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ของกลุ่มอนุภาค. ( BINARY PARTICLE SWARM OPTIMIZATION ALGORITHM FOR 
OPTIMIZATION OF STEEL STRUCTURE) อ.ที่ปรึกษาหลัก : รศ. ดร.เสวกชัย ตั้งอร่าม
วงศ์ 

  
บทความนี้ศึกษาระเบียบวิธีทวิภาคของกลุ่มอนุภาค  (BPSO) โดยในส่วนที่หนึ่งเป็น

การศึกษาเพื่อหาน้ำหนักความเฉื่อยของอนุภาคที่ดีที่สุดจากกลุ่มตัวอย่างที่ศึกษา และในส่วนที่สอง
เป็นการหาค่าเหมาะสมของพื้นที่หน้าตัดของโครงสร้างเหล็กที่กระทำโดยน้ำหนักบรรทุกแนวดิ่ง
และแนวขวางเพื่อให้ได้น้ำหนักโครงสร้างที่น้อยที่สุด  โดยโครงสร้างเหล็กที่ศึกษามีทั้งหมด 2 
กรณีศึกษา ได้แก่ โครงสร้างแบบไม่มีระบบค้ำยันและโครงสร้างแบบมีระบบค้ำยันรูปแบบตัวเอ็กซ์ 
โดยในโครงสร้างแบบมีระบบค้ำยันยังศึกษาเพิ่มเติมในอิทธิพลของการแบ่งกลุ่มชิ้นส่วน  โดยมีการ
แบ่งกลุ่มชิ้นส่วนให้มีจำนวนกลุ่มมากกว่าการแบ่งกลุ่มเดิม  การออกแบบโครงสร้างเป็นไปตาม
ข้อกำหนดของ AISC ผลการศึกษาในส่วนแรกพบว่าน้ำหนักความเฉื่อยที่ดีที่สุด คือ น้ำหนักความ
เฉื่อยแบบคงที่ที่มีค่า 0.98 และผลการศึกษาในส่วนนี้สองพบว่า BPSO สามารถหาน้ำหนัก
โครงสร้างแบบไม่มีระบบค้ำยันได้น้อยที่สุดเมื่อเปรียบเทียบกับระเบียบวิธีที่ได้ศึกษาก่อนหน้านี้  
ยกเว้น โครงสร้างสามแถวยี่สิบสี่ชั้นที่ระเบียบวิธีนี้ได้น้ำหนักที่มากกว่า ในโครงสร้างแบบมีระบบค้ำ
ยัน ทุกตัวอย่างศึกษาให้น้ำหนักที่น้อยกว่าโครงสร้างแบบไม่มีระบบค้ำยัน การศึกษาอิทธิพลการ
แบ่งกลุ่มพบว่าผลลัพธ์มีความขัดแย้งกันโดยในโครงสร้างหนึ่งแถวสิบชั้น  การแบ่งกลุ่มที่ละเอียด
กว่าทำให้ได้น้ำหนักโครงสร้างที่น้อยกว่า แต่โครงสร้างสามแถวยี่สิบสี่ชั้นกลับให้ผลที่ตรงกันข้าม 
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FOR OPTIMIZATION OF STEEL STRUCTURE. Advisor: Assoc. Prof. 
SAWEKCHAI TANGARAMVONG 

  
This research studies on the performance of Binary Particle Swarm 

Optimization (BPSO) algorithm. The first part is finding the best inertia weight of 
BPSO from various types of inertia weight. The second part is optimizing the cross-
sectional area of steel structures and topology of bracing system under vertical 
and lateral load. The structures studied in the research include unbraced frames 
and X-braced frames. Moreover, the braced frame also investigates the influence 
of the classification groups of elements. The elements are classified into finer 
groups than the original group. The design of the structure follows the AISC code. 
From the investigation in the first part, a constant inertia weight of 0.98 is the best. 
In the second part, minimum weights of unbraced frames using BPSO are the 
lowest weight, except three-bays, twenty-four stories frame. For braced frames 
with original grouping, all examples get a lower weight than the unbraced frames. 
For studying the influence of group, the results of the two examples are 
contradictory. One bay, ten stories frame with new group has a minimum weight 
less than the original while three-bays but twenty-four stories frame is opposite. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

Optimization applies to many industries for reducing the cost of material, labor, 
and construction. Most optimization problems in real life are large and complex, 
making solving directly by an exact method is difficult and time-consuming. 
According to reason, people search for methods to solve these problems in a shorter 
time. One of these methods is a heuristic technique. A Heuristic is a mathematical 
technique guaranteeing an optimal point. In some problems, A heuristic technique 
may trap local optimum that the best solution is best in some regions, but it is not 
the best solution. A higher level of a heuristic technique called a metaheuristic 
algorithm technique is developed to solve this problem. The algorithm concept is 
nature-inspired and using random search with some method to avoid trapping in a 
local optimum. There are many well-known algorithms such as Genetic Algorithm 
(GA), Particle swarm optimization (PSO), Binary Particle swarm optimization (BPSO), 
and Ant colony optimization (ACO). 

 
Figure  1.1 Graph indicates local and global optima 

Binary Particle Swarm Optimization (BPSO) was developed from Particle Swarm 
Optimization (PSO) to solve a discrete optimization problem by using a binary 
system. These algorithms process with the same parameters such as inertia weight, 
acceleration coefficient, and velocity. Among these parameters, many PSO authors 
found that inertia weight value significantly influences PSO efficiency. Most PSO 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

articles used linear decreasing inertia weight from 0.9 to 0.4 for optimization. Due to 
the same parameters and similar processes, many BPSO authors brought this inertia 
weight in their article studies. However, they got bad results in their articles. 

A meta-heuristic method is a well-known method for solving an optimization 
problem. In the civil engineering field, most of the optimization problems in real life 
are structural optimization. The objective of this optimization is to minimize the 
structural weight to reduce the cost of construction. In the present, many authors 
study the structural optimization problem by using the different meta-heuristic 
methods. The benchmark examples they used are unbraced structures. However, the 
design of the unbraced structure in a high-rise building under lateral load is not 
efficient. This structural design may lead to significant lateral drift and requires a 
more extensive cross-sectional area of the structure to carry it. An efficient way to 
solve this problem is using a bracing system. 

 
Figure  1.2 Framework (a) unbrace structure (b) braced structure 

1.2 Research Objectives 

(1) At present, not many articles studies about the inertia weight of BPSO. Base 
on applying inertia weight value of PSO in BPSO, many BPSO authors found 
bad results occurring in their articles. According to this reason, we study 
varying inertia weight values by aiming to improve the performance of 
BPSO. The inertia weight samples are studied in mathematical benchmarks 
and investigated results to find the best inertia weight. 

(2) To compare the efficiency of BPSO with other meta-heuristic algorithms, we 
apply the best inertia weight from the study in (1) in the structural 
optimization problems that have more complexity and larger search space. 
BPSO is studied in weight optimization of the unbraced frame due to varying 
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cross-sectional areas. The parameters for comparison are the analysis time of 
convergence, the approach to optimize the solution, and the precision of 
data when repeated with many numbers of runs. 

(3) Unbrace frame is an ineffective structure to withstand a lateral load. So, the 
research studies more in the braced frame using X-shape bracing. We 
compare the minimum weight of the brace frames and unbraced frames using 
the BPSO algorithm. 

(4) The structural benchmarks for study refer to previous articles that authors 
classified the elements in groups for decreasing search space. Elements in the 
same group have the same cross-sectional area. This research studies more 
about the influence of search space. We classify the original benchmarks of 
the braced frame to the finer group that increases search space and compare 
with the initial grouping results. 

1.3 Scopes 

(1) The inertia weight samples consist of seven constant inertia weight samples: 
0.9, 0.92, 0.94, 0.96, 0.98, 1.00, 1.02, and linear decreasing inertia weight from 
0.9 to 0.4. We test the samples on six mathematical benchmark functions. 

(2) We study three planer frame benchmarks using the inertia weight obtained 
from inertia weight study. The available sections for optimization base on the 
AISC design section from W6 to W40. We study X-braced frame in only one-
bay, ten stories frame and three-bays, twenty-four stories frame. 

(3) The optimization takes place in steel structures. Beam to beam and beam to 
column connection is assumed to be rigid. In contrast, the X-braced element 
has pinned end designed to resist only the axial load. We optimize only the 
cross-sectional area of elements; other properties are constant. In addition, 
we consider more for the topology optimization of X-brace elements. 

(4) The analysis considers the second-order elastic effects, including 𝑃 − 𝛿  and 
𝑃 − ∆  effects. The design follows the AISC code considering drift and strength 
constrained equations, except two-bays, three-stories frame that is 
considered only the strength constraint equation.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 4 

(5) All processes are coded in MATLAB programming. 

1.4 Methodology 

All processes of frame optimization are coded in MATLAB to search for the 
solution. The data for coding are follows:   

(1)   BPSO algorithm that is the tool for optimization. 
(2)  Samples, range of optimization for weight optimization and geometries, 
material properties, load, and available cross-sectional areas for frame 
optimization. 
(3)   Stiffness analysis, first-order analysis amplification, and design by AISC code 
for frame optimization. 
(4)   The objective function and constrained functions. 
(5)   An expected result that we need from the study. 
For the BPSO process, available solutions or a cross-sectional area of elements 

must be transformed into binary space by encoding solutions in real numbers into 
BPSO binary bits. The algorithm is run until it reaches to stopping criteria. 
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CHAPTER 2  
LITERATURE REVIEW 

2.1 Binary Particle Swarm Optimization (BPSO) 

2.1.1 Background of BPSO  

 
Figure  2.1 Updating PSO particle 

The binary particle swarm optimization algorithm (BPSO) proposed by (Kennedy & 
Eberhart, 1997) is a discrete version of the particle swarm optimization algorithm 
(PSO) by (Eberhart & Kennedy, 1995). The movement of animals inspires these 
algorithms, likes bird flocks for searching the food. All birds move towards the food 
that one can find and get closer to the food when time past. PSO technique 
assumes each bird as a particle, the flock as a population, and food as the best 
solution. Each particle has the position and velocity of itself changed by iteration. 
Particle memorizes the position giving the best solution until now of itself as 𝑝𝑏𝑒𝑠𝑡 
and population as 𝑔𝑏𝑒𝑠𝑡. The updates of position and velocity are in Eq. (2.1), (2.2).  
It should be noted that the number of dimensions equals the number of unknown 
variables in the problem. 

