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CHAPTER 1
INTRODUCTION

1.1.  Background and problem statement

Nowadays, the world's energy consumption mostly comes from fossil fuels
such as petroleum, coal and natural gas. However, population growth and industrial
development cause the depletion of these non-renewable resources. Besides, the
burning of fossil fuels leads to environmental impacts such as air pollution and global
warming [1]. For these two reasons, it is necessary to find renewable energy sources.
Biodiesel is a good alternative for substituting petroleum-based diesel because it has
similar properties to petrodiesel and we can use it in diesel engines without any

modifications. Moreover, it produces less polluting and greenhouse gas emissions [2].

In 2017, Thailand had 13 biodiesel producers that had a total production
capacity of 6.62 million litres per day. Crude palm oil is a primary raw material for
biodiesel production. From a total of 2.63 million tonnes of crude palm oil, 0.97 million
were used to produce biodiesel. The profitability of biodiesel industry depends on 1)
costs of raw materials (which account for 70% of total production costs), 2) biodiesel
proportion in the blends 3) the government's policies and supports, and 4) profit
margins [3]. The lack of government supports can negatively impact business profits.
Therefore, the producers pay attention to use biodiesel as a raw material for value-

added chemicals production instead of selling as fuels.

Palm oil-based biodiesel is mainly rich in methyl palmitate (44.3%) and methyl
oleate (39.1%) [4]. The high amount of methyl palmitate, which is saturated fatty acid
methyl esters (FAMEs), results in low cold flow properties due to its high melting point.
Fractionation is one of the methods used to improve the cold flow properties of
biodiesel. This method reduces saturated FAMEs concentration by cooling down to
the temperature between the cloud point and pour point. After that, the formed

crystals of saturated FAMEs are separated by filtration [5].



Methyl palmitate which separated from biodiesel can be used as raw material
to produce value-added chemicals. Figure 1 presents the potential chemical products
converted from methyl palmitate. These products are consumed in various industries
such as cosmetic, food, pharmaceutical and lubricant industries. Furthermore, they are
used as chemical intermediates to produce other chemicals and as solvents. Initially,
we calculated the gross profit margin of each alternative, as present in Appendix A.
From the analysis results, there are six processes with negative profit margins. They are
butyl palmitate, cetyl alcohol, cetyl palmitate, ethyl palmitate, isopropyl palmitate,
and palmitic acid. A negative value indicates that the process will not be profitable, so

we did not further investigate these production processes in this work [6].

Cetyl alcohol Methyl Cetyl palmitate
CypHz4 05 +3H, — CigHyaO + CHy + H,0 palmitate CypHzy 05 + CogHay 0 = CypHey Oy + CHLO
Palmitic acid

Ci7H340; + Hy = GHy 0, + CHy

)

Pentadecane
Cy7H34,0, + 2H, = CsH3, + CHy + CO + H,0

Hexadecane
Cy7H3,0; + 4H, — CigHzy + CHy + 2H,0

Ascorbyl palmitate
acid Cy7H340; + CoHgOg = CypHag 07 + CH4 O
Methyl Butyl palmitate
palmitate W C7H3405 + CyHio0 = CagHag 03 + CH40
_-_ Ethyl palmitate
Cy7H3,0; + CHg O — CigH350, + CH O
Isopropyl palmitate
panol Cy7H340; + C3HgO = CygH30, + CH,0
_._ Retinyl palmitate
€17 Hay Oz + CogHzgO = C36Hgy Oy + CHy O
._ Sucrose palmitate
Ci7H340; + CioHpp 044 = CrgHsp 045 + CHL O

Monoetha Palmitoylethanolamide
nolamine Cy17H3,0; + C,H;NO — CigH3; NO, + CH O

Figure 1 Reaction pathways from methyl palmitate.

However, considering the production routes of ascorbyl palmitate and retinyl
palmitate, they are commercially produced through the esterification of palmitic acid
with acid catalysts. Palmitic acid has a lower price and is preferable feedstock than

methyl palmitate. Thus, we did not consider these two products in this study.

