/2019 492 

16/07/2019 559 
31/07/2019 583 

01/08/2019 623 

09/08/2019 675 
16/08/2019 706 
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4.2. Normalization 

In our blood smear dataset, as shown in Figure 4-5, the images are different in 

light conditions. Collectors might have different environments, such as camera 

settings, microscope light levels, blood smear slide preparation, etc. It can happen 

by multiple causes: such as the brightness of light in the microscope, camera 

settings, substances that using in slide preparation, or even light from the 

environment. The collectors also might collect multiple blood smear slides of a 

single RBC type at a time, making each type have its own color space. Although 

hematologists can disregard the difference in color space from expertise, the model 

can be biased from the different color spaces during the training process instead of 

the characteristics of that type. Hence, normalization is needed to preprocess the 

images before classification.  

 

 

Figure 4-5 Samples of blood smear images 
 

 

Figure 4-6 Samples of blood smear images after normalization 
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In this step, the backgrounds were extracted and the three overall average 

background values of the RGB channels (𝑅𝑎𝑣𝑔, 𝐺𝑎𝑣𝑔, and 𝐵𝑎𝑣𝑔) were found for 

all the blood smear images. Before training and predicting the results, the different 

values of the three average background values of the target image k and the overall 

averages values were added to all the pixels of the target image. The normalization 

equation of pixel (i, j) for image k is shown in the equation below. Although only the 

normalized images were used for improving the classification results, a huge 

improvement in the normalization accuracy was found. The results are shown in 

Figure 4-6. 

  

𝑟𝑘
𝑖,𝑗  =  𝑟𝑘

𝑖,𝑗  +  (𝑅𝑎𝑣𝑔  −  𝑟𝑘
𝑎𝑣𝑔) 

𝑔𝑘
𝑖,𝑗

 =  𝑔𝑘
𝑖,𝑗

 +  (𝐺𝑎𝑣𝑔  −  𝑔𝑘
𝑎𝑣𝑔

) 

𝑏𝑘
𝑖,𝑗  =  𝑏𝑘

𝑖,𝑗  +  (𝐵𝑎𝑣𝑔  −  𝑏𝑘
𝑎𝑣𝑔) 
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4.3. Segmentation 

In this step, the segmentation was done for extracting the RBC area as 

contours out of the background. It starts with preprocessing the image. First, the 

image was converted to greyscale by selecting the green channel of the RGB image.  

It was selected because the green channel has more contrast than the red and blue 

channels. The RBCs have purple red color making the green channel has a lower 

value while the background contains a high value on all 3 channels. As shown in 

Figure 4-7, (a) shows the RBC sample image and (b) – (d) show R, G, and B channels, 

respectively. (e) shows a histogram of the RBC color of the image (a). It was shown 

that each channel has 2 peaks, the higher peak always has a higher value due to the 

background and the lower peak is the RBC area. The farthest distance between the 2 

peaks is on the green channel making it has the highest contrast compared with all 3 

channels.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 51 

 
(e) 
 

Figure 4-7 (a) RBC original color image. (b) Image from the red channel. (c) Image 
from the green channel. (d) Image from the blue channel. (e) Histogram of RGB 

color. 
 

 Next, CLAHE (Contrast Limited Adaptive Histogram Equalization) was used to 

enhance the image. The grayscale was divided into small blocks (8x8). The small 

blocks were done histogram equalization separately, as shown in Figure 4-8. Blur and 

threshold were used to extracting the cell area out of the background.  The steps are 

shown in Figure 4-8 (c) – (d). 

 

 
(a) 

 
(b) 
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(c)  

(d) 
Figure 4-8 (a) Green channel image. (b) CLAHE image. (c) Blur image. (d) Threshold 

image 
 

After that, we need to extract the edges of each cell by extracting the 

contour using morphology operation. The output is contours of ROI regions contains 

coordinates of the border.  Finding a closed area was used as shown in Figure 6-5. 