𝑣𝑖𝑑,𝑡+1 = 𝑣𝑖𝑑,𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖𝑑 − 𝑥𝑖𝑑,𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑑 − 𝑥𝑖𝑑,𝑡) (2.1) 

 𝑥𝑖𝑑,𝑡+1 =  𝑥𝑖𝑑,𝑡 + 𝑣𝑖𝑑,𝑡+1 (2.2) 

Where 𝑣𝑖𝑑,𝑡 and 𝑥𝑖𝑑.𝑡 = velocity and position of particle 𝑖 in dimension 𝑑 by 
iteration 𝑡, respectively  
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 𝑐1 = cognitive coefficient usually taken as 2.0 
 𝑐2 = social coefficient usually taken as 2.0 

𝑟1 and 𝑟2 = random number between 0 and 1 for PSO and a random 
number of 0 and 1 for BPSO 

  𝑝𝑏𝑒𝑠𝑡𝑖𝑑 = individual best position of particle 𝑖 in dimension 𝑑 

  𝑔𝑏𝑒𝑠𝑡𝑑  = population best position in dimension 𝑑 

Eq. (2.1) consists of three parts. The first is the velocity part. The second and the 
third parts specify the update of new velocity decided by how far of the position 
from 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡. The first part adjusts how far explosion particle searches in 
search space. So, the global search specifies in this part. The second and the third 
part indicate the direction of particle search approach the best solution. These parts 
specify the local search. To balance the ability of local search and global search, (Shi 
& Eberhart, 1998) modified Eq. (2.1) by adding inertia weight 𝑊 to the first part as in 
Eq. (2.3). This equation is an equation many researchers used to study PSO instead of 
Eq. (2.1).  

𝑣𝑖𝑑,𝑡+1 = 𝑊𝑣𝑖𝑑,𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖𝑑,𝑡 − 𝑥𝑖𝑑,𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑑,𝑡 − 𝑥𝑖𝑑,𝑡) (2.3) 

BPSO works on the concept of a particle moving in binary space by bit-string. One 
bit has only two available solutions, which are 0 and 1. According to the binary 
concept, we need many bits to fill all available solutions of each unknown variable. 
When the total bit is equal to 𝑛 bit, all available solutions are 2𝑛. For example, the 
total bits for available solutions of four are two bits. The available solutions in the 
form of a bit are "00", "01", "10" and "11". For movement of a particle in binary space, 
the update of position in Eq. (2.2) is changed to be dependent on the relationship 
between random numbers from 0 to 1 or 𝑟 and sigmoid function of particle's 
velocity 𝑆(𝑣𝑖𝑑) as Eq. (2.4) and (2.5). It should be noted that the number of 
dimensions 𝑑 in Eq. (2.4) and Eq. (2.5) equals the number of total bits used in the 
problem.  

𝑆(𝑣𝑖𝑑) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑣𝑖𝑑) =
1

1 + 𝑒−𝑣𝑖𝑑
 (2.4) 
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𝑖𝑓   𝑟 < 𝑆(𝑣𝑖𝑑,𝑡+1)   𝑡ℎ𝑒𝑛   𝑥𝑖𝑑,𝑡+1 = 1 

𝑒𝑙𝑠𝑒     𝑥𝑖𝑑,𝑡+1 = 0 (2.5) 

 
Figure  2.2 Curve of sigmoid function versus velocity 

2.1.2 Previous PSO Articles on Inertia Weight  

Besides modifying the updating velocity equation as Eq. (2.3), (Shi & Eberhart, 
1998) studied varying inertia weight. They used constant inertia weight and time-
varying inertia weight as their experiment simple. The constant inertia weight value 
they selected is 0, 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.2, and 1.4. The time-varying 
inertia weight is the linear decreasing inertia weight from 1.4 to 0. They tested these 
values on Schaffer's f6 function. The experiment results show that the constant 
inertia weights in the range [0.9,1.2] gave a good result on average. They also 
suggested the future research try the linear decreasing in different values. From Eq. 
(2.3), many PSO researchers recommended the linear decreasing inertia weight from 
0.9 to 0.4 to be the inertia weight giving the best result (Poli, Kennedy, & Blackwell, 
2007). 

2.1.3 Previous BPSO Articles 

According to the same parameters between PSO and BPSO, most BPSO articles 
refer to PSO articles. However, some parameters giving good performance in the PSO 
algorithm did not work well in the BPSO algorithm. According to this reason, the 
authors studied improving BPSO performance. The examples of improving BPSO are 
using the new function to replace the sigmoid function (Mirjalili & Lewis, 2013) and 
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(Guo, Wang, & Guo, 2020) and using a hybrid version of BPSO combine with another 
algorithm (Mirjalili, Wang, & Coelho, 2014). 

2.2 Structural Analysis 

2.2.1 General 

 
Figure  2.3 Second-order effect (a) two effects in element (b) sway condition (c) non-

sway condition 
The first order elastic is about the deformation from the applied load. When the 

structure is deformed due to applied load, it causes some eccentricity, as shown in 
Figure 2.3. When the element has a sway condition, it moves laterally from its 
original position due to applied load, especially lateral load. The displacement 
structure moves from its original position called ∆. This eccentricity leads to 
additional moments due to 𝑃 − ∆ effect. When element is under non-sway 
condition, it causes delta due to buckling called 𝑃 − 𝛿. From considering these two 
effects, the analysis is called second-order elastic analysis. 

The stiffness method is one of the popular methods used for structural analysis. 
However, the stiffness method is ineffective when the second-order effect, like the P-
delta and P-delta, are interested. This method is time-consuming due to having an 
iteration process for the geometric stiffness part. The amplified first-order method by 
AISC is replaced for analysis of second-order structural problems. 
2.2.2 Stiffness Matrix Analysis 

The stiffness matrix analysis (McGuire, Gallagher, & Saunders, 1982) is the concept 
of finding unknown displacement from the known force. From Figure 2.4, there are 
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12 degrees of freedom of the 3D element. However, the planer frame considering 
only two-axis reduces the degree of freedom reduce into 6 degrees of freedom 
which are  𝐹𝑥1, 𝐹𝑥2, 𝑀𝑧1, 𝐹𝑥2, 𝐹𝑦2 and 𝑀𝑧2. 

 
Figure  2.4 Framework element (McGuire et al., 1982) 

Maxwell's reciprocal theorem, or a special case of Betti's law, said that the 
displacements at point 1 correspond to the unit load at point 2 is the same as the 
displacements at point 2 correspond to the unit load at point 1 as Eq. (2.6). 

∆12𝑃1 = ∆21𝑃2 (2.6) 
From Maxwell's reciprocal theorem, the stiffness matrix 𝑘 that is described the 

relationship of force 𝐹 and displacement ∆ as Eq. (2.7) can be  𝑘𝑖𝑗 = 𝑘𝑗𝑖 

{
𝐹𝑓
𝐹𝑠
} = [

𝑘𝑓𝑓 𝑘𝑓𝑠
𝑘𝑠𝑓 𝑘𝑠𝑠

] {
∆𝑓
∆𝑠
} (2.7) 

Where 𝑓 = free degree of freedom  
𝑠 = support degree of freedom 

Where the displacement at support degree of freedom is equal to 0, Eq. (2.7) can 
be written as Eq. (2.8). 

{
𝐹𝑓
𝐹𝑠
} = [

𝑘𝑓𝑓
𝑘𝑠𝑓

] {∆𝑓}; {𝐹𝑓} = [𝑘𝑓𝑓]{∆𝑓}  (2.8) 

The reaction force is equal to the action force from the equilibrium system as Eq. 
(2.9). 

{𝐹𝑠} = [Φ]{𝐹𝐹}  (2.9) 
{𝐹𝑠} = [Φ][𝑘𝑓𝑓]{∆𝑓} (2.10) 

{𝐹𝑠} = [𝑘𝑠𝑓]{∆𝑓} ; [𝑘𝑠𝑓] = [Φ][𝑘𝑓𝑓] (2.11) 
Correspond to the symmetry property, [𝑘𝑓𝑠] can be explained as Eq. (2.12) 
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[𝑘𝑓𝑠] = [𝑘𝑠𝑓]𝑇 = [𝑘𝑓𝑓] [Φ]𝑇 (2.12) 

When {𝐹𝑠} = [Φ]{𝐹𝐹} as Eq. (2.9), Eq. (2.7) is also explained as the bottom part is 
equal to [Φ] multiply by top past as Eq. (2.13). 

{𝑘𝑠𝑠} = [Φ]{𝑘𝑓𝑠} = [Φ][𝑘𝑓𝑓] [Φ]
𝑇 (2.13) 

[𝑘] = [
[𝑘𝑓𝑓] [𝑘𝑓𝑓] [Φ]𝑇

[Φ][𝑘𝑓𝑓] [Φ][𝑘𝑓𝑓] [Φ]𝑇
] (2.14) 

{𝑘𝑠𝑠} = [Φ]{𝑘𝑓𝑠} = [Φ][𝑘𝑓𝑓] [Φ]
𝑇 (2.15) 

For axial deformation of the element with support in Fig. (2.5a), a relationship 
between stress and strain is derived as Eq. (2.6). 

 
Figure  2.5 Pure axial element (a) support system. (b) free-body diagram (McGuire et 

al., 1982) 

𝑢2 = ∫ 𝑒
𝐿

0

𝑑𝑥 = ∫
𝜎

𝐸

𝐿

0

𝑑𝑥 = ∫
𝐹𝑥2
𝐸𝐴

𝐿

0

𝑑𝑥 =
𝐹𝑥2𝐿

𝐸𝐴
 (2.16) 

𝐹𝑥2 =
𝐸𝐴

𝐿
𝑢2 = 𝑘22𝑢2 (2.17) 

From the equilibrium equation, Eq. (2.18) can be explained as follows.  

𝐹𝑥1 = (−1)𝐹𝑥2;  [Φ] = −1 (1.18) 
When we substitute Eq. (2.11), (2.12), (2.15), and (2.18) to Eq. (2.7), the equation 

can be written as follows. 

