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ABSTRACT ( THAI )  พีรวิชญ ์เจริญวุฒิ : วธีิการผ่อนปรนปัญหาแบบลากรานจ์ส าหรับแบบจ าลองการจดัเส้นทางยานพาหนะร่วมกบัโด

รน. ( Lagrangian Relaxation Method for Integrated Vehicles and Drones 

Routing Model) อ.ท่ีปรึกษาหลกั : รศ. ดร.มาโนช โลหเตปานนท์, อ.ท่ีปรึกษาร่วม : ศ.ชินเออ ิทากา
โนะ 

  

การขนส่งสินค้าปัจจุบันน้ีมีความต้องการเพ่ิมขึ้นเป็นอย่างมากเน่ืองจากการมาของระบบการซ้ือขายผ่ าน
อินเตอร์เน็ตท าให้หลายบริษัทไดพ้ฒันาการขนส่งรูปแบบต่าง ๆ เพ่ือตอบสนองตลาดและลดต้นทุน หน่ึงในนั้นคือการใช้โดรน
ไร้ผูบ้งัคบัร่วมกบัยานพาหนะอื่นเช่นรถบรรทุก โดยโดรนสามารถออกจากทั้งคลงัสินค้าหรือจากรถบรรทุกเพ่ือไปส่งสินค้าแล้ว
กลับมาท่ีฐานพกั เพ่ือรอรถบรรทุกมารับกลับหรือบินกลับคลังสินค้าเอง ปัญหาการจัดเส้นทางของยานพาหนะร่วมกับโดรน 

(Vehicle Routing Problem with Drone) ท่ีศึกษาเป็นปัญหาการจดัเส้นทางการส่งสินคา้ของรถบรรทุกและโด
รนไปพร้อม ๆ กนั ซ่ึงเป็นปัญหาท่ีมีความซับซ้อนมากจึงไม่สามารถใชว้ิธีการแกปั้ญหาแบบทัว่ไปได ้งานวิจยัน้ีไดพ้ฒันาเทคนิค
การผ่อนปรนปัญหาแบบลากรานจ์ (Lagrangian Relaxation) เพ่ือน ามาใช้ควบคู่กับเทคนิค Branch-and-

Price ในการค านวนขอบเขตล่างของค าตอบในแต่ละขั้นของ Branch-and-Price ซ่ึงขอบเขตล่างของลากรานจ์นั้นจะมี
ค่าใกล้ค าตอบมากกว่าค าตอบจาก Column Generation ในขั้นนั้น ส่งผลให้เวลาท่ีใช้ในการหาค าตอบลดลงจากการ
น ามาใช้เป็นเงื่อนไขในการหยุด Branch-and-Price ช่วยให้ไม่ส ารวจ Node ท่ีไม่จ  าเป็น ในการทดลองนั้นจะ
ด าเนินการโดยใช้ตัวอย่างท่ีสร้างขึ้นมาแบบสุ่มและตัวอย่างจากแผนท่ีจริง นอกจากน้ีได้เปรียบเทียบต้นทุนของการใช้เพียง
รถบรรทุกและการใชร้ถบรรทุกร่วมกบัโดรนเพ่ือให้เห็นถึงประโยชน์ของการใชโ้ดรนไดช้ัดเจนย่ิงขึ้น 
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Nowadays, e-commerce increases parcel transportation demand year by 

year. Many companies are seeking the way to improve performance of delivery 

service and cost-efficiency. One among many solutions is using a drone attached with 

a truck for the last mile delivery. A drone can be launched from either depot or truck 

and returned to the depot or wait for the truck to take them back from the docking 

station around the delivery area. The vehicle routing problem with drones considers 

truck- and drone-route simultaneously. It is an enormous problem that cannot be 

solved by a normal linear programming method. This research proposes the 

Lagrangian relaxation technique, in conjunction with the Branch-and-Price 

technique, to estimate the lower bound of the solution in each iteration of the Branch-

and-Price. The lower bound from the Lagrangian relaxation is tighter than the 

solution from the Column generation which can improve the total solution time. The 

bound use in Branch-and-Price as a fathom condition, these help the search tree not 

to explore unnecessary nodes. The computational experiment includes randomly 

generated instances and real-world instances. Moreover, the operation cost of truck-

based and truck-drone-based are compared to point out the benefit of using drones. 
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Chapter 1 

Introduction 

1.1 Background 

The development of the internet and mobile applications make an easy access 

to stores around the world. The percentage of change in the e-commerce market is 

28.0% and 22.9% in 2017 and 2018 respectively (Lipsman, 2019). In China, since 2014, 

the gross merchandise value of Black Friday, Cyber Monday, and T-Mall Single’s Day 

were increased at least 30% year by year (Lai & Lui, 2019). In 2019, Alibaba Single’s 

Day event made a total of $38.3 billion which is the world’s largest shopping event 

(Yang, 2019). In the US, Amazon made $232.9 billion from net sales (Amazon, 2019b). 

In Amazon’s Prime Day 2019, Amazon members around the world purchase more than 

175 million items in this event and more than half of them were shipped on the same 

day or faster. From an operator perspective, this is a big challenge to handle this number 

of deliveries (Amazon, 2019a). 

According to “The Last-Mile Delivery Challenge” (K. Jacobs et al., 2019), customers 

are giving precedence to delivery speed because their orders are usually fresh food or 

things from a crowded retail store that they don’t want to waste their time with. 

Customers will change to more cost-efficient services such as same-day delivery. This 

is such a big challenge for the delivery company to maintain their quality of service 

(e.g., customer waiting time) that directly affects customer’s loyalty while controlling 

their cost. An analysis showed that increasing delivery will decrease to a total profit 

of 26% in 3 years. Because the last-mile delivery can be cost up to 50% of the total 

delivery cost (Michał et al., 2019).  
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“Globally, more people live in urban areas than in rural areas, with 55 percent 

of the world’s population residing in urban areas in 2018. In 1950, 30 percent of the 

world’s population was urban, and by 2050, 68 percent of the world’s population is 

projected to be urban.” (United Nations Publications, 2019) Urbanization is always 

followed by massive road traffic. For example, In Japan, Japanese people waste their 

time more than 8 billion hours per year (Kono & Joshi, 2019). This undeniable problem 

directly affects the quality and cost of last-mile delivery. There were many ideas 

proposed, for example, Drop-shipping, Drop-off lockers, Autonomous vehicles, and 

Drones (Michał et al., 2019). 