 

 
Figure 6-5 Closed area image 
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4.4. Overlapping separation 

In manual RBC analysis, hematologists typically avoid selecting an area in a 

blood smear slide that has overlapping cells to evaluate the result. This is because it 

is simple to count and identify the type of RBC when their border is not hidden 

behind other cells. To separate the overlapping RBCs, the most reliable methods are 

based on distance transforming and ellipse fitting. The distance transform approach is 

used to find the peak spots furthest from the border. The peak spots are then used 

to identify a unique cell by several techniques, such as the random walk method 

and watershed transform, and the area of each cell was found. However, although 

the distance transform works effectively for a circular shape and a small group of 

overlapping cells, the peak area may coexist making it difficult to specify a certain 

amount. The ellipse fitting method uses the edge of the RBC to approximate as an 

ellipse which identifies the area of RBC. 

The method presented herein is based on ellipse fitting and the overall 

process was divided into four steps, as detailed below. The steps are shown in Figure 

4-11. 

 

4.4.1. Concave point finding 

In each point (coordinate) in the RBC contour, ( ), k middle points were 

calculated by finding the center of the distance between k pairs of contour points 

near the point. If all k points are outside the contour, the point is considered as a 

concave point, as shown in Figure 4-9. However, when more than one concave point 

can be found in a wide curve, as shown in Figure 4-11 (b), only one concave point 

was selected by averaging all near concave points. The concave points function, 

, was calculated using Equation (4.1) and (4.2).   

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 54 

 
𝑓(𝑥𝑖 , 𝑦𝑖) =  ∏ 𝑔(

𝑥𝑖−𝑗 + 𝑥𝑖+𝑗

2

𝑘

𝑗=1

,
𝑦𝑖−𝑗 + 𝑦𝑖+𝑗

2
) (4.1) 

 
 

𝑔(𝑥) =  {
1, (𝑥, 𝑦) 𝑖𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑎 𝑐𝑜𝑛𝑡𝑜𝑢𝑟

0, (𝑥, 𝑦) 𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑎 𝑐𝑜𝑛𝑡𝑜𝑢𝑟
 (4.2) 

 

 

Figure 4-9 Concave point finding 
  

4.4.2.  Ellipse estimation 

If the contour has more than one concave point, curves between the two 

concave points were used to approximate an ellipse shape by direct ellipse fitting (A. 

Fitzgibbon et al., 1999), based on the least-square method. The direct ellipse fitting is 

recommended instead of the original (Aw Fitzgibbon & Fisher, 1995), which gives an 

approximate ellipse that does not relate to the curve in some conditions. The direct 

ellipse fitting is constrained by ensuring the discriminant  for the ellipse 

equation. The Figure 4-10 shows the incorrect results of the original ellipse fitting 

comparing with the direct ellipse fitting. 
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(a) (b) 

Figure 4-10 (a) shows results of the direct ellipse fitting, (b) shows results of the 
original ellipse fitting 

 

4.4.3. Ellipse verification 

After finding all the ellipses in each contour, the ellipses were sorted by area 

in descending order. Then, each ellipse was verified to be in the RBC contour by 

meeting two simple conditions of (i) 80% of the ellipse area is in the contour and (ii) 

20% in the remaining area in the contour is not in any previous ellipses. 
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4.4.4. Two curve ellipse estimation 

In highly overlapping RBCs, more than two cells overlap each other and so 

the curves might not be able to restore the correct ellipse shape of each RBC. If 

there are more than two ellipses that do not pass the conditions, then the two 

curves were concatenated and used to estimate an ellipse of the remaining cell. 