The remaining products are considered in terms of application and market

demand. Palmitoylethanolamide (PEA) is used as a wetting agent and foam booster in



cosmetics and personal care products. High purity PEA can be used as a pain killer and
anti-inflammatory agent [7]. Moreover, it is used as a corrosion inhibitor and lubricant
additive. Global demand for alkanolamides is 90,000 ton per year [8]. Sucrose palmitate
can be used as an emulsifier, emollient and skin conditioning agent in cosmetics, food
additive, fruit preservation and stabilizer for drug delivery system. Global demand for
sucrose esters is 15,000 ton per year [9]. Pentadecane and hexadecane are used as
feedstocks for other chemicals production, solvents and phase change material (PCM)

for thermal energy storage applications [10].

Based on the above considerations, the promising chemicals produced from
methyl palmitate are palmitoylethanolamide, sucrose palmitate and normal alkanes.
Thus, this work proposed the conceptual process design of these chemicals production
processes using Aspen Plus V11. Unfortunately, palmitoylethanolamide and sucrose
palmitate are not available in Aspen database. Consequently, we needed to study the
suitable property estimation methods to assess their properties. After that, process
simulation and economic analysis were performed to find the optimal processing route

to produce value-added chemicals from methyl palmitate.

1.2. Research objective

This work aimed to perform property estimation of palmitoylethanolamide and
sucrose palmitate including the conceptual process design of value-added chemicals
production, which are palmitoylethanolamide, sucrose palmitate and normal alkanes

(C15 and C16), from methyl palmitate.

1.3.  Scope of research

1.3.1. Estimate the properties of palmitoylethanolamide and sucrose palmitate using

property estimation methods available in Aspen Plus V11.

1.3.2. Perform conceptual process design of palmitoylethanolamide production using

Aspen Plus V11 based on the work of Wang et al. [11]. The conversion of PEA



1.3.3.

1.3.4.

1.3.5.

was 100% under reaction conditions of 20:1 molar ratio of monoethanolamine
to methyl palmitate, 60 °C reaction temperature, 3%wt sodium methoxide as

a catalyst and 1.5 h reaction time.

Perform conceptual process design of sucrose palmitate production using
Aspen Plus V11 based on the work of Gutierrez et al. [12]. The optimal sucrose
esters content was 22.86%wt under reaction conditions of 2.5:1 molar ratio of
methyl palmitate to sucrose, 136 °C reaction temperature, 0.334 bar reaction
pressure, 5%wt potassium carbonate as a catalyst, 16.15%wt sucrose ester as

a surfactant and 3.92 h reaction time.

Perform conceptual process design of normal alkanes production using Aspen
Plus V11 based on the work of Yan et al. [13]. The optimal yield of pentadecane
and hexadecane were 70.0% and 28.3% under reaction conditions of 220 °C
reaction temperature, 10 bar reaction pressure, 3%wt Mo-Ni@PSi and 2.5 h

reaction time.

Compare economic performance between the three production processes in
terms of discounted present value (DPV), discounted payback period (DPP) and
discounted cash flow rate of return (DCFROR).

Design basis

1.4.

The feedstock is methyl palmitate with 100,000 tonnes per year.
The desired purities of chemical products are >98%wt.
The design pressure is specified as 10% of maximum operating pressure, and

the design temperature is typically plus 30 °C.

Expected outputs

Property parameters estimated by Aspen Plus's built-in estimation methods

were expected. After that, these parameters were used to perform the conceptual

process design for palmitoylethanolamide, sucrose palmitate and normal alkanes

production processes from methyl palmitate.



CHAPTER 2
FUNDAMENTAL THEORY AND LITERATURE REVIEWS

2.1. Fundamentals

2.1.1. Biodiesel

Biodiesel is commonly produced by transesterification of vegetable oils, animal
fats or waste cooking oils with methanol in the presence of a catalyst, as illustrated in
Figure 2. The mixture of fatty acid methyl esters (biodiesel) is obtained with glycerol
as a by-product. Biodiesel has many advantages compared to petrodiesel such as

sulphur-free, low emissions, high cetane number and high lubricity [14].

i I
| i
H,C—O0—C—R, H,C—OH H;C—0—C—R,
‘ 0 0
) I ) base ) i I
HC—O0—C—R, + 3 CH;0H : HC—OH + H;C—O—C—R,
0 or acid 0
Il I
H,C—O0—C—Ry H,C—OH H;C—0O—C—R;
Triglyceride Methanol Glycerol Methyl esters

Figure 2 Transesterification of triglyceride with methanol to produce biodiesel [15].