In 2013, the announcement of Jeff Bezos that Amazon is developing drones for 

small goods deliveries as a program called “Amazon Prime Air”. They told that at least 

86% of the weight of their shipped package is below 5 pounds which is the weight 

carried limit of the drone, then the last-mile delivery process would take only 30 

minutes (Popper, 2015). In 2016, They have succeeded in their first delivery flight in 

the suburbs of Cambridge, UK. After the announcement, many retails and logistics 

companies have turned their heads to this technology. Even non-logistics-based 

company, Alphabet Inc., the parent company of Google, developed their drone’s 

delivery project called Wing. In April 2019, the US Federal Aviation Administration 

(FAA) approved its operation. Then, the wing’s drone makes an operation in Virginia, 

US. In September the same year, they became a business partner with FedEx to operate 

delivery in Australia and the US. Wing said, “it would like to offer deliveries across the 

US in the future.” (Murphy, 2019),(Elias, 2019). This trend is not in the only western 

region. Recently, Rakuten and JD.com Japanese and Chinese retail companies have 

collaborated. JD.com started their drone program in 2015 and launched commercial 
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flights in 2016 in Jiangsu, Shaanxi, and other provinces in China. While, Rakuten 

launch “Sora Raku” which is a golf club delivery service by drone (Rakuten, 2016), 

(Rakuten, 2019). 

 

Figure  1 Amazon Prime Air (ONISHI, 2019) 

In rural areas, the challenge is healthcare delivery. The use of drones is for 

delivering aid packages and medicines to the site. As well as delivering blood and 

specimens for a rural hospital to the laboratory which is usually located in the city center. 

The study of Médecins Sans Frontières (2014) concluded that drones could use delivery 

time only 25% of the time it took by land transportation. In Papua New Guinea, 

Tuberculosis is a serious problem. Especially in the Gulf Province which has hard to 

access health services. Médecins Sans Frontières and US company implement drone 

service to transport patient’s samples to the hospital and send back treatments (Atkinson 

& Mabey, 2019). 

In the agriculture section, drones are set to fly over the field and capture images 

with the coordinator. It can be mapped in 2D. The map can be used for field monitoring 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 4 

and analysis. Moreover, drones can carry water and fertilizer and spray it into crops. 

This is more cost-efficient and easy to operate (Shakhatreh et al., 2019).  

The advantage of using a drone is the ability to go anywhere without the concern 

of road congestion. A straightway of the drone’s path could save a lot of time compared 

to travel along the congested road. However, there are also limitations. First, flight 

endurance and flight speed are constrained by battery technology. Second, the 

limitation of carried weight and size. Lastly, weather conditions can make drones fail 

in operation.  

In the operation research area, there are a lot of mathematical models and 

methods to solve the truck-drone routing problem which will be reviewed in chapter 2. 

The proposed linear models can be categorized into 2 categories. The arc-based model 

which is the (Mixed) integer model contains a set of arcs from node to node as variables. 

The path-based model is the reformulation of the arc-based model. From the original 

arc-based variables turn to variables that contain a combination of arcs. The result is 

the high complexity constraints from the arc-based model are put into the step of 

generating variables. The simplex method is able to solve this problem but still consume 

a lot of computing resource due to a large number of variables. Many Authors use 

Column generation to solve this kind of problem (see Baldacci, Toth, and Vigo (2007), 

Feillet (2010)). The column generation is known as the successful iterative method to 

deal with a lot of variables. However, to obtain an integer solution, we need  Branch-

and-Price (Barnhart, Johnson, Nemhauser, Savelsbergh, & Vance, 1998). It is a 

combination between column generation and branch-and-bound. The branching rules 

are proposed by Ryan and Foster (1981). 
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The major disadvantage is slow convergence when the solution reaches the 

optimum point so-called tailing-off effect. The Lagrangian relaxation can provide the 

tight lower bound of the current node. In every explored node in the Branch-and-

Bound tree, if the lower bound is greater than or equal to the current integer solution, 

that node is fathomed (Lübbecke & Desrosiers, 2005). 

In this thesis, we use the Lagrangian relaxation as one of the fathom 

conditions in Branch-and-Price to solve the integrated vehicles and drones routing 

model. The expectation is the lower total computation time compared with the column 

generation without Lagrangian relaxation. 

This thesis consists of the following chapter. In Chapter 2, the travelling 

salesman problem, vehicle routing problem, column generation, and Lagrangian 

relaxation works of literature are reviewed. In Chapter 3, the sub-network-based 

model is explained and the Lagrangian relaxation method is proposed. Chapter 4 is 

the experiment and result. The last chapter, chapter 5 is the conclusion and 

suggestions for future research.  

1.2 Objectives of the study 

 

- To develop a Lagrangian relaxation method for improving the speed of the 

Branch-and-Price framework for solving the integrated vehicles and drones 

routing model. 

- To conduct a computational experiment to compare between the solutions 

which have only trucks in tours and the solutions which combined both types 

of vehicles. 
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1.3 Expected Benefit of Study 

- The Branch-and-Price framework with the Lagrangian relaxation is faster than 

without the Lagrangian relaxation. 

- In the same calculation time, Branch-and-Price framework with Lagrangian 

relaxation is able to handle a bigger problem size compared to without 

Lagrangian relaxation. 

- The solution which combined both types of vehicles is better than using only 

trucks. 
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Chapter 2 

Literature Review 

2.1 Lagrangian Relaxation 

Lagrangian relaxation is a relaxation method for estimates a solution of difficult 

Linear programming (LP) by removing some constraints which make the problem hard. 

Then, put into the objective function with a new multiplier vector µ. Each µ penalizes 

the solution if it does not satisfy the constraints. 

Lagrangian relaxation is used for generating a lower bound (or upper bound in 

case of maximization problem). We recall the following theorem from Ahuja, Magnanti, 

and Orlin (1993). 

Consider the following linear model: 

        (1) 

       (2) 

        (3)  

“Lemma 1.1 (Lagrangian Bounding Principle). For any vector µ of the 

Lagrangian multipliers, the value  of the Lagrangian function is a lower bound on 

the optimal objective function value z* of the original optimization problem (P).” 

“Proof. Since  for every feasible solution to (P), for any vector  of 

Lagrangian multipliers,  = 

. Since removing the constraints  from the second formulation cannot lead 

to an increase in the value of the objective function (the value might decrease 

.” 
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We can change the mentioned model to the Lagrangian relaxation by relaxing 

(2) as follow. 

     (4) 

 

To get as close as possible to , solving the Lagrangian multiplier is needed.  

       (5) 

To find  that makes  largest as possible, the most popular way is the sub-

gradient method. First, initiate the Lagrangian multiplier. Second, improve it by using 

(6). If the relaxed constraint is greater than or equal to, then . On the other hand, 

If the relaxed constraint is greater than or equal to, then  can be any number. 

      (6) 

 Introducing step size  by  is the number of iterations. There are two methods 

to calculate step size. First, the original one which . The second is from Held 

and Karp (1970) which  and UB is upper bound of the solution.  

Lagrangian relaxation provides a tight lower bound of the solution of the 

minimization. The average gap of Lagrangian relaxation bound is from 0% to 10%. 

While, the LP relaxation gap is from 6% to 22% (Kwon, Kang, Lee, & Park, 1999). 