 

Figure 4-11 Steps in the overlapping cell separation: (a-c) two curves are 
concatenated and used to estimate an ellipse of the remaining cell. (d) The two 
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blue ellipses show an incorrect cell estimation, while (e) shows the correct cell 
estimation after ellipse fitting with two curves. 
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4.5. Classification 

4.5.1.  RBC dataset 

After the segmentation step, single RBC contours are extracted out of the 

blood smear images. To feed to the CNN model, single RBC images are created. The 

RBC contour are put in the middle of the output image, as shown in Figure 4-12. 

After that, the images are resized to 224x224 pixels which is the default size that the 

original work using.  

The dataset had 12 classes of RBCs: 11 RBC types and an uncategorized class, 

which is other type of RBC. The dataset was labeled by specialists in hematology. 

The numbers of RBCs in each class are shown in Table 4-3. The dataset is highly 

imbalanced because some classes are rare, such as the Teardrop, Sickle cell, and 

Uncategorized types. However, in data collection process, we have collected the 

Sickle cell, Polychromasia, Keratocyte, and Acanthocyte. These 4 RBC types still have 

small number of samples which is not enough for training. 

 

  

  
Figure 4-12 Samples of single RBC images before feeding to the deep learning 

model 
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Table 4-3 Total number of each RBC class in the dataset 

RBC Class Total number of RBCs 
Normal cell 6,286 
Macrocyte 687 
Microcyte 459 

Spherocyte 3,445 
Target cell 2,703 

Stomatocyte 1,991 
Ovalocyte 2,137 

Teardrop cell 305 
Burr cell 783 

Schistocyte 861 
Uncategorized cell 182 

Hypochromia 1,036 
Total 20926 

 

 

4.5.2.  Classification model 

For classification, the pretrained EfficientNet model (Tan & Le, 2020) was used 

as it showed a remarkable level of accuracy and better performance than the older 

models. It was designed by carefully balancing the network depth, width, and 

resolution. The model has eight different sizes: EfficientNet-B0 to EfficientNet-B7. In 

the results section, the EfficientNet-B0 to EfficientNet-B4 were observed with a five-

fold cross validation using 80% and 20% for training and testing, respectively. 

 

4.5.3.  Augmentation 

The data augmentation will be used for this problem.  It can generate new 

data by applying a function to the data.  Only random flips and rotates were used 
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for data augmentation because the RBC classes are sensitive to size and color, such 

as Normal Macrocytes and Microcytes are different in size. 

 

4.5.4.  Imbalanced handing techniques 

 Further analysis on the imbalanced dataset was then performed an 

imbalanced dataset is a common problem in biomedical datasets. Our RBC dataset 

was highly imbalanced with a 34.538 imbalance ratio (calculated from highest 

sample class/lowest sample class) for the 12 RBC classes from a total of 20,875 RBCs. 

In the training step, the model can be overcome by high sample classes with less 

focus on the low sample classes. Thus, the weight balancing, up sampling, and focal 

loss were investigated in this study. 

 For weight balancing, normally, every RBC class has the same weight, 1.0. 

However, the weight balancing helps a model balances learning gradients in the 

backpropagation step between high sample classes and low sample class, by giving a 

high weight to low sample classes and a low weight to high sample classes. In this 

study, each class was weighted as   as weights 1, 2, and 3, 

respectively, where f is the number of samples in that class. 

 The up sampling makes every RBC class have the same number of samples 

by replicating its own data. This helps the trained model to not be overcome by high 

sample classes. In this case, every class replicates itself to match the normal class. 

 For the focal loss, as shown in the Figure 3-11 focal loss , the  parameter 

adjusts how the loss function less impact on well-classified samples, higher  less 

impact on well-classified samples. 0.5, 1.0, 1.5, 2.0 ,2.5, 3.0 were used in the   

parameter in our test. 
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4.5.5. Evaluation metric 