Table 1 presents the major FAMEs composition of biodiesel obtained from
crude palm oil. It contains high amounts of saturated FAMEs which have high melting
points. Saturated FAMEs tend to solidify at low temperature. These solid crystals clog
the fuel lines, filters and injectors, resulting in fuel starvation and operational problems
in vehicle engines. According to the work of Dunn [16], biodiesel has poor cold flow
properties when saturated FAMEs is more than 20%wt. Cold flow properties can be
improved by adding chemical additives such as pour point depressants and crystalline
wax modifiers, blending with petrodiesel or biodiesel with high unsaturated or shorter-
chain FAMEs, using the longer chain (C3 to Cg) or branched alcohols instead of
methanol in transesterification process, reducing total saturated FAMEs by fractionation

such as winterization, solvent fractionation and vacuum distillation [17].



Table 1 Major fatty acid methyl esters composition of palm-oil based biodiesel.

Composition Melting point (°C) [18] Percentage of total FAME [4]
Methyl palmitate (16:0) 28.5 44.3%
Methyl stearate (18:0) 37.7 5.0%
Methyl oleate (18:1) -20.2 39.1%
Methyl linoleate (18:2) -43.1 10.1%

Biodiesel can directly be used as transportation fuel, fuel for power generation,
heating oil, solvent, lubricity additive, fuel additive, pesticide and fertilizer carriers [19].

Besides, individual methyl ester can be used to produce other chemical products.
2.1.2. Palmitoylethanolamide

Palmitoylethanolamide is one of the fatty acid amides produced via amidation
of acyl donors with monoethanolamine in the presence of a base catalyst (typically
sodium methoxide). The feasible acyl donors are free fatty acids, fatty acid methyl
esters, fatty acid chlorides, triglyceride oils and fatty acid vinyl esters. The comparison

between each acyl donor is presented in Table 2.

Table 2 Advantage and disadvantage of each acyl donor [20].

Acyl donor Advantage Disadvantage

Free fatty acids - Commercially available - High amount of by-
product impurities
Fatty acid methyl esters - Higher yield than FAs
- Commercially available

Fatty acid chlorides Most effective

Most expensive
- Corrosive and toxic

Triglyceride oils

Safe and cheap Not suitable for medicinal

No ion pairs formed use

Fatty acid vinyl esters Effective Less available




In this work, fatty acid methyl ester is used as raw material for fatty acid amide
synthesis. The reaction takes place at around 100 °C and 4 kPa or less using sodium
methoxide as a catalyst. Vacuum pressure is used to remove the produced methanol

[8]. Figure 3 illustrates the reaction scheme of the fatty acid amide synthesis.

0
0 _CH,CH,OH
Py HN 2 : J\N,CHZCHZOH + H,0/CH,0H

| ———
R OH/Me + X )I(

Figure 3 Amidation of FAME with ethanolamine to produce fatty acid amide [8].

(methyl palmitate: R = Cy5Hs;, monoethanolamine: X = H)
2.1.3. Sucrose palmitate

Sucrose palmitate is non-ionic surfactant obtained from reacting sucrose with
acyl donors such as free fatty acids, fatty acid methyl esters and fatty acid chlorides.
According to sucrose chemical structure, it has the three primary hydroxyl groups (6,
1" and 6’) and five secondary hydroxyl groups. Consequently, sucrose monoesters up
to sucrose octa-esters can be produced. Most commercial products contain at least

80%wt of sucrose monoesters and diesters [12].

In general, sucrose esters are produced by transesterification of sucrose with
fatty acid methyl esters using a base catalyst (typically potassium carbonate). Direct
esterification of sucrose with fatty acids is impractical because a base catalyst can
promote the neutralization of fatty acids, resulting in reactant depletion and low yield

[9]. Sucrose palmitate synthesised by transesterification process is shown in Figure 4.