{
𝐹𝑥1
𝐹𝑥2

} =
𝐸𝐴

𝐿
[
1 −1
−1 1

] {
𝑢1
𝑢2
} (2.19) 

The beam element from Figure (2.6) can be explained the relationship between 
stress and strain as Eq. (2.20). 
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Figure  2.6 Beam element (McGuire et al., 1982) 

 

𝑒𝑥 =
−𝑦

𝜌
= −𝑦

𝑑2𝑣

𝑑𝑥2
 (2.20) 

Where 𝜌 radius of curvature. 𝜎𝑥 = 𝐸𝑒𝑥  

𝜎𝑥 = −𝐸𝑦
𝑑2𝑣

𝑑𝑥2
 (2.21) 

𝑀𝑧 = ∫ 𝐸
𝑑2𝑣

𝑑𝑥2
𝑦2𝑑𝐴 = 𝐸𝐼𝑧

𝑑2𝑣

𝑑𝑥2
𝐴

 (2.22) 

 
Figure  2.7 Deformation of beam element due to applied load (McGuire et al., 1982) 

From Figure 2.7, moment equation 𝑀𝑧(𝑥) can be written as Eq. (2.23) 
𝑑2𝑣(𝑥)

𝑑𝑥2
=
𝑀𝑧(𝑥)

𝐸𝐼𝑧
=
𝐹𝑦2(𝐿 − 𝑥) + 𝑀𝑧2

𝐸𝐼𝑧
 (2.23) 

From Integrating Eq. (2.23), the new equations are in Eq. (2.24) and (2.25). 
𝑑𝑣(𝑥)

𝑑𝑥
= 𝜃𝑧(𝑥) =

1

𝐸𝐼𝑧
[𝐹𝑦2 (

𝐿𝑥2

2
−
𝑥3

6
) +

𝑀𝑧2𝑥
2

2
] + 𝐶1𝑥 + 𝐶2 (2.24) 

𝑣(𝑥) =
1

𝐸𝐼𝑧
[𝐹𝑦2 (

𝐿𝑥2

2
−
𝑥3

6
) +

𝑀𝑧2𝑥
2

2
] + 𝐶1𝑥 + 𝐶2 (2.25) 

From Boundary Condition, 𝜃(0) = 0 and 𝑣(0) = 0, we get 𝐶1 = 0 and 𝐶2 = 0. Eq. 
(2.24) and (2.25) can be written at position 𝑥 = 𝐿 as Eq. (2.26) and (2.27), 
respectively. 

𝑣2 = 𝑣(𝐿) =
𝐹𝑦2𝐿

3

3𝐸𝐼𝑧
+
𝑀𝑧2𝐿

3

2𝐸𝐼𝑧
 (2.26) 
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𝜃𝑧2 = 𝑣(𝐿) =
𝐹𝑦2𝐿

2

2𝐸𝐼𝑧
+
𝑀𝑧2𝐿

𝐸𝐼𝑧
 (2.27) 

Eq. (2.26) and (2.27) can be written in matrix form as Eq. (2.28) and (2.29) 

{
𝑣2
𝜃𝑧2
} =

𝐿

𝐸𝐼𝑧
[

𝐿2

3

𝐿

2
𝐿

2
1

] {
𝐹𝑦2
𝑀𝑧2

} (2.28) 

{
𝐹𝑦2
𝑀𝑧2

} =
𝐸𝐼𝑧
𝐿
[

12

𝐿2
−
6

𝐿

−
6

𝐿
4

] {
𝑣2
𝜃𝑧2
} (2.29) 

From equilibrium equations as Eq. (2.30) and (2.31), They can be written into 
matrix form as Eq. (2.32). 

𝐹𝑦1 = −𝐹𝑦2 (2.30) 
𝑀𝑧1 = −𝐹𝑦2𝐿 −𝑀𝑧2 (2.31) 

{
𝐹𝑦1
𝑀𝑧1

} =
𝐸𝐼𝑧
𝐿
[
−1 0
−𝐿 −1

] {
𝐹𝑦2
𝑀𝑧2

} (2.32) 

When we substitute Eq. (2.11), (2.12), (2.15), and (2.32) to Eq. (2.7), the equation 
can be written as follows: 

{

𝐹𝑦1
𝑀𝑧1

𝐹𝑦2
𝑀𝑧2

} =

[
 
 
 
 
 
 
 
12𝐸𝐼

𝐿3
6𝐸𝐼

𝐿2
−
12𝐸𝐼

𝐿3
6𝐸𝐼

𝐿2

6𝐸𝐼

𝐿2
4𝐸𝐼

𝐿
−
6𝐸𝐼

𝐿2
2𝐸𝐼

𝐿

−
12𝐸𝐼

𝐿3
−
6𝐸𝐼

𝐿2
12𝐸𝐼

𝐿3
−
6𝐸𝐼

𝐿2

6𝐸𝐼

𝐿2
2𝐸𝐼

𝐿
−
6𝐸𝐼

𝐿2
4𝐸𝐼

𝐿 ]
 
 
 
 
 
 
 

{

𝑣1
𝜃𝑧1
𝑣2
𝜃𝑧2

} (2.33) 

Eq. (2.19) and (2.33) can be an assembly for six degrees of freedom matrix as Eq. 
(2.34). 

{
 
 

 
 
𝐹𝑥1
𝐹𝑦1
𝑀𝑧1
𝐹𝑥2
𝐹𝑦2
𝑀𝑧2}

 
 

 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
𝐴𝐸

𝐿
0 0 −

𝐴𝐸

𝐿
0 0

0
12𝐸𝐼

𝐿3
6𝐸𝐼

𝐿2
0 −

12𝐸𝐼

𝐿3
6𝐸𝐼

𝐿2

0
6𝐸𝐼

𝐿2
4𝐸𝐼

𝐿
0 −

6𝐸𝐼

𝐿2
2𝐸𝐼

𝐿

−
𝐴𝐸

𝐿
0 0

𝐴𝐸

𝐿
0 0

0 −
12𝐸𝐼

𝐿3
−
6𝐸𝐼

𝐿2
0

12𝐸𝐼

𝐿3
−
6𝐸𝐼

𝐿2

0
6𝐸𝐼

𝐿2
2𝐸𝐼

𝐿
0 −

6𝐸𝐼

𝐿2
4𝐸𝐼

𝐿 ]
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 

 
 
𝑢1
𝑣1
𝜃𝑧1
𝑢2
𝑣2
𝜃𝑧2}

 
 

 
 

 

 

(2.34) 
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   All equations above describe the degree of freedom in the local coordinate 

system. The transformation matrix is used to transform the local coordinate system 

into a global coordinate system. From the equilibrium equation, the local coordinate 

can be converted to global coordinate as following equations. 

 
Figure  2.8 Transformation of local coordinate to local coordinate 

𝐹𝑥 = 𝐹𝑥
′𝑐𝑜𝑠𝜃 − 𝐹𝑦

′𝑠𝑖𝑛𝜃 (2.35) 
𝐹𝑦 = 𝐹𝑥

′𝑠𝑖𝑛𝜃 + 𝐹𝑦
′𝑐𝑜𝑠𝜃 (2.36) 

𝑀𝑧 = 𝑀𝑧
′  (2.37) 

{
 
 

 
 
𝐹𝑥1
𝐹𝑦1
𝑀𝑧1

𝐹𝑥2
𝐹𝑦2
𝑀𝑧2}

 
 

 
 

=

[
 
 
 
 
 
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0 0 0 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0 0 0 0
0 0 1 0 0 0
0 0 0 𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
0 0 0 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 0 0 0 1]

 
 
 
 
 

{
  
 

  
 
𝐹𝑥1
′

𝐹𝑦1
′

𝑀𝑧1
′

𝐹𝑥2
′

𝐹𝑦2
′

𝑀𝑧2
′ }
  
 

  
 

 (2.38) 

{𝐹} = [𝑇]{𝐹′} (2.39) 
{𝐹} = [𝑇][𝐾′]{𝑈′}=[𝑇][𝐾′][𝑇]{𝑈} (2.40) 

[𝐾] = [𝑇][𝐾′][𝑇] (2.41) 

2.2.3 Amplified First-Order Elastic Analysis by AISC 

The method is approximate to calculate second-order analysis from the first-order 
analysis (AISC, 2016). We need to analyze the first-order analysis of the structure for 
two situations: frame in non-sway condition and frame in sway condition. The first-
order analysis for the non-sway condition is amplified by moment amplification 
factor due to  𝑃 − ∆ effect 𝐵1. The first-order analysis for the sway condition is 
amplified by moment amplification factor due to  𝑃 − 𝛿 effect 𝐵2 as Eq. (2.42) and 
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(2.43). 

𝑃𝑟 = 𝑃𝑛𝑡 + 𝐵2𝑃𝑙𝑡 (2.42) 

𝑀𝑟 = 𝐵1𝑀𝑛𝑡 + 𝐵2𝑀𝑙𝑡 (2.43) 

Where 𝑃𝑛𝑡 and 𝑀𝑛𝑡 = required first-order axial strength and bending moment with 
no sway condition, respectively  
𝑃𝑙𝑡 and 𝑀𝑙𝑡 = required first-order axial strength and bending moment with 
sway condition, respectively  
𝐵1 = moment amplification factor due to  𝑃 − ∆ effect calculated from Eq. 

(2.44) 

𝐵2 = moment amplification factor due to  𝑃 − 𝛿 effect calculated from Eq. 

(2.45) 

𝐵1 =
𝐶𝑚

1 −
𝑃𝑢
𝑃𝑒1

 (2.44) 

Where 𝐶𝑚 = moment gradient coefficient assuming no translation calculated from 
moment at the ends of the element where 𝑀1 ≤ 𝑀2 as shown in Eq. (1.45)  

𝑃𝑢   = the first-order axial strength  

𝑃𝑒1 = elastic critical buckling of the element with no sway condition 

𝐶𝑚 = 0.6 − 0.4
𝑀1
𝑀2

 (2.45) 

𝐵2 =
1

1 −
𝑃𝑠𝑡𝑜𝑟𝑦
∑𝑃𝑒2

 (2.46) 

Where 𝑃𝑠𝑡𝑜𝑟𝑦 = total vertical loads  
∑𝑃𝑒2 = elastic critical buckling strength for the story with sway condition 

2.3 Unbraced Frame VS Braced Frame Design against Lateral Load 

An unbraced frame is also known as a moment-resisting frame consisting of two 
types of elements: beam and column. Column and beam elements connect 
perpendicularly with a rigid joint. The moment resisting frame only can withstand the 
vertical load. However, this structure is sensitive to lateral loads such as seismic 
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loads and wind loads. High-rise moment-resisting structures under lateral load may 
cause a significant drift that leads to a lack of serviceability function. The structure 
cross-section area needs to design a huge size to avoid drift. It consumes too much 
material to construct, which leads to uneconomical design. 