Moreover, it provides an upper bound or a good feasible solution (Fisher, 1985).  The 

Branch-and-Bound algorithm mostly applies Lagrangian relaxation to get rid of waste 

calculation. (Tanaka & Araki, 2008) 
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Lagrangian relaxation can also mitigate the degeneracy of the Column 

generation or can be used to generate new columns (Huisman, Jans, Peeters, & 

Wagelmans, 1970). Many authors used this method in the routing problem (e.g. Kohl 

and Madsen (1997), Dell'Amico, Righini, and Salani (2006)). In the integrated vehicle 

and drone model, Z. Wang and Sheu (2019) use this method and weighted Dantzig-

Wolfe decomposition for speed-up and stabilization. 

2.2 Column Generation 

Column generation was introduced by Dantzig and Wolfe (1960) and Gilmore 

and Gomory (1961). At that time, this method was proposed to solve the linear 

relaxation of the cutting stock problem which is the problem of cutting a piece of 

material into needed lengths. For example, they want to cut 13-metres woods into 3-

meters, 5-meters, and 7-meters for a certain amount. The different lengths of wood can 

be made from the 13-meters. The variables are the pattern of cutting (e.g., 4 pieces of 

3-meters, 2 pieces of 5-meters, a piece of 5 and 7-meters).  

The number of combinations is a very large and inefficient way to solve by 

enumerating all possible combinations. Most of the variables will be zero (non-basic) 

in the optimal solution. Only a few variables are needed. They decided to break the 

master problem (MP) to the restricted master problem (RMP) which has the original 

constraints but consists of the subset of variables. Then, they introduced the sub-

problem. The sub-problem is the problem for generating the new variable that has the 

potential to be a solution that has a negative reduced cost (in the minimization problem). 

The constraints of the sub-problem are the natural characteristic of the master problem. 

The objective function is the reduced cost of the new variables. On the other way, the 
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column can be generated without sub-problem by price-out the reduced cost of every 

variable and add the column with negative reduced cost. 

The procedure of the Column generation is described as following, 1) initiate 

the RMP with a subset of feasible variables (usually from the heuristic method). 2) 

Solve the RMP and obtain the value of the dual and put it into the sub-problem. 3)  

Solve sub-problem. 4) If the column with negative reduced cost is found, add the 

column into RMP and repeat steps 2 and 3 until no negative reduced cost column can 

be found. Then, the optimal solution is the solution of the last RMP. 

2.3 Travelling Salesman Problem with Drones and Vehicle Routing Problem with 

Drones 

The traveling salesman problem (TSP), the definition of itself is a problem of a 

salesman traveling to a given set of customers in the shortest distance, while the vehicle 

routing problem (VRP) is a generalization of TSP (Dantzig & Ramser, 1959). Given a 

number of customers, find the set of vehicle routes. Customers are served by each route 

depends on the total demand must not exceed the vehicle capacity limit. The objective 

is to minimize the total cost of delivery. 

There are more than thousands of papers proposed variants of this problem such 

as the capacitated VRP, VRP with a time window, etc. and researchers always give 

either exact or heuristic algorithm to solve their problem (Golden, Raghavan, & Wasil, 

2008). 

The vehicle routing problem with drone (VRPD) is one of VRP’s extensions 

which has more complexity from a large number of feasible combinations compared to 

the traditional one. The first papers of integrated vehicles and drones routing problem, 

“the flying sidekick traveling salesman problems” (FSTSP) by Murray and Chu (2015). 
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This is an extension of TSP. They focus only on the operation of a single truck attached 

to a single drone. The mixed-integer linear programming was formulated. Their 

objective is to minimize the time of the last vehicle (either a truck or a drone) back to 

the depot. Subject to covering constraint, sub tour elimination constraint, only once 

visited customer constraint, drone’s launching/retrieving constraint, and drone’s flight 

endurance constraint. Apparently, the TSP (also VRP) is the NP-hard problem (Kumar 

& Panneerselvam, 2012). Hence, it could be concluded that FSTSP is also an NP-hard 

problem. Therefore, A heuristic algorithm was proposed to solve a large-scale problem. 

They compared their solution with IP solution from MIP solver with 30 minutes time-

limited, Savings algorithm, Nearest neighbor algorithm, and Sweep algorithm. The 

computational result, FSTSP’s solution quality is better than the three algorithms 

mentioned and limited-time MIP solver’s solution on average. In 2016, an extension of 

FSTSP, an alternative of the heuristic method, and modification of some constraints in 

FSTSP were proposed by Ponza (2016). Simulated Annealing (SA), a method for 

approximating optimum solution based on the Monte Carlo algorithm. This method 

gives a reasonable computing time and a good answer quality. In the same year, Agatz, 

Bouman, and Schmidt (2016) proposed an IP model called Traveling salesman problem 

with drone (TSP-D) and a route first–cluster second based on local search and dynamic 

programming. They work on finding the minimum time for a tour. This work is 

different from FSTSP. Due to the privacy regulation, they use the same set of routes for 

trucks and drone which is road network. A truck can be back to visited node for take 

drone to depot or launch it again if there are unserved customer nodes left. Furthermore, 

there is another extension of FSTSP proposed by Ha, Deville, Pham, and Ha (2018). 

All the works mentioned above were aimed to get the minimize of time, but in this work, 
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they consider in the operational cost called min-cost TSP-D. Following by TSP-LS and 

GRASP which is heuristic approach. 

 X. Wang, Poikonen, and Golden (2016) and (Poikonen, Wang, & Golden, 

2017) generalize the problem. Instead of a single truck and a single drone in an 

operation, they described VRPD and theoretically analysis on several worst-case 

scenarios and present the bound in case of using trucks and drones rather than trucks. 

In 2019, Kitjacharoenchai, Ventresca, et al. (2019), The multiple traveling 

salesman problem with drone (mTSPD) were proposed. mTSPD was modifying and 

adding some constraints to FSTSP to perform multiple truck delivery and a drone can 

interact with more than one truck in the minimum time of the delivery process. Genetic 

algorithm, Combined K-means/nearest neighbor, and Random cluster/tour were used 

to initiate an mTSP tour and they performed an adaptive insertion heuristic to find the 

solution of mTSPD. The computing results showed that the best solution quality in 

limited time and lowest standard deviation are from a genetic algorithm. They also 

adjust the number of trucks per delivery which results in the more truck used the less 

time spent on the delivery process, but it has to trade-off with more computing time. 

After mTSPD, The researcher has proposed an improved version of mTSPD called Two 

Echelon Vehicle Routing Problem with Drone (Kitjacharoenchai, Min, & Lee, 2019). 

This paper extends the FSTSP as well as mTSPD but consider the capacity of vehicles 

and drone can carry and serve more than one customer. To solve the large size instance, 

Drone Truck Route Construction (DTRC) and Large Neighborhood Search (LNS) was 

proposed along with sensitivity analysis were conducted. 