To evaluate the performance, accuracy is commonly used for image 

classification. For the imbalanced dataset, the accuracy is insufficient, as it can be 

dominated by the majority classes. However, many metrics have been used to 

describe an imbalanced dataset (Johnson & Khoshgoftaar, 2019), and the F1-score 

was used in this study. This is a well-known metric that balances precision and recall 

by harmonic means that is sensitive to the minority classes. Normally, for binary 

classification, precision, recall, sensitivity, specificity, and F1-score were used to 

evaluate the result in imbalance dataset. In contrast, multi-class classification 

multiple metrics are hard to compare. 
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5. Experimental Results 
 

5.1. Overlapping cell separation 

In this section, overlapping cell separation performance was tested in 20 

blood smear images. We manually counted the overlapping contours that did not 

contain a cell on the border of the images and other artifacts, such as platelets, 

white blood cells, or microscope tools in the images. A total of 277 contours were 

found. Our algorithm can correctly separate 246 overlapping cells which are 0.8881 

accuracies. The incorrect results include undetected overlapping cells, and the result 

does not fit the true shape of RBCs. According to the wrong results, it can happen in 

incorrect concave point finding and incorrect ellipse fitting. The results are shown in 

Table 5-1. Mostly found in the blood smear images are the two overlapping cells. 

The incorrect results mostly are caused by wrong concave point findings. 

 

Table 5-1 Overlapping cells separation result 
Contour Correct Incorrect (Concave) Incorrect (Fitting) Total 

2 RBCs 185 18 4 207 

3 RBCs 38 2 1 41 
> 4 RBCs 23 2 4 29 

Total 246 22 9 277 

 

 In Figure 5-1, the incorrect overlapping cell separations are shown. (a) is 

incorrect because only one concave point is found, (b) and (c) are incorrect due to 

incorrect ellipse fitting. In Figure 5-2, the correct overlapping cell separations are 

shown. (a) and (b) are simple overlapping cells, while (c) is a complex group of 

overlapping cells. 
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(a) 

  
(b) 

  
(c) 

Figure 5-1 (a) shows incorrect overlapping cell separation because of incorrect 
concave point finding (b)-(c) show incorrect ellipse fitting because of incorrect ellipse 

fitting 
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(a) 

  
(b) 

  
(c) 

Figure 5-2 (a)-(c) show correct overlapping cell separation 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 65 

5.2. RBC Classification 

In the first step, we investigated the different model sizes, EfficientNet-B0 to 

B4, with and without augmentation. The results (Table 5-2) show that EfficientNet-B1 

with augmentation had the highest accuracy and F1-score. Thus, increasing the 

model size did not significantly improve the performance, and the limiting factor was 

the sample size of the dataset. Increasing the model size can then lead to an 

overfitting problem. Therefore, imbalance handling techniques were investigated, 

including weight balancing, up sampling, and focal loss, using EfficientNet-B1 as the 

baseline. 

 

Table 5-2 RBC classification results 

Model Accuracy F1-score 
EfficientNet-B0 0.8821 0.8378 

EfficientNet-B1 0.8823 0.8426 

EfficientNet-B2 0.8842 0.8399 
EfficientNet-B3 0.8819 0.8423 

EfficientNet-B4 0.8830 0.8405 

EfficientNet-B0-aug 0.8996 0.8639 

EfficientNet-B1-aug 0.9021 0.8679 
EfficientNet-B2-aug 0.8988 0.8636 

EfficientNet-B3-aug 0.9001 0.8642 
EfficientNet-B4-aug 0.8990 0.8668 

 

 The overall training accuracy and F1-score of EfficientNet-B1 with imbalance 

handling techniques are summarized in Table 5-3. However, the baseline model with 

augmentation still had the highest accuracy and F1-score, followed by AugWeight3 

(augmentation and  weight). Up (Up sampling) showed a slightly lower result 
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from the baseline while AugUp (Augmentation with up sampling) showed slightly 

better results. Augmentation with focal loss (AugFocal0.5-AugFocal3.0) resulted in a 

decreasing accuracy and F1-score with increasing $\gamma$ hyperparameter values. 