A braced frame is a well-known structure design to resist the lateral load. This 
structure has a bracing system that the tools to reduce lateral drift of structure. The 
bracing system can be from many shapes such as X-shape, V-shape, and K-shape. 
Many research experiments confirm that brace frames can reduce the lateral drift, 
such as (Haque, Atik, Muhtadi, & Zasiah) and (Jagadish & Doshi, 2013) 

2.4 Steel Structural Optimization using Meta-heuristic Algorithm 

Many authors studied on moment-resisting planar frame optimization problem 
using meta-heuristic algorithms such as GA (Pezeshk, Camp, & Chen, 2000), ACO 
(Camp, Bichon, & Stovall, 2005), TLBO (Toğan, 2012), and SBO (Farshchin, Maniat, 
Camp, & Pezeshk, 2018). They apply algorithms in the unbraced structure under 
vertical and lateral load applied on the structure. The design of structures was under 
the AISC specification for strength and lateral drift design considering the second-
order effect (𝑃 − ∆ and 𝑃 − 𝛿 effects). However, the design for stability by AISC 
specification isn’t only considering second-order effect. The specification includes 
other requirements such as geometric imperfections, stiffness reductions due to 
inelasticity. ESO (Chaiwongnoi, Van Thu, Tangaramvong, & Van, 2020) is research 
considered the design for stability using the direct analysis method by AISC 
specification.  
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CHAPTER 3  
BINARY PARTICLE SWARM OPTIMIZATION ALGORITHM 

3.1 General 

According to the introduction of the BPSO algorithm in section 2.1, this chapter 
specifies more detail about the algorithm. The detail includes the process of the 
algorithm in step by step, selecting BPSO parameters, and encoding real number 
value into binary code. 
3.2 BPSO Parameters 

Selecting parameters has much influence on the BPSO algorithm. It can upgrade 
or downgrade the performance of the algorithm significantly. The parameters set up 
in this research are as follows. 
3.2.1 Initial Parameters 

There are two parameters, velocity and position of particles, are set as the initial 
parameters. This research decides to select the initial parameters randomly. The 
reason behind this decision is to govern as much as the possibility of searching for 
the solution. The initial position is generated with binary values 0 and 1. Initial 
velocity is generated randomly in the range of [−𝑣𝑚𝑎𝑥 , 𝑣𝑚𝑎𝑥].. The formulations to 
random initial position and velocity are in Eq. (3.1) and Eq. (3.2), respectively. 

    if 𝑟𝑎𝑛𝑑𝑖𝑑 < 0.5 then  𝑥𝑖𝑑 = 1  
  else  𝑥𝑖𝑑 = 0               (3.1) 

Where 𝑥𝑖𝑑      = position of particle 𝑖 at 𝑑 dimension 
    𝑣𝑖𝑑     = velocity of particle 𝑖 at 𝑑 dimension  

𝑣𝑚𝑎𝑥 = Maximum velocity usually equal to 6 that is the range of sigmoid 

curve of sigmoid function versus velocity 

𝑟𝑎𝑛𝑑 = random number from 0 to 1 

3.2.2 Inertia Weight 

(Shi & Eberhart, 1998) found the constant inertia weight in the range of [0.9, 1.2], 
giving the best solution in average among their samples. Besides, the result from PSO 
research (Poli et al., 2007) found linear decreasing inertia weight from 0.9 to 0.4 gave 

𝑣𝑖𝑑 = −𝑣𝑚𝑎𝑥 + 𝑟𝑎𝑛𝑑 ∗ 2𝑣𝑚𝑎𝑥 (3.2) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 17 

high efficiency to the algorithm. In this BPSO research, we study on constant inertia 
weight 0.9, 0.92, 0.94, 0.96, 0.98, 1.00, 1.02 referring to (Shi & Eberhart, 1998) and 
linear decreasing inertia weight from 0.9 to 0.4 referring to (Poli et al., 2007). 

𝑊𝑐(𝑡) = 𝑊𝑐 (3.3) 

𝑊𝐿𝐷(𝑡) = 𝑊𝑚𝑎𝑥 −
𝑊𝑚𝑎𝑥 −𝑊𝑚𝑖𝑛

𝑡𝑚𝑎𝑥
𝑡 (3.4) 

         Where   𝑊𝑐     = Constant Inertia weight 

  𝑊𝐿𝐷   = Linear Decreasing Inertia Weight at iteration  

𝑊𝑚𝑎𝑥 = Maximum inertia weight 

𝑊𝑚𝑖𝑛 = Minimum inertia weight 

𝑡         = iteration 

𝑡𝑚𝑎𝑥 = Maximum iteration 

3.2.3 Stopping Criteria 

BPSO algorithm requires repeating the loop many times to reach the optimal 
solution. The loop continues with a continuous process if it doesn't have a stop 
criteria. So, we must define the maximum iteration to stop the process. We should 
select the suitable maximum iteration that can show solution convergence by not 
using too long a loop. BPSO algorithm deals with a population of particles that all 
have a relationship with others, so the BPSO loop in each iteration can finishes only 
when we evaluate all particles. So, the stopping criteria are satisfied if an iteration 
reaches the maximum iteration, and all particles are considered as Figure 3.2   

3.3 The Transformation between Binary Space and Real Number Space 

Sometimes, the number of positions in real number space is not equal to the 

number of positions in binary space. Binary space can carry only two available 

solutions, as explained in section 2.1.1, so it is necessary to add more bits if the 

binary system takes more possible solutions, as shown in Figure 3.1. 
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Figure  3.1 Encoding general solution to BPSO bits 

To calculate the fitness of objective function 𝑓(𝑥), positions of the particle or 

unknown variables 𝑥 in binary space are necessary to decode to real number space. 

The transformation is explained in Eq. (3.6). The values converted by using this 

equation can be formed only as an integer.  
𝑥 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑞 (3.5) 

𝑥𝑅 = 1 + 20𝑥1 + 2
1𝑥2+. . . +2

𝑞−1𝑥𝑞 (3.6) 
Where  𝑥   = Positions of the particle in binary space 

𝑥𝑅 = position of the particle in real number space 

𝑞   = No. of bit for one unknown variable 
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3.4 BPSO Processes 

The detail of BPSO Processes can be explained step by step as follows. 

 
Figure  3.2 Flowchart showing the processing of the BPSO algorithm 

1) Initialize position 𝑥𝑖𝑑  (𝑡) and velocity 𝑣𝑖𝑑(𝑡) randomly as explained in section 

3.2.1. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑝𝑏𝑒𝑠𝑡𝑖  is the best fitness that particle 𝑖 found until now, and 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑔𝑏𝑒𝑠𝑡 is the best fitness that the population found until now. These 

values are initially set as infinity. 

2) At the first iteration, position 𝑥𝑖𝑑  are decoded into positions in real number space 

𝑥𝑖𝑑𝑟
𝑅  and substituted in an objective function 𝑓(𝑥) to find the fitness. It should be 

noted that the dimension in binary space 𝑑 and the dimension in real number 

space 𝑑𝑟 sometimes are not the same. The decoding binary space into real 

number space is shown in section 3.3. 

3) Update P-best and G-best variables. P-best variables are updated if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖  is 

less than 𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑝𝑏𝑒𝑠𝑡𝑖 . 𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑝𝑏𝑒𝑠𝑡𝑖 is become 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 , and 𝑝𝑏𝑒𝑠𝑡𝑖𝑑 is 
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become  𝑥𝑖𝑑 . G-best variables are updated if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖  is less than 𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑔𝑏𝑒𝑠𝑡. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑔𝑏𝑒𝑠𝑡 is become 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 , and 𝑔𝑏𝑒𝑠𝑡𝑑  is become  𝑥𝑖𝑑 . 

4) Update velocity and position of each dimension as Eq. (1.3), (1.4) and (1.5). The 

updated velocities are restricted not to exceed [−𝑣𝑚𝑎𝑥, 𝑣𝑚𝑎𝑥]. The velocity is 

−𝑣𝑚𝑎𝑥 if it is less than −𝑣𝑚𝑎𝑥 . On the other hand, velocity is 𝑣𝑚𝑎𝑥 if it is greater 

than 𝑣𝑚𝑎𝑥 .  
5) After velocity and position are updated for all dimensions of the particle, the 

next particle is done in the same process from step 2 to step 4 until all particles 

are done.  
6) Repeat step 2 to step 5 for the next iteration until the iteration is reached the 

maximum iteration that is stopping criteria. The algorithm is done working, and 

we get the best fitness for the output value. 
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CHAPTER 4  
STRUCTURAL OPTIMIZATION 

4.1 General 

We study on optimization of steel frame structures under various applied loads. 
Two types of frames: the moment-resisting frame and X-braced frame, are studied to 
minimize their weight.  
4.2 Objective and Constrained Functions 

The objective of this optimization is to minimize the weight of the whole 
structure, so the objective function is the sum of the weight of all elements shown in 
Eq. (4.1). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑊 =∑𝑊𝑖𝐿𝑖

𝑁𝑒

𝑖=1

 (4.1) 

    Where 𝑊 = the weight of the whole structure 
              𝑊𝑖   and 𝐿𝑖 = cross-sectional weight and length of element 𝑖, respectively 
                   𝑁𝑒 = number of total elements. 

We design the structures with limitations of strength and story drift. These values 
shall not exceed the allowable value following the AISC-LRFD code (AISC, 2016). The 
relationship between demand and allowable value of story drift and strength is in 
Eq. (4.2) and (4.3).  

𝛼𝑑,𝑖 =
|∆𝑖|

|∆𝑖
𝑎|
− 1 ≤ 0 (4.2) 

𝛼𝐼,𝑗 = |𝜎𝑗| − 1 ≤ 0 (4.3) 
Where 𝛼𝑑,𝑖 = drift constrained function 
            ∆𝑖 and ∆𝑖𝑎 = drift from analysis and allowable drift 

         𝛼𝐼,𝑗 = interaction equation constrained function 

         𝜎𝑗   = interaction equation following AISC code 

Because the BPSO algorithm cannot handle constrained problems, we must 
transform the above problem into unconstrained problems. The penalty method 
(Feiring, Phillips, & Hogg, 1985) is selected to deal with this situation. The concept of 
the penalty method is adding some penalty value to the objective function when 
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some constrained function is violated. In this problem, the objective function Eq. 
(4.1), (4.2), and (4.3) can be revised as follows. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝜑 = 𝑊(1 + 𝑐𝑃)𝜀  (4.4) 

𝑃 =∑max (

𝑁𝑠

𝑖=1

𝛼𝑑,𝑖 , 0) +∑max (

𝑁𝑒

𝑗=1

𝛼𝐼,𝑗 , 0) (4.5) 

Where 𝜑   = new objective function in form of unconstrained function 
 𝑐 and 휀 = penalty coefficient 
  𝑃   = penalty equation 
  𝑁𝑠 = number of total stories 
  𝑁𝑒 = number of total elements. 