The assumption of mTSPD has disregarded the capacity of a truck that does not 

reflect the real-world scenario. Z. Wang and Sheu (2019) study the vehicle routing 
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problem (VRPD). They take care of the capacity of trucks and customer demand. To 

be more realistic, a drone cannot return to the truck via a customer node but a docking 

node or a depot. They presented a typically arc-based model to explain the hardness of 

the problem itself. Then, they proposed a path-based model. The major difference from 

the arc-based model is 1) variable of the path-based model is a separately feasible 

complete path of each vehicle, while arc-based model’s variable is an arc from one node 

to others. 2) Many constraints were used to satisfy in generating variables. Thus, there 

are only four instead of twenty-one constraints left in the path-based model. Besides, 

they developed the column generation and branch-and-price framework to solve it. 

Within 4 and a half hours they can obtain the exact solution for 15 nodes instance. The 

delivery cost can be saved up to 20% on average compared to the same set of customers 

but using no drones. They also conduct sensitivity analysis of drone flight endurance. 

The more max flight duration, the more customers that drone can serve. By double the 

flying duration, The total cost reduced almost 10%. 
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Chapter 3  

Methodology 

3.1 Problem Definition 

3.1.1 Vehicle Routing Problem with Drone (Arc-Based and Path-Based) 

The vehicle routing problem is a vehicle flow network problem defined as a 

graph . A network contains two elements; a set of the depot and customer 

nodes  and a set of arcs  which is a route 

of the vehicle from node to node. Each arc has a travel cost which can be distance or 

travel time or travel cost. Those are represented by a symmetrical matrix . 

There are several major constraints of this model: 1) each customer node must be visited 

only once and must satisfy the customer demand. 2) All vehicle routes start and end at 

the depot. 3) Each vehicle has a capacity limit. 

According to Z. Wang and Sheu (2019) work, the VRPD can be defined as a 

graph  as the same way of VRP. A set of docking hub node   were 

introduced and be included in set . The docking hub nodes are for the landing of a 

drone and a truck must collect the drone back to depot or re-launch. Both of vehicle 

type has a capacity limit. The drone has a maximum flying duration or distance due to 

the limited capacity of the battery. 

In the sequence of the operation, all vehicles must start and back to the depot. a 

drone can serve in-range customers around the depot. For others, a truck will out from 

the depot and serve by itself or launch the drone and serve other customers instead. 

When the drone finished the operation, a drone will land at the docking hub and be 

collected by a truck. However, a truck can launch a spare drone if the drone they launch 
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before is landing after it arrives at the docking hub. The time of battery swapping and 

parcel loading to the drone is neglect. The arc-based is the following model. 

       

          (7) 

s.t. 

           

           (8) 

         

             (9) 

             

          (10) 

             

          (11) 

          

          (12) 

           

          (13) 

        (14) 

∑  (𝑗,𝑖)∈𝐴 ∑  𝑑∈𝐷 𝑦𝑗𝑖𝑑 + ∑  (𝑗,𝑖)∈𝐴 ∑  𝑘∈𝐾 ∑  𝑑∈𝐷 𝑧𝑗𝑖𝑘𝑑 ≤ ∑  (𝑖,𝑗)∈𝐴 ∑  𝑘∈𝐾 𝐿𝑆(𝑥𝑖𝑗𝑘 + 𝑢𝑖𝑗𝑘 )∀𝑗 ∈

𝑂 ∪ 𝐶          (15) 

𝑣𝑖𝑑 ≤ 𝑇𝐷∀𝑑 ∈ 𝐷, 𝑖 ∈ 𝑁       (16) 

   (17) 

   (18) 

       ( ) 

   (20) 

       (21) 
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  (22) 

   (23) 

     (24) 

      (25) 

       (26) 

    (27) 

       (28) 

        (29) 

The variables are defined as follows. 

- : Equals 1 if truck k travels arc (i, j) ∈ A independently, and 0 otherwise. 

-  : Equals 1 if the dth drone travels arc (i, j) ∈ A independently, and 0 

otherwise. 

- : Equals 1 if the truck k carries the drone d through an arc (i, j) ∈ A, and 0 

otherwise. 

- : Equals 1 if the kth truck carries one or more drones through an arc (i, j) ∈ 

A, and 0 otherwise. 

- : Be the cumulative flying time at node i for the drone d after its last leave 

from the depot or a docking node. 

- : Be the cumulative weight units of customer parcels at node i that the 

drone d has dropped after its last leave from the depot or a docking node. 

- : Be the cumulative weight units of customer parcels at node i that the kth 

truck has delivered 
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The objective function is (7) to minimize the transportation cost. Constraint (8) 

and (9) make the trucks and drones that leave the depot must return to the depot, 

respectively. Constraints (10) and (11) make in and outflow of a customer node are 1. 

Constraints (12) and (13) make each docking hub has equal drones in and out. 

Constraints (14) and (15) restrict loaded drone capacity on a truck. Constraints (16)-

(18) are drone flying duration constraints. Constraints (19) and (20) are the drone 

capacity constraints. Constraints (21)-(23) are the truck capacity constraints. 

Constraints (24)-(26) define the relationships of binary variables. Constraint (27), 

landing on the customer node is disallowed. 

As mentioned in chapter 2, This model is NP-Hard. To solve this with a big 

number of customers, a huge computing resource is required. Because of many 

constraints have weak linear relaxation. To get better performance, they reformulate 

into the Path-Based model. There are two types of variables: 1) Truck path, the 

complete tour from depot to customers and/or to docking hub, then, back to the depot. 

2) Drone path, the complete tour from the depot to the customer(s) and back to the depot 

or the complete tour from the depot to the truck’s served customer(s), launch by truck 

and back to the depot by itself or landed to docking hub and back to the depot together 

with a truck. The optimal solution is the combination of truck path and drone path with 

the lowest total cost. The path-based is the following. 

𝑚𝑖𝑛 ∑  𝑟∈𝑅𝑇 (𝑐𝑟 + 𝐹𝑇)𝑥𝑟 + ∑  𝑟∈𝑅𝐷 𝑐𝑟 ⋅ 𝑦𝑟     (30) 

s.t. 

∑  𝑟∈𝑅𝑇 𝛿𝑖
𝑟𝑥𝑟 + ∑  𝑟∈𝑅𝐷 𝛿𝑖

𝑟𝑦𝑟 ≥ 1∀𝑖 ∈ 𝐶     (31) 

∑  𝑟∈𝑅𝑇 𝐿𝑆𝜃𝑖
𝑟𝑥𝑟 ≥ ∑  𝑟∈𝑅𝐷 𝜃𝑖

𝑟𝑦𝑟∀𝑖 ∈ 𝑂      (32) 

∑  𝑟∈𝑅𝑇 𝐿𝑅𝜗𝑎
𝑟𝑥𝑟 ≥ ∑  𝑟∈𝑅𝐷 𝜑𝑎

𝑟𝑦𝑟∀𝑎 ∈ 𝐴0     (33) 
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∑  𝑟∈𝑅𝑇 𝑥𝑟 ≤ |𝐾|        (34) 

𝑥𝑟 , 𝑦𝑟 ∈ {0,1}  ∀𝑟 ∈ 𝑅𝑇 , 𝑟′ ∈ 𝑅𝐷        (35) 

 Let 𝑅𝑇 and 𝑅𝐷  be the set of all truck and drone feasible paths start from 𝑜𝑠 to 

𝑜𝑡 , respectively. 𝑥𝑟 and 𝑦𝑟 are decision variables. 