Table 5-3 Accuracy and F1-Score of our proposed EfficientNet-B1 with various data 
imbalance handling techniques 

Model Accuracy F1-score 

Baseline 0.8823 0.8426 

Aug 0.9021 0.8679 

Weight 0.8752 0.8374 

Weight2 0.8808 0.8435 
Weight3 0.8820 0.8410 

AugWeight 0.8698 0.8344 
AugWeight2 0.8954 0.8630 

AugWeight3 0.8981 0.8672 

Up 0.8772 0.8403 

AugUp 0.8877 0.8591 

AugFocal0.5 0.8947 0.8523 
AugFocal1.0 0.8932 0.8510 

AugFocal1.5 0.8926 0.8543 

AugFocal2.0 0.8900 0.8480 
AugFocal2.5 0.8884 0.8486 

AugFocal3.0 0.8877 0.8488 

 

 

 The average results in the imbalanced handing techniques might not tell 

much about the performance of the model. In Table 5-4, F1-scores of each 

technique in classes are shown. The augmentation row is highlighted, and the bold 

values are shown that they are better than the augmentation in that class.  The 
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weight balancing with augmentation shows better F1-score on low sample classes, 

AugWeight2 and AugWeight3 have 4 and 6 classes better than only augmentation. 

The upsampling with augmentation has 3 classes better than the augmentation. The 

result in Table 5-4 shows that the weight balancing with augmentation technique can 

help the model focusing on the low sample classes. The reason that the overall F1-

score still lower than the augmentation technique because our dataset is highly 

imbalanced, the lowest which is uncategorized and teardrop cell have 182 and 305 

samples while the normal has 6,286 samples.  

 In summary, the difference between this dataset and general datasets in the 

RBC classification problem are the dataset is imbalanced and RBC classes have many 

similar characteristics. Almost all classes are circular in shape, with only a few 

characteristics that are different, such as their size, shape, and color. The best result 

was obtained with the EfficientNet-B1 with augmentation. 

 Further analysis on an imbalanced dataset, weight balancing, and focal loss 

were examined for their effect on the loss function. Weight balancing helped to 

improve the low sample classes with less focus on the high sample classes. 

Otherwise, focal loss showed a decreased performance for this dataset because it 

focused on a high value loss, but since the different RBC classes were almost similar 

in shape the loss was almost entirely in the middle, which is ignored. Up sampling 

was performed at the data level, similar to augmentation. This technique seemed to 

work best for unique shape classes, which were the teardrop cell and uncategorized 

classes. 

 The further experiment on background color for feeding into the model was 

done, as shown in Table 5-5.  Normally the black background was used in the 

experiment. The experiment was done with black background, white background, 

gray background, and average background from the blood smear image background. 

The result shows that the black background has the best performance.  
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The normalize RBC techniques also was tested, the first row of Table 5-5. The 

result has very low performance because our blood smear images have variance of 

background color. The blood smear image collector may collect the images type by 

type, so each type has their own environment of lighting. For this reason, the 

normalization needs to be done before feeding to the model. 

In Figure 5-3, samples of segmentation and classification are shown. The 

number near each cell shows the number of predicted RBC types. The number is in 

Table 5-6 
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Table 5-5 Accuracy and F1-score of EfficientNet-B1 with different normalization 
techniques 

Model Accuracy F1-score 

AugUnnormalize 0.6325 0.4241 
AugBlackbg 0.9021 0.8679 

AugWhitebg 0.8977 0.8634 

AugGraybg 0.8969 0.8603 
AugAVGbg 0.8979 0.8626 

 

Table 5-6 Average Precision, Recall, and F1-score of five-fold cross validation using 
our method on Yale’s dataset 

Number of RBC types RBC types 

0 Normal cell 
1 Macrocyte 
2 Microcyte 
3 Spherocyte 
4 Target cell 
5 Stomatocyte 
6 Ovalocyte 
7 Teardrop cell 

8 Burr cell 

9 Schistocyte 

10 Uncategorized cell 

11 Hypochromia 
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5.3. RBC classification on other work comparisons 

5.3.1. Comparison with (Wong et al., 2021) 

(Wong et al., 2021) reported the results of using SVM and TabNet to classify 

the RBCs into 11 classes on the same dataset as used in this paper.  They employed 

the SMOTE technique with cost-sensitive learning to handle the imbalanced dataset.  