Considering the nature of raw materials, sucrose is highly polar solid and methyl
palmitate is highly non-polar liquid. Thus, the reactants are immiscible with each other.
There are many routes to improve the compatibility between reactants. The first is the
solvent process, dimethylformamide (DMF) or dimethyl sulfoxide (DMSO) are used to
dissolve the two reactants, resulting in a homogeneous mixture. The disadvantages of
this route are the high amount of solvent required (60%wt) and high energy required

to remove a solvent from the product. The second route is the solvent-free process,



surfactants, such as alkaline soaps, multivalent fatty acid soaps, sucrose esters, mono-
and diacyl-glycerol esters, are used to disperse sucrose in methyl palmitate. In this

route, the amount of used surfactant is 1-30%wt [12].

H,C—OH
Methanol
o
I~ CH,
+ H,C—OH
Ho,, OH &
hoP A NAAAAAAACH Methanol

OH HO‘\

M pe Methyl Palmitate (FAME)

4 Sucrose Dipalmitate (Sucrose Oligoester)
Sucrose Monopalmitate

o
T~~~
(::J/\/\/\/\/\/\/\/ﬁ\(/c K2C03 Hje—on
OH + H t » HO.,
HO,, é «
A AN & H Waangl
a 5 ™ CHy

oH o' ’
Methyt Ealmitae(FAME) Sucrose Tripalmitate (Sucrose Oligoester)

Sucrose Dipalmitate

Figure 4 Transesterification of sucrose with methyl palmitate to produce sucrose

palmitate [12].

Sucrose esters have a wide range of applications depending on the degree of
substitution, as presented in Figure 5. Hydrophilic-lipophilic balance (HLB) is calculated
by multiplying the ratio of molecular weight of hydrophilic groups to the molecular
weight of the whole molecule by 20. Accordingly, sucrose esters with hish monoesters

possess high HLB value or vice versa [21].
2.1.4. Pentadecane and hexadecane

Green diesel is consists of saturated hydrocarbons with 15 to 18 carbon atom:s,
including pentadecane and hexadecane. Normal alkanes are obtained from hydro-
processing of fatty acids, fatty acid esters and triglyceride oils. The reaction takes place
at mild temperatures between 280 °C and 450 °C and pressure of 1-5 MPa. The mostly
used catalysts are Ni-Mo, Co-Mo and Ni-W on the alumina (ALL,Os) support [22].



Fatty acyl HLB
group 1 2 3 5 7 9 11 15 16
Ci12 Powdered ( Detergent )
Fats & oils milk
Cl4 chocolate C Ice cream )
Milk
L \ < Curry roux ) Wheat beverage
products
- Frozen dough
f Tablet ) C Confections ) dough
Ci8 ( Chewing gum )
= 4
W/O T Cake batter )
emulsion
C Beverage O/W emulsion )
Ci8:1 Sauce, dressin
d s Sing
Shortening ( )
chocolate :
C22
. J

Figure 5 Applications of sucrose esters [21].

When fatty acid esters and triglyceride oils are used as feedstocks, the C=C
double bonds are saturated by hydrogenation. Then, they are hydrogenated to fatty
acids [23]. Finally, the oxygens are removed by deoxygenation, and normal alkanes are
obtained. This reaction consists of three pathways: (1) Decarboxylation (DCO,) and (2)
Decarbonylation (DCO) and Hydrodeoxygenation (HDO), as shown in Figure 6.

HZC‘COOCnHz(n-x)+1 =) H,C-COOC H,,., (-)
H» H,
HCO006 . q(=) ~—* HCOOOCH. 6 — 4 GeesaE. . i
‘ Saturation Cracking LS S
H,C-COOC,H,, .., (=) H,C-COOC H,,., (-) Bres-futtyasids
Triglycerides Hydrogenated Triglycerides
g
n: odd number 2
X, Y, z: number of double bonds o> =2
=: double bond £ g
-: single bond &0 g
% S
a
Aromatics *——— n'CnH2n+2 i Coz n-CH, ,+CO+H,0 0-CpHypy +2H, 0

Cyetizaton l><‘l / J

Isomerization Cracking Isomerization
Iso-CH Lighter hydrocarbons Iso-C H

2n+2 n+1" " 2nt4

Figure 6 Hydro-processing of triglycerides to produce normal alkanes [24].
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DCO and DCO, pathways yield the normal alkanes with one less carbon atom
than the starting fatty acids, whereas the HDO pathway yields the normal alkanes with

the same carbon atom.
2.1.5. Property estimation methods

Property estimation methods are used to estimate the missing properties of
compounds which are not available in literature, online database and simulator
databanks. The estimation methods help to reduce the time-consuming and costs of
experimental measurements. The property parameters used in process simulation are

divided into two parts [25].