 The objective function is (30) to minimize the total transportation cost. 

Constraint (31) make each customer is served only once. 𝛿𝑖
𝑟 equals 1 if r travels to node 

𝑖 either truck or drone node, and 0 otherwise. Constraints (32) and (33) make a truck 

cannot collaborate with more drone(s) than the restricted one. 𝜃𝑖
𝑟  equals 1 if r travels to 

docking or truck node, and 0 otherwise. Constraint (34) is the maximum truck that can 

be used. 𝜗𝑎
𝑟 and 𝜑𝑎

𝑟 equals 1 if r travels to truck and drone arc an in 𝐴0 which is truck 

arc without drone node, and 0 otherwise. 

The characteristic of the Path-Based model is a huge number of variables 

(Columns). The researchers developed a branch-and-price algorithm (See Barnhart et 

al. (1998)). First, they generated a first restricted master problem by select some 

columns using the solution of the Saving heuristic then solve. Secondly, solve a pricing 

sub-problem to generate the negative reduced cost columns then put the column into 

the restricted master problem then solve. If the solution is an integer solution, return it; 

otherwise, use the branch-and-bound framework to obtain the integer solution.  

3.1.2 Vehicle Routing Problem with Drone (Sub-network Based) 

According to a working paper of Pichayavet, Charoenwut, and Lohatepanont 

(2019), The sub-network-based model was proposed which is heavily inspired by the 

Path-Based model of Z. Wang and Sheu (2019). Each variable represents the feasible 

tour of trucks and drones start from the depot to all customers and back to the depot 
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again. Following this methodology, the VRPD is reformed to set covering formulation 

(e.g., see Winston and Goldberg (2004)). The number of variables of this model is 

more than the path-based model and extremely higher than the arc-based model, but 

the set covering has tight linear relaxation which benefits the procedure of searching 

for an integer solution in a branch and bound tree. 

The sub-network-based assumptions are on the following. 

- Any drone can perform only one cycle of delivery per tour. 

- The maximum number of trucks per tour is 2. 

- A drone can land only on a docking hub or a depot. 

- The charging and swapping the battery time are neglected. All drones are 

homogenous and work properly while delivering a parcel. 

 A feasible tour is defined as follows. 

- A tour can have a maximum number of trucks up to 2 trucks. 

- As illustrated in Fig. 1, a drone can depart from either the depot node or from 

a truck in any customer node. After the delivery process, a drone can either fly 

back to the depot or land on the docking hub. 

- A tour must satisfy the capacity of both vehicles and the maximum distance 

limit of a drone. 
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Figure  2 Illustration of feasible tours given the node 2 is served by a drone. 

3.2 Mathematical Model 

 Given a graph . Let  be a set of nodes, containing the depot node 

which are and  for the origin and the destination of a tour respectively, docking hub 

node  and customer nodes . Let 

 be a set of arcs  represent a route of a vehicle from node  to node . The 

mathematical model can be formulated as follow. 

       (36) 

       (37) 

        (38)  

        (39)  

The decision variables  is defined to represent which tour  is chosen as 

a solution. The objective function (36) is to minimize the total cost:  transportation 
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cost of tour r and  fixed cost of trucks. Constraint (37) is the set coverage constraint 

that makes every customer be served once. When is the set of all feasible tours.  

be 1 if   has any vehicle visit node , and be 0 otherwise. Constraint (38) is the 

number of trucks used. Lastly, the number of trucks employed for a tour  must not 

exceed the maximum number of trucks . 

3.3 Column Generation and Branch-and-Price Framework 

 In column generation, we need the sub-problem to add a new variable in each 

iteration. Referring to the working paper of (Pichayavet et al., 2019), Let graph 

. Let  be a set of the depot node, docking hub node  and customer nodes . 

The customer nodes  has three layers which is a customer visited by any of the two 

trucks and any drone.  and  are defined as a set 

of customer nodes served by the first and second truck and defined 

as a set of customer nodes served by a drone. The docking hub nodes and depot remain 

the same as the master problem. The arcs  are also replicated into three layers: a 

truck arc  where  and a drone arc  . A truck arc of each layer 

represents an arc that traveled by each truck. All possible  is a combination of two 

nodes from  without connecting between layers. A drone arc 

represents an arc that traveled by a drone itself. According to the feasible tour 

definitions, a drone can visit three types of nodes: departing node, visiting, and landing 

node. As any drone can either departing from a truck or a depot by itself, the start node 

 of a drone arc can be any type of node in . For visiting nodes, 
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they can be a drone’s customer node , a docking hub , or a depot. As a drone is 

not allowed to land on any customer node, the destination of a drone j can be 

 but not . Therefore, the sets of all possible truck arcs and drone arcs 

can be defined as:  is a set of all possible arcs for  truck.  is a set of all possible 

arcs for every truck.  is a set of all possible drone arcs. 

 ;   (40) 

         (41) 

   (42) 

The variables are defined as follows. 

- : equals 1 if a truck passed arc , and 0 otherwise. 

- : equals 1 if a drone passed arc , and 0 otherwise. 

- : be the number of arcs from node . 

- : be the number of arcs to node . 

- : be the cumulative weight unit of the nth truck at node . 

- : be the cumulative distance traveled by truck at node .  

- : be the cumulative weight unit of a drone at node . 

- : be the drone cumulative flying distance at node . 

- : equals 1 if the nth truck passed node , and equals 0 

otherwise.  

- : be a binary variable used in if-then constraint for .  

The parameters are defined as follows. 
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- : be a customer demand of each node  (depot and docking hub are set 

to be 0). 

- : be the distance of a truck arc . 

-  : be the distance of a drone arc . 

- : be a travel cost of a truck arc . 

- : be a travel cost of a drone arc . 

- : be the capacity for a truck. 

- : be the capacity for a drone. 

- : be the maximum number of drones that a truck can carry in one route. 

- : be the flying distance limit of a drone. 

The objective function of the sub-problem is minimizing the reduced cost of the 

tour. Let  and  be the dual variables of constraints (37) and (38) respectively.  and 

 represent the index of a customer node visited by the  truck and a drone, 

respectively. Let  be the reduced cost of a combined path. 