The evaluation was done using F2-Score and the results show that the SVM 

outperforms the TabNet with 78.2% and 73.0% respectively.  To compare with their 

work, we employed our methods, EfficientNet-B1 with augmentation, to classify 11 

and 12 classes of RBCs on the same dataset.  Our approach yields 88.62% and 

87.91% F2-score respectively. 

 

5.3.2.  Comparison with Yale’s dataset 

Since each of researchers usually has their own datasets which are different 

in the number of classes and the number of samples, thus the method comparison 

is quite not straightforward.  However,  we found an available RBC dataset used in 

(Durant et al., 2017) provided by the Yale University School of Medicine.  Their 

dataset contains 3,737 labeled RBCs with 10 classes including the overlapping cells. 

Durant et.al. used DenseNet (Huang et al., 2018) which has more than 150 layers. The 

reported accuracy was 0.9692 on the test set. Comparison on the Yale’s dataset 

To make a fair comparison, we employed our proposed method based on 

the EfficientNet-B1 without the overlapping cell separation.   We also used five-fold 

cross validation for training because we do not know how the data was partitioned in 

the (Durant et al., 2017).  Our result yields 0.9813 on the average accuracy on cross 

validation, and the highest and lowest cross validation accuracies are 0.9920 and 

0.9733, respectively. Table 5-7 shows our average precision, recall, and F1-Score of 

five-fold cross validation on Yale’s dataset. Table 5-8 shows confusion matrix for our 
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classifier based on EfficientNet-B1. There were only 6 wrong predicted results, as 

shown in Figure 5-4.  

According to the comparison result on the same dataset, our proposed 

method outperforms the previous work done in (Durant et al., 2017) by yielding the 

higher accuracy. The overlapping cells were all correctly predicted in all five-fold 

cross validation which is quite obvious because the area of an overlapping cell is 

typically larger than other types of a single cell.  Although accuracy gain using our 

model compared with the previous method is about 0.18% (7/3,737) which is not 

quite significant, but our model yields also better performance on both training and 

inference due to lots lower number of parameters. 

 

Table 5-7 Average Precision, Recall, and F1-score of five-fold cross validation using 
our method on Yale's dataset 

RBC Types Precision Recall F1-score 
Normal 0.995 0.985 0.990 

Chinocyte 0.952 0.984 0.968 

Dacrocyte 0.889 0.941 0.914 
Schistocyte 0.974 0.949 0.961 

Elliptocyte 0.889 0.941 0.914 

Acanthocyte 0.848 0.933 0.889 
Target cell 1.000 0.993 0.997 

Stomatocyte 0.955 0.955 0.955 
Spherocyte 0.958 0.958 0.958 

Overlap 1.000 1.000 1.000 
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(a) Predicted: Dacrocyte 

True class: 
Schistocyte 

(b) Predicted: 
Schistocyte 
True class: Dacrocyte 

(c) Predicted: 
Schistocyte 
True class: 
Echinocyte 

   
(d) Predicted: 