- Parameter requirements for mass and energy balance simulations:
molecular weight (MW), ideal gas heat capacity (CPIG), vapor pressure (PL) and
heat of vaporization (DHVL)

- Parameter requirements for thermodynamic reference state:
critical temperature (TQ), critical pressure (PC), critical volume (VQ), critical

compressibility factor (ZC) and standard heat of formation (DHFORM)

In Aspen Plus software, the minimum information required to estimate property
parameters is the normal boiling point, molecular weight and molecular structure.
Aspen Plus's built-in estimation methods and their equation for each property are
summarized in Table 3 to 9. For compressibility factor (ZC), it calculated by definition,

as shown in Equation 1.

PC\/C
Zc = 1)
RT.
Where: P. = Critical pressure
V. = Critical volume
R = Universal gas constant

T = Critical temperature
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For temperature-dependent properties, the estimation results are presented in terms

of coefficients of the equations as follows.

Aspen Ideal Gas Heat Capacity Polynomial (CPIG)

C;ig =+ T+ GTP4+ G + Gy T + G T

i Ciyi
C g _ C i Cl iT 11
Extended Antoine Equatio (PL)

*\

C, .
3i

Watson heat of vaporization equation (DHVL)

. ) 1_T/Td 3+ (1-T/T)
AvapHi (T) = AvapHi(Tl) 1__|_1/_|_d

for C;; < T < Gy

for T <

forCg < T < Cy

forT>T.,,

Where: Cli =A Hf(T), C2i 3 T1, C3] =a, qu = bi and C5i = Tmin

vap' i

(2)

3)
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2.2.  Literature reviews
2.2.1. Synthesis of fatty acid amides

In 2012, Wang et al. studied the synthesis of palmitoylethanolamide (PEA) using
vinyl palmitate as acyl donor. The results showed that 3% sodium methoxide exhibit
the highest catalytic activity with the 98% yield of PEA at temperature 60 °C with 1: 20
molar ratio of vinyl palmitate to monoethanolamine for 1.5 h. After that, the reaction

product was washed with water to remove excess ethanolamine [11].

In the following year, they used methyl linoleate as acyl donor to synthesize
of linoleoyl ethanolamide (LEA). 97.2% yield of LEA was obtained when the optimal
conditions were: 1:10 molar ratio of methyl linoleate to monoethanolamine, 15 L,
5.4 mol-L-1 sodium methoxide in methanol, 30 °C temperature and 1 h reaction time.
This study provides a higher yield and conversion than the work of Platina et al [33].
which used linoleic acid as acyl donor. The lower effectiveness when using FAs due to

the formation of ion pairs with ethanolamine [20].

In 2016, they investigated the amidation of sunflower oil (87.5% oleic acid) with
monoethanolamine in a solvent and solvent-free system. The reactions were carried
out using 1:10 molar ratio of sunflower oil to monoethanolamine and 1%wt of sodium
methoxide at 250 rpm for 3 h. The used solvents were hexane, ethane, acetone and
1:1 (v/v) of hexane/ethanol. Among these solvents, the mixed hexane/ethanol solvent
provided the highest yield (90.1%) while 57.6% yield of fatty acid amide was obtained
in a solvent-free system. Then, the effect of solvent volume, catalyst amount and
reaction time were considered. 90.2% vyield of fatty acid amide and 91.8% conversion
were obtained at 1 mL solvent volume, 1.5% catalyst concentration and 4 h reaction
time. The reaction product was a mixture of fatty acid amides, so it was not suitable
for medicinal purposes. Finally, crystallization was used to purify the product and then

high-purities of oleoyl ethanolamide (OEA) with 70.3% yield was achieved [34].
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2.2.2. Synthesis of sucrose esters