    (43)  

         (44) 

s.t.  (45) 

  (46) 

  (47) 

     (48) 

 (49) 
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 (50) 

   (51) 

       (52) 

    (53) 

     (54) 

    (55) 

        (56) 

       (57) 

        (58) 

      (59) 

       (60) 

     (61) 

     (62) 

   (63) 

     (64) 

    (65) 

 (66) 

Constraint (45) is the conservation of flow constraints for ensuring the number 

of trucks in and out of the node is equal. Constraints (46) and (47) satisfy the truck 

capacity feasibility and the cumulative distance in which a cumulative weight variable 

 and a cumulative distance variable  must be higher or equal to those of the previous 

node . Constraint (48) ensures the capacity limit of each truck. Constraints (49)-(51) 
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define the variables ,  and . Constraint (52) ensures that each path must release at 

least one truck. Constraint (53), the conservation of flow, ensuring the number of drones 

in and out of the node is equal. Constraints (54) and (55) satisfy the drone capacity 

feasibility and the flying distance in which a cumulative weight variable  and a 

cumulative flying distance variable   must be higher or equal to those of the previous 

node . Constraint (56) ensures the capacity limit of each drone. Constraint (57) ensures 

the flying distance limit of each drone. Constraint (58) ensures that each customer can 

be served by drone only once and preventing the multiple visited drone’s nodes. 

Constraint (59), (60) ensure that a truck cannot carry drones more than restricted for 

any arc exists. 

Constraints (61)-(62) guarantee the feasibility of departing and landing a drone 

in a tour. If the drone departs from the truck node or the docking hub node then, the 

truck must be visiting that node too. Constraint (63) prevents a double visit of a drone 

and a truck. Constraint (64) ensures that a drone on a docking hub needs a truck to visit. 

Constraints (65), (66) prevent the infeasible tour in which a drone lands on a docking 

hub where a truck already passed. The node that the drone departing from must has a 

cumulative distance of a truck less than or equal to the cumulative distance of the truck 

in the docking hub node. 

Since we cannot guarantee that the solution from column generation is an 

integer, The branch-and-price framework is used. The algorithm has shown in Figure 

3. 
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Figure  3 The flow diagram of the Branch-and-Price Algorithm (Pichayavet et al., 

2019). 
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Figure  4The flow diagram of the Branch-and-Price Algorithm with Lagrangian 

relaxation. (Pichayavet et al., 2019) 
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 In Figure  4, we execute Lagrangian relaxation after branching a new node. Zn 

is the solution of node n. Zinc is the incumbent solution.  is the objective value of 

Lagrangian relaxation. This algorithm will stop if explored node reaches 2000 nodes or 

the calculation time is more than 6 hours. 

The branching rule was proposed by Ryan and Foster (1981) then Barnhart et 

al. (1998) proposed in the Branch-and-Price framework. In every fractional solution, 

there must have at least a pair of constraints which 

0 < ∑ 𝑥𝑘𝑘:𝑦𝑟𝑘=1,𝑦𝑠𝑘=1 < 1   (67) 

 Therefore, branching constraints of the zero-branch and one-branch can be 

defined as, 

Zero-branch:       (68) 

One-branch:       (69) 

 This branching rule implies that the integer solution must solve from the RMP 

that cannot identify any branching pair. Then, each branching iteration eliminates a 

large number of variables from consideration. 

3.4 Lagrangian Relaxation 

 The sub-network-based model, the Lagrangian objective function can be 

formulated as follows. 

 We relax (37), put it into the objective function (36), and introduce  as 

Lagrangian multipliers. 

𝐿(𝜇) = 𝑚𝑖𝑛 ∑ (𝑐𝑟 + 𝐹𝑇 ) 𝑟∈𝑅𝑐
𝑥𝑟 − ∑ 𝜇𝑖𝑖𝜖𝐶 ∑ (𝛿𝑖

𝑟𝑥𝑟 − 1) 𝑟∈𝑅𝑐
 (70)  
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 Then (70) derived to 

𝐿(𝜇) =  𝑚𝑖𝑛 ∑ ∑ (𝑐𝑟 + 𝐹𝑇 − 𝛿𝑖
𝑟𝜇𝑖) 𝑟∈𝑅𝑐 𝑖∈𝐶 𝑥𝑟 + ∑ 𝜇𝑖𝑖𝜖𝐶 (71) 

 

Solving the Lagrangian multiplier problem using sub-gradient optimization is 

the following algorithm. 

1. Set the initial value of the vector  (in this thesis is 1) and solve the 

Lagrangian multiplier problem. 

2. In each iteration, update  at each iteration  with the step size parameter 

 by using the following equation.  

3. After the 100th
 iteration kept the value of  as the lower bound of the 

current node in the Branch-and-Price tree. 
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Chapter 4 

Experiment Result 

4.1 Computational Result in Random instances 

The experiment conducts with random data to measure the performance of the 

method. The instance generation rules are following the working paper from Pichayavet 

et al. (2019). The instances have 3 types: the type 1 instance has every node uniformly 

distributed; the type 2 instance is the same as type 1, but the depot node is located at 

the centroid of the other nodes cluster; The type 3 instance, the location of customer 

node and docking hub are generated in coordinates that the radius and the angle are 

random from 0 to 10 and 0 to 2π respectively. The depot is fixed at the origin. We 

generate four different sizes of instances including 8 and 10 customer nodes with 1 and 

2 dock nodes. Every instance has 1 depot node. We generate 3 instances for each type 

and size.  

For all random instances, a truck route and a drone route are computed using 

the Manhattan distance and the Euclidean distance between two nodes, respectively. 

The customer’s demands are randomly selected from 10, 20, 30, 40, and 50. 

We generate real-world data to see the behavior of the truck-drone solutions and 

calculate cost savings. The coordinates and truck distances are obtained from 

OpenStreetMap. The depot node is the main post office of those areas. The customer 

nodes are randomly picked within the residential zones of those areas. A drone 

distances use Euclidian distance, the same way as random instances. We choose 5 

difference places, 1) Sapansung, Bangkok, 2) Nongchang, Uthaitani, 3) Sapporo, 

Hokkaido, 4) Patumwan, Bangkok, 5) Wattana, Bangkok. Each instance has 10 

customer nodes, 1 docking-hub node, and 1 depot.  
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A truck and drone speed are the same at 40 km/hr. An operation cost is set to 

20 USD plus 0.0083 USD per minute for a truck and 0.0021 USD per minute for a 

drone. A truck can carry up to 100 kg of parcels and 5 drones with unlimited travel 

distance while a drone can carry up to 20 kg and be able to fly up to 20 km. (Z. Wang 

& Sheu, 2019) 

We compare the proposed algorithm with and without Lagrangian relaxation to 

see the improvement in the calculation time measure from the model initiation to the 

end of the Branch-and-Price. Furthermore, we compare the solution which combined 

both types of vehicles if it is better than using only trucks in random instances and the 

real-world instances. 

The implementation uses Python 3.8.8 on Ryzen 7 4800H with 16 GB of ram. 

Gurobi 9.1 is the MIP solver. The results of the experiment are in the following table. 