4.3 AISC-LRFD Design 

4.3.1 Story Drift Design 

Base on AISC, the inter-story drift limit varies usage from ℎ
100

 to ℎ
600

 depending on 
structure type and cladding type or partition material. However, the most widely 

used are  ℎ

400
 to ℎ

500
. The inter-story drift on this research follows the previous 

research that studies structural optimization. They used inter-story drift equal to ℎ
300

. 

4.3.2 Strength Design 

AISC-LRFD code provides the equation for combining axial and bending moment 
equation called "Interaction equations" as follows. 

𝜎𝑗 =
𝑃𝑟

2𝜙𝑐𝑃𝑛
+

𝑀𝑟

𝜙𝑏𝑀𝑛
 𝑖𝑓 

𝑃𝑢
𝜙𝑐𝑃𝑛

< 0.2 (4.6) 

𝜎𝑗 =
𝑃𝑟
𝜙𝑐𝑃𝑛

+
8

9

𝑀𝑟

𝜙𝑏𝑀𝑛
 𝑖𝑓 

𝑃𝑢
𝜙𝑐𝑃𝑛

≥ 0.2 (4.7) 

Where  𝑃𝑟 and 𝑃𝑛 = required and available axial strength, respectively 
                   𝑀𝑟  and 𝑀𝑛 = required and available bending moment, respectively  

                   𝜙𝑐  and 𝜙𝑏 = safety factor of axial strength and bending moment  

4.3.2.1 Axial Strength Design 

The element under axial load is classified into two types of elements: 
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compression element and tension element. This research assumes not to consider 
the effect of connection, so available axial strength for tension element is considered 
only yielding failure. Available axial strength can be determined as Eq. (4.8) for 
compression element and Eq. (4.9) for tension element. 

𝑃𝑛 = 𝐴𝑔𝐹𝑦 (4.8) 

𝑃𝑛 = 𝐴𝑔𝐹𝑐𝑟 (4.9) 

Where  𝐴𝑔 = cross-sectional area 
𝐹𝑦 = yield strength  

𝐹𝑐𝑟 = critical buckling stress calculated as Eq. (13) and (14). 

𝐹𝑐𝑟 = 𝐹𝑦0.658
𝐹𝑦
𝐹𝑒  𝑖𝑓 

𝐾𝐿

𝑟
≤ 4.71√

𝐸

𝐹𝑦
 (4.10) 

𝐹𝑐𝑟 = 0.877𝐹𝑒 𝑖𝑓 
𝐾𝐿

𝑟
> 4.71√

𝐸

𝐹𝑦
 (4.11) 

Where  𝐹𝑒 = Euler buckling stress 
𝐸 = Young's modulus 

𝐾 = effective length factor can be calculated from Eq. (4.13) for unbraced  

frame and Eq. (4.14) for braced frame.  

𝐿 and 𝑟 = length and radius of gyration of element, respectively. 

𝐾𝑢𝑛𝑏 = √
1.6𝐺𝐴𝐺𝐵 + 4(𝐺𝐴 + 𝐺𝐵) + 7.5

𝐺𝐴 + 𝐺𝐵 + 7.5
 (4.13) 

𝐾𝑏 =
3𝐺𝐴𝐺𝐵 + 1.4(𝐺𝐴 + 𝐺𝐵) + 0.64

3𝐺𝐴𝐺𝐵 + 2(𝐺𝐴 + 𝐺𝐵) + 1.28
 (4.14) 

Where 𝐺𝐴 and 𝐺𝐵  = beam-column ratio at the ends of the column shows in Eq. 
(4.15) 

𝐹𝑒 =
𝜋2𝐸

(
𝐾𝐿
𝑟
)
2 

(4.12) 
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𝐺 =
Σ(𝐼/𝐿)𝑐𝑜𝑙𝑢𝑚𝑛
Σ(𝐼/𝐿)𝑏𝑒𝑎𝑚

 (4.15) 

4.3.2.2 Flexural Strength Design 

According to the AISC code, available bending moments of different element 
section types are calculated differently because of different behavior. So, the first 
step for finding available bending moments is to categorize element types. All 
optimized sections in this research are W-section. The equations for calculating 
flexural strength are focused only on I-section. Element categories can be defined 
from the width to thickness ratio of the element, as shown in Figure 4.2 and Eq. 
(4.16) to (4.18). 
if 𝜆 ≤ 𝜆𝑝 then Compact section (4.16) 
elseif 𝜆𝑝 < 𝜆 ≤ 𝜆𝑟 then Non-compact section (4.17) 

  else Slender section (4.18) 
Where 𝜆 = width to thickness ratio of the element as Eq. (4.19) and (4.20) 

𝜆𝑝 = Limit of width to thickness ratio for compact section as Eq. (4.21) and 

(4.22) 

𝜆𝑟 = Limit of width to thickness ratio for non-compact section as Eq. (4.23) and 

(4.24) 

 
Figure  4.1 Graph of the available bending moment versus width to thickness ratio 

𝜆𝑓 =
𝑏𝑓
2𝑡𝑓

 (4.19) 

𝜆𝑤 =
ℎ

𝑡𝑤
 (4.20) 
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    Where 𝜆𝑓 = width to thickness ratio of flange 
𝑏𝑓 = width of flange 

𝑡𝑓 = thickness of flange 

𝜆𝑤 = width to thickness ratio of web 

ℎ = height of section 

𝑡𝑤 = thickness of web 

𝜆𝑝𝑓 = 0.38√
𝐸

𝐹𝑦
 (4.21) 

𝜆𝑝𝑤 = 3.76√
𝐸

𝐹𝑦
 (4.22) 

Where 𝜆𝑝𝑓 = limiting width to thickness ratio for compact flange of W-section 
𝜆𝑝𝑤 = limiting width to thickness ratio for compact web of W-section 

𝜆𝑟𝑓 = 1.0√
𝐸

𝐹𝑦
 (4.23) 

𝜆𝑟𝑤 = 5.70√
𝐸

𝐹𝑦
 (4.24) 

Where 𝜆𝑟𝑓 = limiting width to thickness ratio for non-compact flange of W-section 
𝜆𝑟𝑤 = limiting width to thickness ratio for non-compact web of W-section 

Considering properties of available sections from section 4.4.2. and unbraced 
length from section 5.3., the sections are classified only as compact web sections 
with compact and non-compact web sections. So, there are two cases to consider: 
compact web and flange section case and compact web and non-compact flange 
section case shown in Table 4.1. For compact section, the minimum available 
bending moment is considered between yielding available bending moment 𝑀𝑛,𝑦 
and lateral-torsional buckling available bending moment 𝑀𝑛,𝐿𝑇𝐵. For compact web 
and non-compact flange, the minimum available bending moment is considered 
between lateral-torsional buckling available bending moment 𝑀𝑛,𝐿𝑇𝐵 and flange 
local buckling available bending moment 𝑀𝑛,𝐹𝐿𝐵. 
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Table  4.1 Available bending moment of section 
No. Type of Section Available bending moment 
1 Compact Section 𝑀𝑛 = 𝑚𝑖𝑛 (𝑀𝑛,𝑦, 𝑀𝑛,𝐿𝑇𝐵) 

2 Compact web with non-compact flange 𝑀𝑛 = 𝑚𝑖𝑛 (𝑀𝑛,𝐿𝑇𝐵, 𝑀𝑛,𝐹𝐿𝐵) 

A. Compact section 

A.1. Yielding 
𝑀𝑛,𝑦 = 𝑀𝑝 = 𝐹𝑦𝑍𝑥 (4.25) 

Where 𝑀𝑛,𝑦 = available bending moment for yielding 
𝑍𝑥 = plastic section modulus about the x axis. 

A.2. Lateral Torsional Buckling 

There are three cases to consider LTB depended on unbrace length 𝐿𝑏 as Figure 
4.3.  

 
Figure  4.2 Graph of the available bending moment versus unbraced length 

𝐿𝑝 = 1.76𝑟𝑦√
𝐸

𝐹𝑦
 (4.26) 

 
Where 𝐿𝑝 = limiting unbrace length for elastic analysis that LTB doesn't apply 

 𝑟𝑦 = radius of gyration about y-axis 

𝐿𝑟 = 1.95𝑟𝑡𝑠
𝐸

0.7𝐹𝑦
√
𝐽𝑐

𝑆𝑥ℎ0
+√(

𝐽𝑐

𝑆𝑥ℎ0
)
2

+ 6.76 (
0.7𝐹𝑦
𝐸

)
2

 

 

(4.27) 
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Where 𝐿𝑟 = limiting unbrace length for inelastic LTB 

 𝑟𝑡𝑠
2 = 

√𝐼𝑦𝐶𝑤

𝑆𝑥
 

ℎ0 = distance between flange centroids = ℎ − 𝑡𝑓 for W-section      
𝑐 = 1 for W-section 

(a) When 𝐿𝑏 ≤ 𝐿𝑝 , the limit state of lateral-torsional buckling doesn't apply 
(b) When 𝐿𝑝 < 𝐿𝑏 ≤ 𝐿𝑟 

𝑀𝑛,𝐿𝑇𝐵 = 𝐶𝑏 (𝑀𝑝 − (𝑀𝑝 − 0.7𝐹𝑦𝑆𝑥) (
𝐿𝑏 − 𝐿𝑝
𝐿𝑟 − 𝐿𝑝

)) (4.28) 

Where 𝐶𝑏 = lateral-torsional buckling modification factor calculated as Eq. (4.29) 
𝑆𝑥 = elastic section modulus taken about x-axis 

𝐶𝑏 =
12.5𝑀𝑚𝑎𝑥

2.5𝑀𝑚𝑎𝑥 + 3𝑀𝐴 + 4𝑀𝐵 + 3𝑀𝑐
𝑅𝑚 (4.29) 

     Where 𝑀𝑚𝑎𝑥 = absolute maximum moment between unbraced length 

𝑀𝐴, 𝑀𝐵 and 𝑀𝐶  = absolute moment at 
1

4
,
1

2
  and 

3

4
 of the length 

𝑅𝑚      = 1 for doubly symmetric section 
(c) When 𝐿𝑏 > 𝐿𝑟 

𝑀𝑛,𝐿𝑇𝐵 = 𝐹𝑐𝑟𝑆𝑥 (4.30) 

𝐹𝑐𝑟 =
𝐶𝑏𝜋

2𝐸

(
𝐿𝑏
𝑟𝑡𝑠
)
2 √1 + 0.078

𝐽𝑐

𝑆𝑥ℎ0
(
𝐿𝑏
𝑟𝑡𝑠
)
2

 (4.31) 

B. Compact web with non-compact flange 
B.1. Flange local buckling 

𝑀𝑛,𝐹𝐿𝐵 = 𝐹𝑦𝑍𝑥 − (𝐹𝑦𝑍𝑥 − 0.7𝐹𝑦𝑆𝑥) (
𝜆𝑓 − 𝜆𝑝𝑓
𝜆𝑟𝑓 − 𝜆𝑝𝑓

) 
(4.32) 

Where 𝑀𝑛,𝐹𝐿𝐵 = available bending moment for flange local buckling 

B.2. Lateral-torsional Buckling 

LTB in B.2. can uses equation the same as section A.2. 