Acanthocyte 
True class: 
Schistocyte 

(e) Predicted: Dacrocyte 
True class: 
Elliptocyte 

(f) Predicted: 
Spherocyte 
True class: Normal 

Figure 5-4 Among the 748 test images tested on EfficientNet-B1 using Yale's dataset, 
there were six misclassified images (a) - (f) 
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Further cross dataset analysis was done with the EfficientNet-b1 model 

trained with our dataset but tested on the Yale’s dataset. These two datasets have 8 

identical RBC types that our dataset does not have the Acanthocyte and Overlap 

classes. In Table 5-9, the confusion matrix for the EfficientNet-B1 model trained on 

our dataset but tested on the Yale’s dataset is shown. To test on different dataset, 

normalization process was done before classifying. The average accuracy was 0.7373 

on 8 classes. 566 Normal RBCs was predicted wrong with Uncategorized class, which 

contains several RBC shapes. According to the incorrect Uncategorized class results, it 

can happen because many RBCs on Yale’s dataset, even on the same types on our 

dataset, is not the same as on our dataset in some characteristic of RBCs. 

The confusion matrix for the EfficientNet-B1 model trained on our dataset but 

tested on the Yale’s dataset which excludes the Uncategorized class was shown for 

the analysis on the second best predicted of RBC types instead of the Uncategorized, 

as shown in Table 5-10. The average accuracy was 0.8062 on 8 classes.  The result 

shows that the correct predicted normal class was huge increased. However, the 

incorrect results still have much more than the model trained on Yale’s dataset.    

To clarify the incorrect results, the misclassified images in Yale’s dataset were 

observed, as shown in Figure 5-5. (a) – (d) are wrong predicted but it is quite 

reasonable because the images look similar to the predicted classes. In contrast, (e) 

– (g) are Schistocytes but the images only seem like the predicted class. The reason 

that our model shows wrong predicted results because the Schistocyte is a fragment 

of RBCs which cannot identify the characteristic of the Schistocyte. 
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(a) True class: Normal 

Predicted class: Spherocyte 

 
(b) True class: Normal 

Predicted class: Ovalocyte 

 
(c) True class: Normal 

Predicted class: Microcyte 

 
(d) True class: Normal 

Predicted class: Hypochromia 

 
(e) True class: Schistocyte 
Predicted class: Teardrop 

 
(f) True class: Schistocyte 
Predicted class: Ovalocyte 
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(g) True class: Schistocyte 

Predicted class: Spherocyte 
Figure 5-5 Samples of misclassified images from the EfficientNet-B1 trained on our 

dataset and tested on Yale's dataset (not included Uncategorized) 
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6. Conclusion and Discussion 
 

6.1. Conclusion 

In this study, a method to segment RBCs is presented.  The proposed method 

has the ability to separate overlapping cells based on concave points and classify 

RBCs into 12 classes. The process started from data collection with an application 

created for labeling RBCs. Color normalization, which reduced the color space and 

allowed the trained model to not be biased on color. Next, contour extraction was 

used to extract the RBC contour from the background. Then, overlapping cells were 

separated using a new method to find concave points and use direct ellipse fitting to 

estimate the shape of a single RBC. Lastly, classification using EfficientNet-B1 showed 

the best result with augmentation. Moreover, further analysis for handing an 

imbalanced dataset revealed that weight balancing can reduce the bias of a trained 

model on the majority classes. 

6.2. Discussion 

Many deep learning studies on RBCs still lack a standard public dataset to 

evaluate their performance. Our dataset has more samples and more types of RBCs 

than many previous studies, but it still requires to be improved for imbalanced 

problems.  

For the method presented here, we used the EfficientNet model to classify 

the RBCs. However, the segmentation step is not a learning-based method, which is a 

trend that has shown better results in many specific computer vision areas. For RBC 

diagnose, only the number of RBCs and RBC types are important. The object 

detection method, which is provides bounding boxes and classes, can serve this. To 

train object detection for RBC images, all of RBCs are needed to label to make the 

best performance for the model. The manual labeling process may take much cost 

and time. Our work can use to do this labeling and classify with high accuracy for 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 86 

these 12 RBC classes that is a starting point for end-to-end deep learning. However, 

RBC images are needed to be collected to solve the imbalanced problem and 

improve the performance. 
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