Table  1Result of The Experiment 

No. Type Customer 

Node, Dock 

Node 

Node Explored 

(Without LG, 

With LG) 

Time (sec) % Time 

Saving Without 

LG 

With 

LG 

1 1 8,1 5, 5 19.96 19.68 1.40 

2 1 8,1 11, 7 38.31 25.62 33.12 

3 1 8,1 57, 53 126.68 99.43 21.51 

4 2 8,1 37, 37 88.00 84.8 3.64 

5 2 8,1 15, 15 49.18 45.22 8.05 

6 2 8,1 19, 19 167.30 128.04 23.47 

7 3 8,1 3, 3 25.10 19.63 21.79 

8 3 8,1 15, 13 30.35 27.50 9.39 

9 3 8,1 5, 5 26.12 23.70 9.26 

10 1 10,1 23, 21 368.59 221.74 39.84 
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11 1 10,1 61, 39 294.58 198.27 32.69 

12 1 10,1 7, 7 345.35 322.63 6.58 

13 2 10,1 3, 3 239.98 163.28 31.96 

14 2 10,1 7, 7 53.30 43.20 18.95 

15 2 10,1 11,11 351.93 188.92 46.32 

16 3 10,1 2000, 79 604.96 173.73 71.28 

17 3 10,1 41, 35 288.03 198.20 31.19 

18 3 10,1 3, 3 44.39 37.87 14.69 

19 1 8, 2 9, 9 72.10 71.61 0.68 

20 1 8, 2 7, 5 42.92 25.74 40.03 

21 1 8, 2 21,21 710.08 596.40 16.01 

22 2 8, 2 9, 7 1225.66 683.92 44.20 

23 2 8, 2 55, 61 124.12 96.00 22.66 

24 2 8, 2 15, 15 238.84 192.98 19.20 

25 3 8, 2 9, 9 30.88 24.99 19.07 

26 3 8, 2 5, 5 21.71 22.04 -1.52 

27 3 8, 2 7, 7 54.67 38.86 28.92 

28 1 10, 2 19, 13 1490.64 795.24 46.65 

29 1 10, 2 13, 19 5979.45 5755.86 3.74 

30 1 10, 2 21, 21 3293.98 3025.56 8.15 

31 2 10, 2 15, 7 4960.64 2810.51 43.34 

32 2 10, 2 719, 71 21600.00 9743.27 54.89 

33 2 10, 2 15, 15 3825.63 2785.65 27.18 

34 3 10, 2 9, 9 203.10 184.62 9.10 

35 3 10, 2 19, 17 679.70 561.24 17.43 

36 3 10, 2 1, 1 87.78 86.31 1.67 

R1  10, 1  9, 9 279.9 236.78 15.41 

R2  10, 1 3, 3 58.09 44.81 22.86 

R3  10, 1 1, 1 174.08 176.59 -1.44 

R4  10, 1 35, 11 273.09 183.24 32.90 

R5  10, 1 3, 3 296.63 303.67 -2.37 
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 It can be observed from Table  1 that there are results that explored nodes 

between with and without Lagrangian relaxation are equal (Figure  7). The Lagrangian 

relaxation provides a tighter bound in some nodes then the slower column generation 

is not used. Furthermore, some Branch-and-Price nodes which must explore in the 

normal method must not explore if the node above it was fathomed by Lagrangian 

relaxation (Figure  9). Figure  8 and Figure  10 show the improvement in  by sub-

gradient search. Only 100 iterations with the original step size are good enough to 

provide a bound for this framework.  

The Lagrangian relaxation improves the calculation time by 21.80 % on average. 

Instance no. 16 has the most improvement up to 71.28 %. The Lagrangian relaxation 

method stops explore Branch-and-Price at 79 nodes while the normal approach uses 

more than 2000 nodes to confirm optimality. 

Instance no. 26 shown that even it has some nodes pruned by the Lagrangian 

relaxation, but the additional Lagrangian relaxation calculation time is more than the 

normal method. The calculation time of instance no.32 without Lagrangian relaxation 

exceeds the 6 hours limit. The time-saving percentage should be more than 54.89 %. 

Instance no. 36 is solved in 1 Branch-and-Price node. Therefore, Lagrangian relaxation 

cannot improve its performance. 

In between types of instances, they have no significant difference in 

improvement from Lagrangian relaxation (Figure  5) but instance type 3 has a lower 

range of results than type 1 and 2. The average calculation time of types 1, 2, and 3 are 

1065.22, 2143.71(without no.32, the average will be 1029.5 ), and 174.73. It is obvious 
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that instance type 3 is easier to solve than type 1 or 2 then. It has not so much room for 

improvement.  

An observation from Figure  6, there is a trend that the mean percentage of 

improvement increases from 8,1 to 10,1 and decrease at 10,2. These show the larger of 

instance is, the more branch of Branch-and-Price which can be more improve by 

Lagrangian relaxation. 

 

Figure  5 Percentage Improvement of Each Instance Size   
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Figure  6 Percentage Improvement of Each Instance Type 
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Figure  7 Branch-and-Price tree of instance 9 with and without LG 
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Figure  8 Relationship between  and iteration in every node of instance no. 9’s 

solution. 
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Figure  9 Branch-and-Price tree of instance 20 with and without LG 
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Figure  10 Relationship between  and iteration in every node of instance no. 20’s 

solution. 

4.2 Truck-Drone Solution and Cost Savings 

We compare the fuel cost between truck-based and drone-based solutions. It 

varied from 0% to 33.33% and 10.35% on average. The percentage of cost-saving 

equals zero because no drone can satisfy any demand within their flight range. 
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Table  2 Result of Fuel Cost Saving 

No. Cost without Drone Cost with Drone % Cost Saving 

1 7.47 4.98 33.33 

2 9.46 7.83 17.23 

3 9.84 9.43 4.17 

4 10.33 9.37 9.29 

5 10.33 9.5 8.03 

6 13.07 12.43 4.90 

7 14.19 13.26 6.55 

8 19.89 19.06 4.17 

9 17.38 17.25 0.75 

10 12.32 10.82 12.18 

11 11.2 9.49 15.27 

12 12.69 10.48 17.42 

13 9.83 8.34 15.16 

14 10.83 7.67 29.18 

15 9.46 8.61 8.99 

16 18.99 17.04 10.27 

17 22.2 22.11 0.41 

18 12.32 9.33 24.27 

19 11.57 9.9 14.43 

20 9.46 8.03 15.22 

21 13.07 13.07 0.00 

22 15.90 15.28 3.90 

23 8.96 8.5 5.13 

24 11.33 10.96 3.27 

25 13.62 12.85 5.65 

26 13.98 11.23 19.67 

27 12.2 11.39 6.64 

28 13.94 12.7 8.90 
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29 13.57 12.96 4.50 