4.4 Planer Steel Frame Optimization 

4.4.1 Element Connection 

For structural optimization problems, the connection between beam to beam and 
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column to the beam is designed to have a fixed connection that resists both axial 
and moment force. In contrast, X-bracing has pinned end, the element designed to 
resist only axial force. 

.  
Figure  4.3 Layout of the frame connection 

4.4.2 Available Section for Optimization 

The available sections using for optimization are the section with their geometry 
base on (AISC, 2011). The section selected from W6 to W40. Total section equal 267 
sections as Table 4.2. However, this optimization uses BPSO, a binary system that 
carries the available sections for the solution. So, the bit using to carry 267 is 9 bits 
with a total of 512 possible solutions. So, it is necessary to create the 245 fake 
sections to fill the full blank positions. The cross-sectional area of fake sections is 
assumed to be 0. It should be noted that the cross-sectional optimization area of 
some elements is not select from all 267 sections. The binary code is regenerated 
depending on the size of the available sections in the same way that describes 
above. 
Table  4.2 Available AISC section data 

Index Section Name Cross-sectional area (𝑖𝑛2) Binary code 
1 W6 x 8.5 2.52 000000000 
2 W6 x 9 2.68 000000001 
3 W8 x 10 2.96 000000010 

⋮ ⋮ ⋮ ⋮ 
265 W14 x 730 215 100001000 
266 W36 x 798 236 100001001 
267 W14 x808 238 100001010 
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4.4.3 Loads 

The load observes in this research includes both vertical and lateral load. There is 
no factor multiply by load magnitude considering in this research. The vertical load is 
the uniform distributed load applied on beams. In contrast, the lateral load is the 
point load applied to the left end of each structure floor. 
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CHAPTER 5  

NUMERICAL EXAMPLES 

5.1 General 

There are two parts determined in this chapter. The first part is study for the best 
inertia weight improving BPSO. The second part is study on structural optimization 
problems. The best inertia weight is applied to BPSO for solving these problems. 

5.2 Inertia Weight Studies 

The samples of inertia weights are constant inertia weight 0.9, 0.92, 0.94, 0.96, 
0.98, 1.00 and 1.02, and linear increasing inertia weight from 0.4 to 0.9. This research 
applies the samples on six benchmark functions (Tang, Li, Suganthan, Yang, & Weise, 
2009) shown in Table 5.1 with 30 runs and 3000 number of analysis for one run. Ten 
unknown variables are applied for all benchmark functions, except F5 function 
studies on two unknown variables. Each unknown variable requires 15 bits to carry 
all possible solutions. The number of particles used in BPSO is 50 particles. 
Table  5.1 Benchmark functions with range and optimal value  

Function Name Equation Range 𝑓𝑚𝑖𝑛 

F1: Sphere min𝑓(𝑥) =∑𝑥𝑖
2

𝑛

𝑖=1

 [-100,100] 0 

F2: Rosenbrock’s min𝑓(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2]

𝑛−1

𝑖=1

 [-200,200] 0 

F3: Rastrigin’s min𝑓(𝑥) = 10𝑛 +∑[𝑥𝑖
2 − 10cos (2𝜋𝑥𝑖)

𝑛

𝑖=1

]  [-5.12,5.12] 0 

F4: Griewank’s min𝑓(𝑥) =
1

4000
∑𝑥𝑖

2 −∏𝑐𝑜𝑠 (
𝑥𝑖

√𝑖
) + 1

𝑛

𝑖=1

𝑛

𝑖=1

 [-600,600] 0 

F5: Schaffer’s F6 min𝑓(𝑥) = 0.5 −
(sin√𝑥1

2 + 𝑥2
2)2 − 0.5

[1 + 0.001(𝑥1
2 + 𝑥2

2)]2
 [-100,100] 0 

F6: Ackley’s 
min𝑓(𝑥) = −20 exp(−0.2√

1

𝑛
∑𝑥𝑖

2

𝑛

𝑖=1

)

− 𝑒𝑥𝑝(
1

𝑛
∑cos (2𝜋𝑥𝑖)

𝑛

𝑖=1

) + 20 + 𝑒 

[-32,32] 0 
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Figure  5.1 Benchmark functions with two unknown variables 

The best sample of inertia weight is constant inertia weight 0.98. The reason for 
selecting this value is inertia weight 0.98 can reach to the lowest solution for all 
functions compared with others. The results of this sample for all functions are 
almost the optimal solution, except function F2. In addition, the standard deviations 
for all functions shown the dispersion of data for all runs are also the lowest value. 
In summary, solutions obtained from all runs are close to the others. It can be 
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concluded that inertia weight 0.98 is the best value in both accuracy and precision 
terms. So, this value is applied in the BPSO algorithm to optimize the structural 
optimization problems. The linear decreasing inertia weight from 0.9 to 0.4, the 
inertia weight value was suggested by PSO authors, gives the worst value for applying 
in BPSO. The results of this inertia weight for all benchmark functions are so far from 
the optimum values.  

Table  5.2 Minimum fitness of inertia weight on benchmark functions 

Inertia Weight F1 F2 F3 F4 F5 F6 

0.90 3.75 7801.85 7.34 0.80 0.00246 1.70 

0.92 1.63 477.33 6.17 0.64 0.00246 0.63 

0.94 0.12 90.24 1.28 0.27 0.00246 0.25 

0.96 0.00434 9.53 0.01 0.11 0.00246 0.03 

0.98 9.32E-05 6.96 4.84E-05 0.01 0.00246 3.96E-03 

1.00 9.32E-05 7.34 1.24 0.03 0.00246 3.96E-03 

1.02 9.32E-05 8.26 2.00 0.01 0.00246 3.96E-03 

0.9 to 0.4 113.39 1958397.03 24.41 1.73 0.00246 4.92 

Table  5.3 Standard deviation of inertia weight on benchmark functions 

Inertia Weight F1 F2 F3 F4 F5 F6 

0.9 4.59 37877.70 2.77 0.08 0.00 0.44 
0.92 1.02 8692.70 2.26 0.10 0.00 0.44 
0.94 0.21 3975.95 1.96 0.11 0.00 0.11 
0.96 0.01 786.38 1.66 0.09 0.00 0.02 
0.98 0.00 460.86 1.32 0.05 0.00 0.00 

1 0.00 4190.81 3.74 0.06 0.00 0.71 
1.02 0.00 3823.98 3.12 0.11 0.00 0.90 

0.9 to 0.4 110.80 6036157.12 4.69 0.69 0.00 1.05 
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Figure  5.2 Curve of minimum fitness versus constant inertia weight 

5.3 Structural Optimization 

In this section, BPSO is applied in three structural optimization problems. There 
are two types of structure studied in this section: the unbraced frame and the X-
bracing braced frame. The properties of braced frame are the same as unbraced 
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frame. The addition is braced element including in the structure. Only sizing 
optimization is applied for column and beam elements while sizing, and topology 
optimization is applied for braced elements. The optimization is performed 
repeatedly 100 runs with 20,000 numbers of analysis. The number of particles used 
for BPSO is 50 particles. 

5.3.1 Two-Bays, Three-Stories Frame 

The example of a two-bays, three-stories frame consists of 15 elements designed 

by (Wood, Beaulieu, & Adams, 1976). Displacement constraint is not considered in 

this example. The modulus of elasticity 𝐸 is 29,000 ksi, and yield stress 𝐹𝑦 is 36 ksi.  

Beam elements are optimized with all 267 available W-shape sections, while column 

elements are restricted to W10 sections with 18 sections. No. of bits using for beam 

element are 9 bits per element, and No. of bits using for column element are 5 bits 

per element. The elements are divided into two groups for optimization that is beam 

group, column group. The possible solutions to this problem are 214 solutions. This 

example is applied only for moment-resisting frames with an effective length factor 

𝐾𝑥 is calculated for sway- permitted frame and 𝐾𝑦 is assumed to be braced out of a 

plane is 1.0. Each column is considered unbraced along its length, while each beam 

has unbraced length of 1/6 of its span length. BPSO optimized the minimum weight 

and compared to other algorithms from previous research GA (Pezeshk et al., 2000), 

ACO (Camp et al., 2005), and SBO (Farshchin et al., 2018). 

 
Figure  5.3 Layout and load of two-bays, three-stories frame 
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Table  5.4 Two-bays, three-stories frame design 

Element Group Optimum GA ACO SBO 
Present 
Work  

Beam W24 x 62 W24 x 62 W24 x 62 W24 x 62 W24 x 62 
Column W10 x 60 W10 x 60 W10 x 60 W10 x 60 W10 x 60 

Weight (Ib) 18,792 18,792 18,792 18,792 18,792 
Mean (Ib) - 22,080 19,163 18,792 18,792 

Standard Deviation (lb) - 5818 1693 0 0 
Number of Analysis - 900 880 502 3 

Number of Runs - 30 100 100 100 
% Optimal Found - 20% 84% 100% 100% 

 
Figure  5.4 Strength ratio of elements for two-bays, three-stories frame 
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Figure  5.5 Convergence curve for two-bays, three-stories frame 

The first structure is a two-bay, three-stories frame. The problem is optimized with 
only strength constraints. The result from the BPSO algorithm is compared to GA, 
ACO, and SBO algorithms. The result shows that all practical algorithms can reach the 
optimal value 18,792 lb. When we consider the percent of optimal value found, SBO 
and BPSO are the best two algorithms that can reach 100% optimal value found 
under 100 runtimes repeating. In addition, we consider more in No. of analysis the 
algorithms found the minimum weight. BPSO was found to have the fastest 
convergence that is only three iterations done. So, BPSO worked the best for 
optimization in the first example. From Figure 5.4, the maximum strength ratio for 
minimum weight structure occurs at element No.10 with a strength ratio of 0.9997. 