30 11.08 10.12 8.66 

31 12.2 10.09 17.30 

32 18.55 18.3 1.35 

33 12.94 10.86 16.07 

34 16.03 12.75 20.46 

35 16.01 16.01 0.00 

36 6.9 6.9 0.00 

R1 6.23 5.09 18.30 

R2 3.56 2.743 22.95 

R3 3.47 2.88 17.00 

R4 3.57 3.3 7.56 

R5 3.85 2.67 30.65 
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Figure  11 Solution of instance no. 7 without drone 

 

Figure  12 Solution of instance no.7 with drone 

 

  

Figure  13 Illustration of instance R1’s solutions (with and without drone) 
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Figure  14 Illustration of instance R2’s solutions (with and without drone) 

  

Figure  15 Illustration of instance R3’s solutions (with and without drone) 

  

Figure  16 Illustration of instance R4’s solutions (with and without drone) 
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Figure  17 Illustration of instance R5’s solutions (with and without drone) 

 

Figure  18 Symbol Explanation 

We compare the transportation cost between truck-based and drone-based 

solutions. From Table  2, It varies from 0% to 33.33%. 11.44% on average. The 

percentage of cost-saving equals zero because a drone cannot satisfy any demand within 

its flight range. From the illustration of the real-world solutions, we can obtain some 

observations. First, the urban area like Bangkok (Figure  13, Figure  16, and Figure  17) 

has a lot of small roads connected to the main road and a lot of dead-end roads. A city 

plan like this made a problem for the truck to maintain the quality of delivery. Drones 

help the truck to stay mostly on the main road. Second, as the same as an urban area, 

the rural area (Figure  14) has a wide distribution of residential zone. Drones also serve 

customers who stay far away from the main road if demands are not exceeding the limit 
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Table  3 Result of Total Cost Saving 

No. No 

Drone 

Cost 

With 

Drone 

Cost 

%Saving Number 

of  Truck 

No 

Drone  

Number 

of  

Truck 

with 

Drone 

Truck No. 

Difference 

1 67.47 64.98 3.7 3 3 0 

2 69.46 67.83 2.3 3 3 0 

3 89.84 69.43 22.7 4 3 1 

4 70.33 49.37 29.8 3 2 1 

5 70.33 69.5 1.2 3 3 0 

6 73.07 72.43 0.9 3 3 0 

7 74.19 53.26 28.2 3 2 1 

8 79.89 79.06 1.0 3 3 0 

9 77.38 77.25 0.2 3 3 0 

10 72.32 70.82 2.1 3 3 0 

11 91.2 69.49 23.8 4 3 1 

12 92.69 90.48 2.4 4 4 0 

13 69.83 68.34 2.1 3 3 0 

14 90.83 67.67 25.5 4 3 1 

15 69.46 68.61 1.2 3 3 0 

16 78.99 77.04 2.5 3 3 0 

17 102.2 102.11 0.1 4 4 0 

18 72.32 69.33 4.1 3 3 0 

19 91.57 69.9 23.7 4 3 1 

20 69.46 48.03 30.9 3 2 1 

21 73.07 73.07 0.0 3 3 0 

22 75.9 75.28 0.8 3 3 0 

23 68.96 68.49 0.7 3 3 0 

24 91.33 90.96 0.4 4 4 0 

25 73.62 53.85 26.9 3 2 1 
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26 73.98 71.23 3.7 3 3 0 

27 72.2 51.39 28.8 3 2 1 

28 93.94 92.7 1.3 4 4 0 

29 93.57 92.96 0.7 4 4 0 

30 71.08 70.12 1.4 3 3 0 

31 112.2 50.09 55.4 5 2 3 

32 118.55 93.3 21.3 5 4 1 

33 93.07 50.86 45.4 4 2 2 

34 76.03 52.75 30.6 3 2 1 

35 116.1 116.1 0.0 5 5 0 

36 46.9 46.9 0.0 2 2 0 

R1 86.23 65.09 24.5 4 3 1 

R2 83.56 62.743 24.9 4 3 1 

R3 83.47 62.88 24.7 4 3 1 

R4 83.57 83.3 0.3 4 4 0 

R5 83.85 62.67 25.3 4 3 1 

  

Table  3 shows the total cost of transportation including truck fix cost, truck 

variable cost, and drone variable cost. It can be noticed that drones can reduce the usage 

of trucks in some instances. In this experiment, the best we can do is use 2 trucks and 

3 drones instead of 4 trucks. (Figure  19 and Figure  20) which the total cost saving is 

45.4%. It depends on the customer demand and range, if drones can satisfy that then 

the truck usage can be 0. 
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Figure  19 Solution of instance no. 33 without drone 

 

 

Figure  20 Solution of instance no. 33 with drones   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 48 

Chapter 5 

Conclusion 

5.1 Summary and Discussion 

We proposed the Lagrangian relaxation model and use the sub-gradient method 

to solve it. This Lagrangian relaxation model can be solved much faster than the MIP 

model, but it does not provide the exact solution. It provides the lower bound instead. 

If the Lagrangian lower bound is greater or equal to the incumbent solution, that node 

is fathomed. We have tested in 3 types and 4 different sizes of instance. The calculation 

time with Lagrangian relaxation is reduced up to 71.28% and 22.96% on average. The 

CPU time is in the range of 19.68 to 9743.27 seconds and 19.96 seconds to 6 hours, 

with and without Lagrangian relaxation for all instances. 

We compare the solution of truck-drone to truck-only model. The fuel cost 

saving is 11.44% on average. The total cost saving is 12.81% on average. The 

collaboration of trucks and drones reduce truck route and truck distance which benefits 

in the total cost of operation in a real-world case. The drone advantage is helping a truck 

stays on the main road which easy to pass through than a small street in an urban area 

or a poor road in a rural area. 

5.2 Suggestions for Future Research 

In the experiment process, there are some points to be noticed. First, the problem 

which can be solved in one node of Branch-and-Price cannot speedup by this proposed 

method. This mostly happened with small size instances (less than 10 nodes). Second, 

there is one instance that Lagrangian relaxation cannot improve calculation time even 
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there are some nodes that were fathomed by Lagrangian relaxation. It shows that in 

some rare cases LP relaxation is faster than Lagrangian relaxation. 

This research did not consider all real-world conditions. According to Thailand 

drone regulation, “during flight, must not fly over cities, villages, communities or areas 

where people are gathered” which means drone cannot fly over most of the Bangkok 

area (The Civil Aviation Authority of Thailand, 2015). The assumption of truck 

capacity, a small truck can carry more than 1000 kilograms which is much higher than 

our assumption.  

There is a huge room for improvement in this research. Lagrangian relaxation 

can be used to generate columns along with duals in column generation. Other 

stabilization methods can be used to speed up this model. Moreover, another cost of the 

last-mile delivery process is not included in this model. The depot and the docking hub 

node position, size and drone operation require effective management at minimum cost. 

The real-world data in this research is only a real map route but demand quantity and 

position do not reflex the real-world situation. If the model can solve faster, it can 

include real-time traffic conditions to provide the best route while in operation.
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