5.3.2 One-bay, Ten-Stories Frame 

The example of a one-bay, ten-stories unbraced frame as Figure 5.6 (a) consists of 
30 elements. The modulus of elasticity 𝐸 is 29,000 ksi, and the yield stress 𝐹𝑦 is 36 
ksi.  Beam elements are optimized with all 267 available W-shape sections with an 
unbraced length of 1/5, while column elements are restricted to W12 to W14 
sections with a total of 66 sections and unbraced length along its length. 𝐾𝑦 is 
assumed to be braced out of the plane is 1.0. There are two drift constraint 
conditions to consider in this frame: drift at the root and drift at all stories.  BPSO 
optimized the minimum weight and compared to other algorithms from previous 
research GA (Pezeshk et al., 2000), ACO (Camp et al., 2005), TLBO (Toğan, 2012), and 
SBO (Farshchin et al., 2018). 
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The geometry, material properties, grouping, and available sections for a braced 
frame are the same as unbraced frame. The additional is considering the bracing 
system in terms of topology and sizing cross-sectional area. X-shape bracing with ten 
elements follows by no. of stories are divided into one element per group as Figure 
5.6 (b). The braced element section is restricted from W6 to the W10 section (33 
sections) with an unbraced length of 1/2. The braced frame is optimized under one 
drift constraint condition that is drift at all stories. There are two groupings of beam 
and column conditions considered for braced frame: grouping the same as the 
original unbraced frame and grouping with the finer group as Figure 5.6 (c).   

 
Figure  5.6 Layout and load of one-bay, ten-stories frame (a) Unbraced frame, (b) 

Braced frame with original grouping (c) Braced frame with new grouping 
Table  5.5 Types and condition of structure for one-bay, ten-stories frame 

No. Types of Structure Grouping Drift constraint 
1 Unbraced frame Original At roof 
2 Unbraced frame Original All stories 
3 Braced frame Original All stories 
4 Braced frame New All stories 
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Table  5.6 One-bay, ten-stories frame design (No.1) 

Element Group 
Frame 1: Considering story drift at roof 

ACO TLBO SBO Present Work  
1 W14 x 233 W14 x 233 W14 x 233 W14 x 233 
2 W14 x 176 W14 x 176 W14 x 176 W14 x 176 
3 W14 x 145  W14 x 145  W14 x 145  W14 x 145  
4 W14 x 99 W14 x 99 W14 x 99 W14 x 99 
5 W12 x 65 W12 x 65 W14 x 61 W14 x 61 
6 W30 x 108 W30 x 108 W30 x 108 W30 x 108 
7 W30 x 90 W30 x 90 W30 x 90 W30 x 90 
8 W27 x 84 W27 x 84 W27 x 84 W27 x 84 
9 W21 x 44 W21 x 44 W18 x 46 W18 x 46 

Weight (Ib) 62,562 62,562 62,430 62,430 
Mean (Ib) 63,308 - 63,244 63,907.14 
SD (lb) 684 - 706.84 1,190.45 

No. of Analysis 8,300 4,000 11,677 5,408 
No. of Runs 100 - 100 100 

 
Figure  5.7 Strength Ratio of elements for one-bay, ten-stories frame (No.1) 
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Figure  5.8 Convergence curve for one-bay, ten-stories frame (No.1) 

Table  5.7 One-bay, ten-stories frame design (No.2) 

Element Group 
Frame No.2: Considering story drift at all stories 

GA SBO Present Work  
1 W14 x 233 W14 x 233 W14 x 233 
2 W14 x 176 W14 x 176 W14 x 176 
3 W14 x 159 W14 x 159 W14 x 159 
4 W14 x 99 W14 x 99 W14 x 99 
5 W12 x 79 W14 x 61 W14 x 61 
6 W33 x 118 W33 x 118 W33 x 118 
7 W30 x 90 W30 x 90 W30 x 90 
8 W27 x 84 W27 x 84 W27 x 84 
9 W24 x 55 W18 x 46 W18 x 46 

Weight (Ib) 65,136 64,002 64,002 
Mean (Ib) - 65,880 65,806.60 
SD (lb) - 832.95 1,123.57 

No. of Analysis 3,000 12,691 4,647 
No. of Runs - 100 100 
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Figure  5.9 Layout of braced element for minimum weight of one-bay, ten-stories 

frame (a) Frame No.3 (b) Frame No.4 
Table  5.8 One-bay, ten-stories frame design (No.3) 

Element 
Group 

Present 
Work  

Element 
Group 

Present 
Work  

Element 
Group 

Present 
Work  

1 W14X211 5 W14x61 9 W18x46 
2 W14x159 6 W27x84 10 W8X24 
3 W14x132 7 W24X84 12 W8X24 
4 W14X99 8 W30x90 14 W10x22 

Weight (Ib) 62,224.58 
Mean (Ib) 65,228.65 
SD (lb) 1,668.340 

No. of Analysis 4,852 
No. of Runs 100 
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Table  5.9 One-bay, ten-stories frame design (No.4) 
Element 
Group 

Present 
Work  

Element 
Group 

Present 
Work  

Element 
Group 

Present 
Work  

1 W14x145 9 W14x68 17 W27x84 

2 W14x211 10 W14x53 18 W24x76 

3 W12x210 11 W30x90 19 W24x76 

4 W14x159 12 W30x116 20 W21x44 

5 W12x152 13 W33x118 21 W8x24 

6 W14x99 14 W30x99 26 W8x18 

7 W12x120 15 W27x84     

8 W12x96 16 W24x68     

Weight (Ib) 60,805.16 

Mean (Ib) 65,028.05 

SD (lb) 1,819.48 

No. of Analysis 1,7078 

No. of Runs 100 

The second structure of testing is a one-bay, ten-stories structure. For this 
structure, there are two cases of conditions for drift constraint. The first case (Frame 
No. 1) is constrained drift at only the roof stories. BPSO algorithm is compared with 
ACO, TLBO, and SBO algorithm. With the same 100 runtimes except for TLBO with no 
runtime information, SBO and BPSO gave the lowest weight with 62,430 lb. The 
standard deviation is considered only for ACO, SBO, and BPSO that have the same 
runtimes. It shows that ACO has the lowest SD while BPSO gets the largest standard 
deviation. So, the precision term BPSO is the worst. However, BPSO is the best one in 
convergence.  From the minimum weight structure of BPSO, the maximum strength 
ratio is 0.9999 occurring in the 9th stories beam. Story drift ratio at the roof is 0.3125.  
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Figure  5.10 Layout and strength ratio of elements for one-bay, ten-stories frame (a) 

frame No.2, (b) frame No.3 and (c) frame No.4 
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Figure  5.11 Story drift for one-bay, ten-stories frame (a) frame No.2, (b) frame No.3 

and (c) frame No.4 
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Figure  5.12 Convergence Curve for one-bay, ten-stories frame (a) frame No.2, (b) 

frame No.3 and (c) frame No.4 
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The second case (frame No.2) considers drift for all stories. BPSO is compared with 
GA and SBO. BPSO and SBO get the lowest weight, 64,002 lb, by using 100 runtimes. 
GA with no information of runtimes gives the worse weight than the others. The 
standard deviation is considered only for SBO and BPSO that have the same 
runtimes. It shows that SBO has the lowest SD while BPSO gets the largest Standard 
deviation. For the precision term, BPSO is the worst. However, BPSO is the best one 
in convergence. From the minimum weight structure of BPSO, the maximum strength 
ratio is 0.9998, which happened in the 9th stories beam. The maximum drift ratio is 
0.9999, which happened in the 5th story. The minimum weight of the brace frame 
using the original grouping (frame No.3) is 62,224.58 lb. This weight is lower than the 
unbraced frame with the same grouping, 2.78%. The maximum strength ratio is 
0.9970, which happened 6th story beam. The maximum drift ratio is 0.9997, which 
happened in the 7th story. For the braced frame with finer grouping (frame No.4), the 
minimum weight is 60,805.16 lb that is less than the minimum weight of the braced 
frame with the original grouping of 2.28%. The maximum strength ratio is 0.9960, 
which happened in the right column of story 9th. The maximum drift ratio is 0.9999, 
which happened in 3rd story 

5.3.3 Three-Bays, Twenty-Four-Stories Frame 

The example of three-bays, twenty-four-stories unbraced frame as in Figure 5.13 
by (Davison & Adams, 1974). The modulus of elasticity 𝐸 is 29,732 ksi, and the yield 
stress 𝐹𝑦 is 33.4 ksi.  Beam elements are optimized with all 267 available W-shape 
sections, while column elements are restricted to W14 sections with 37 sections. 
Unbraced length of beams and columns is along their length. 𝐾𝑦 is assumed to be 
braced out of the plane is 1.0. Drift constraints are considered for all stories.  BPSO 
optimized the minimum weight and compared to other algorithms from previous 
research HS (Degertekin, 2008), TLBO (Toğan, 2012), and SBO (Farshchin et al., 2018) 
For braced frames, the geometry, material properties, and grouping are the same as 

unbraced frames. Braced frame optimizations are the same as section 5.3.2. 
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Table  5.10 Types and condition for three-bays, twenty-four-stories frame 
No. Types of Structure Grouping Drift constraint 
1 Unbraced frame Original All stories 
2 Braced frame Original All stories 
3 Braced frame New All stories 

 
Figure  5.13 Layout and Load of three-bays, twenty-four-stories unbraced frame 
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Table  5.11 Three-bays, twenty-four-stories design (No.1) 

Element Group HS TLBO SBO 
Present 
Work  

1 W30 x 90 W30 x 90 W30 x 90 W30X90 

2 W10 x22 W8 x 18 W8 x 18 W8x18 

3 W18 x 40 W24 x 62 W21 x 48 W21X48 

4 W12 x 16 W6 x 9 W6 x 8.5 W10x12 

5 W14 x 176 W14 x 132 W14 x 152 W14x159 

6 W14 x176 W14 x120 W14 x 120 W14x120 

7 W14 x132 W14 x99 W14 x 109 W14x109 

8 W14 x 109 W14 x82 W14 x 74 W14x61 

9 W14 x 82 W14 x74 W14 x 82 W14x48 

10 W14 x74 W14 x 53 W14 x 43 W14x48 

11 W14 x 34 W14 x 34 W14 x 34 W14x43 

12 W14 x 22 W14 x 22 W12 x 19 W14x26 

13 W14 x 145 W14 x109 W14 x109 W14x99 

14 W14 x 132 W14 x 99 W14 x 109 W14x109 

15 W14 x 109 W14 x 99 W14 x 99 W14x99 

16 W14 x 82  W14 x90 W14 x 99 W14x120 

17 W14 x 61 W14 x 68 W14 x 68 W14x99 

18 W14 x 48 W 14 x53 W14 x61 W14x61 

19 W14 x 30 W14 x 34 W14 x 34 W14x43 

20 W14 x 22 W14 x22 W14 x22 W14x26 

Weight (Ib) 214,896 203,124 202,422 205,056 

Mean (Ib) 222,620 - 209,560 224,152 

SD (lb) - - 7,052 15,475 

No. of Analysis 14,651 12,000 14,572 6,890 

No. of Runs 100 - 100 100 
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Figure  5.14 Layout and Load of three-bays, twenty-four-stories braced frame (a) 

initial grouping (b) new grouping 
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Figure  5.15 Layout of braced element for three-bays, twenty-four -tories (a) frame 

No.2 (b) frame No.3 
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Table  5.12 Three-bays, twenty-four-stories frame design (No.2) 
Element 
Group 

Present 
Work  

Element 
Group 

Present 
Work  

Element 
Group 

Present 
Work  

Element 
Group 

Present 
Work  

1 W16X36 13 W14x53 34 W8x15 66 W10x15 

2 W8x18 14 W14x43 37 W8x15 69 W8x18 

3 W10x22 15 W14x43 41 W8x18 72 W8x21 

4 W8x10 16 W14x48 45 W10x39 73 W10x30 

5 W14x99 17 W14x30 46 W10x30 79 W8x24 

6 W14x99 18 W14x30 50 W8x18 81 W10x26 

7 W14x61 19 W14x43 53 W10x19 83 W10x22 

8 W14x68 20 W14x43 54 W8x28 84 W8x18 

9 W14x68 23 W10x22 55 W6x9 87 W8x31 

10 W14x43 27 W10x22 58 W8x28     

11 W14x48 28 W8x35 62 W8x13     

12 W14x22 32 W10x22 64 W8x10     

Weight (Ib) 132,972 

Mean (Ib) 176,326 

SD (lb) 18,187 

No. of Analysis 18,139 

No. of Runs 100 
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Table  5.13 Three-bays, twenty-four-stories frame design (No.3) 
Element 
Group 

Present 
Work  

Element 
Group 

Present 
Work  

Element 
Group 

Present 
Work  

Element 
Group 

Present 
Work  

1 W12x26 12 W14x43 23 W8x18 64 W10x12 

2 W24x62 13 W14x30 27 W10x22 72 W8x31 

3 W14x22 14 W14x22 28 W8x21 73 W10x49 

4 W12x26 15 W14x43 34 W8x18 75 W10x26 

5 W12x16 16 W14x43 50 W8x18 78 W10x26 

6 W16x31 17 W14x43 53 W8x13 79 W8x35 

7 W14x120 18 W14x43 56 W10x26 81 W8x21 

8 W14x82 19 W14x43 60 W8x15 83 W8x18 

9 W14x99 20 W14x43 61 W8x15 89 W10x17 

10 W14x61 21 W14x30 62 W6x9 90 W10x19 

11 W14x48 22 W14x48 63 W10x12     

Weight (Ib) 138,050 

Mean (Ib) 178,475 

SD (lb) 17,873 

No. of Analysis 19,595 

No. of Runs 100 
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Figure  5.16 Story drift for three-bays, twenty-four-stories frame (a) frame No.1, (b) 

frame No.2 (c) frame No.3 
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Figure  5.17 Convergence curve for three-bays, twenty-four-stories frame (a) frame 

No.1 (b) frame No.2 (c) frame No.3 
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Figure  5.18 Element strength ratio for three-bays, twenty-four-stories frame (No.1) 

 
Figure  5.19 Element strength ratio for three-bays, twenty-four-stories frame (No.2) 
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Figure  5.20 Element strength ratio for three-bays, twenty-four-stories frame (No.3) 
Unbrace frame considers drift for all stories. BPSO is compared with HS, TLBO and 

SBO. BPSO gets almost the worst weight, which is 205,056. The weight is greater than 
TLBO and SBO and less than HS. It should be noted that TLBO has not any 
information of runtimes. The maximum strength ratio is 0.9221, which happened in 
the right end column of the 13th story. The maximum drift ratio is 0.9999, which 
happened in the 4th story. The minimum weight of the brace frame using the original 
grouping (Frame No.2) is 132,972 lb. This weight is lower than the unbraced frame 
with the same grouping, 35.15%. The maximum strength ratio is 0.9722, which 
happened the right bracing of 1st story. The maximum drift ratio is 0.9999, which 
happened in the 23rd story. For the braced frame with finer grouping (Frame No.3), 
the minimum weight is 138,050 lb greater than the braced frame's minimum weight 
with the original grouping of 3.82%. The maximum strength ratio is 0.9999, which 
happened in the middle beam of story 13th. The maximum drift ratio is 0.9999, which 
happened in 21rd story. 
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

This research applies BPSO to solve steel structural weight optimization problems. 
The research studies on varying inertia weight of BPSO in value and pattern to find 
the best inertia weight improving the algorithm performance. The samples of study 
include constant inertia weight 0.9, 0.92, 0.94, 0.96, 0.98, 1.00 and 1.02 and linear 
decreasing inertia weight from 0.9 to 0.4. The samples experiment on six benchmark 
mathematic optimization functions. The best inertia weight from the sample is 
applied in the algorithm for the structural weight optimizations. There are two types 
of structures studied under drift and strength constrained function by AISC, unbraced 
structure and braced structure. From the experiment, the result can be concluded as 
follows: 
1)  The best inertia weight among the sample is constant inertia weight 0.98. The 

inertia weight is the best in both accuracy and precision term. So, this value is 
applied in the BPSO algorithm to optimize the structural optimization problem. 

2) The first structure is a two-bay, three-stories structure. The result from the BPSO 
algorithm is compared to GA, ACO, and SBO algorithms. All practical algorithms 
can reach the optimal value. But BPSO is the best one with full percentage 
success and using the shortest iteration for getting minimum value. 

 
Figure  6.1 Two-bay, three-stories frame (a) % optimal found from total runtimes (b) 

No. of analysis getting minimum weight 
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3) The second structure of testing is a one-bay, ten-stories structure. Two unbraced 
frames can reach the lowest weight comparing with other algorithms. The 
algorithms have the highest standard deviation but the fastest convergence. The 
braced frame with initial grouping can get a lower weight than unbrace frame 
with the same grouping. The structure weight is decreased when classifying 
braced frame with finer grouping. 

 
Figure  6.2 Unbraced one-bay, three-stories frame considering drift at roof (a) 

minimum weight (b) standard deviation of weight for total runtimes (c) No. of analysis 
getting minimum weight 

 
Figure  6.3 Unbraced one-bay, three-stories frame considering drift for all stories (a) 

minimum weight (b) standard deviation of weight for total runtimes (c) No. of analysis 
getting minimum weight 
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Figure  6.4 minimum weight for all types of one-bay, twenty-four-stories frame 

4) The second structure of testing is a three-bay, twenty-four-stories structure. 
Unbraced frame gets the second heavier weight comparing with the other three 
algorithms. The braced frame with initial grouping can get a lower weight than 
unbrace frame with the same grouping. The structure weight is increased when 
classifying braced frame with finer grouping. 

 
Figure  6.5 Minimum weight of unbraced frame of three-bay, twenty-four-stories 

frame 
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Figure  6.6 Minimum weight for all types of each three-bay, twenty-four-stories frame 
5) For comparison three bay, twenty-four stories unbraced frame using BPSO and 

other algorithms, BPSO get bad result. When we consider the convergence curve, 
BPSO converges so fast with only 6,890 No. of analysis. It can conclude that BPSO 
may be stuck in a local optimum. The study of structure types for one-bay with 
ten-stories frame and three-bays, twenty-four-stories frames shows the 
contradictory result. From example two, BPSO can be found the lower weight 
when the elements have more grouping. This is reasonable that when the 
grouping is finer divided, the optimization can get the lower weight due to the 
independence of element selection. However, the third example cannot reach 
this way. When dividing to finer grouping, the weight we got is higher. When we 
consider the number of analyses, it is found that the number of analyses is so 
close to the maximum iteration. It is possible that BPSO is still not converted and 
reaches the optimal value it can find. Another guess is that BPSO stuck with the 
local optimum due to seeing the unbraced frame compared to other algorithms. 
BPSO almost had the worst result.  

6.2 Future Work 

From the conclusion part, it is still bad result and contradictory in BPSO study. To 
find the cause of problem, it is necessary to test more about the influence of 
parameters as following: 

1. BPSO algorithm may be stuck in local optimum in some examples. So, a 

constant inertia weight of 0.98 cannot find an optimal solution. We suggest 
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future work studying the inertia weight with different values and patterns such 

as linear increasing inertia weight to find the better inertia weight 

2. Other BPSO parameters such as the number of populations, initial 

parameters, maximum velocity, and acceleration coefficient may significantly 

influence BPSO performance. Future work may study on varying these 

parameters. 

3. From considering three bay, twenty-four stories braced frame, No. of analysis 

to get minimum weight is so close to maximum iteration. Future work may 

study these frames with larger maximum iteration to see their truly minimum 

weight.  

4. According to using a binary system in BPSO, the search space in BPSO is larger 

than other algorithms due to fake available solutions for fulfilling available 

solutions of the binary system. These fake available solutions may affect the 

nonlinearity of function that makes BPSO stuck in a local optimum.  Future 

work may study on setting the value of fake available solutions. 

5. This research design structure bases on the effect of the second-order effect. 

However, AISC specification has other requirements to design for the stability 

of structure. The future study may focus on structural optimization problems, 

including the design for stability requirement by AISC using BPSO compare 

with other algorithms such as ESO (Chaiwongnoi et al., 2020).     
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