In 2018, Gutierrez et al. studied the transesterification of sucrose with methyl
palmitate for sucrose palmitate production. Various surfactants were used to enhance
the compatibility of reactants. Experiments were carried out using 2.5:1 molar ratio of
methyl palmitate to sucrose and 5%wt potassium carbonate as a catalyst at 33.4 kPa
with a stirring speed of 700 rpm. The used surfactants were potassium palmitate (water-
soluble, HLB = 20), glycerol monostearate (oil-soluble, HLB = 4) and sucrose ester
(water-soluble, HLB = 15). They found that high HLB surfactants provided the final
product with a high proportion of sucrose monoesters. Nevertheless, the surfactant
removal process was not needed when using sucrose ester as a surfactant. In this case,
the 22.86 %wt of sucrose esters (52.50%wt of monoesters in total SE) with 43.09%
conversion of methyl palmitate were obtained at 409 K, 16.15%wt surfactant and 3.92

h reaction time [12].

In 2019, Chen et al. synthesized sucrose esters by transesterification of sucrose
and methyl stearate in solvent-free process. The results showed that 88.2% yield of
sucrose esters (selectivity: 10.4% mono, 27.1% di, 62.5% tri) and 91.4% conversion of
methyl stearate were obtained when performed milling pretreatment before reaction.
Reaction conditions were fixed as 1:2:0.15:0.22 molar ratio of sucrose: methyl stearate:
potassium carbonate: potassium stearate (surfactant), 135 °C reaction temperature, 0.5

kPa reaction pressure, 3 h reaction time and 500 rpm stirring rate [35].
2.2.3. Synthesis of normal alkanes (C15 and C16)

In 2017, Yan et al. investigated the catalytic deoxygenation process of methyl
palmitate over molybdenum oxide doping nickel phyllosilicate catalyst. 10%wt Methyl
palmitate in hexane with excess hydrogen was fed into the reactor which was operated
at 220 °C and 10 bar for 2.5 h. The results showed that 3% Mo-Ni@PSi provided full
conversion of methyl palmitate with 70.0% vyield of pentadecane and 28.3% yield of
hexadecane. They reported that no CO, was detected in the gas-phase product;

therefore, decarboxylation did not occur under this condition [13].
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2.2.4. Property estimation

In 2019, Sousa et al. evaluated the temperature nondependent properties of

16 fatty acids (Cg to Cy4) which are components of biomasses. Estimation methods for

each property are presented in Table 10.

Table 10 Method for the temperature nondependent properties estimation [36].

Property

Methods

Normal boiling point

(1) Joback and Reid, (2) Constantinou and Gani, (3) Marrero-
Marejon and Pardillo-Fontdevila, (4) Marrero and Gani, (5)
Nannoolal et al.

Normal melting point

(1) Joback and Reid, (2) Constantinou and Gani, (3) Marrero
and Gani

Critical parameter

(TC, PC and VC)

(1) Joback and Reid, (2) Constantinou and Gani, (3) Wilson
and Jasperson, (4) Marrero-Marejon and Pardillo-Fontdevila
, (4) Marrero and Gani, (5) Nannoolal et al.

Acentric factor

(1) Pitzer et al,, (2) Lee and Kesler, (3) Watanasiri et al., (4)
Ambrose and Walton, (5) Chen et al., (6) Constantinou et
al.

The estimated parameters obtained from different estimation methods were

compared with the values from the NIST database. From the results, the bold methods

in Table 10 provide the minimum average absolute relative deviation, which means

that they are the most accurate estimation methods for each property.
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CHAPTER 3
METHODOLOGY

3.1.  Property estimation of palmitoylethanolamide and sucrose palmitate

using Aspen Plus's built-in estimation methods

Task 1A: Searching for compounds which chemically similar to palmitoylethano-

lamide, sucrose monopalmitate and sucrose dipalmitate

Due to the lack of properties data of palmitoylethanolamide and sucrose
palmitate in experimental and literature data, we could not examine the accuracy of
estimation results. Thus, we needed to find similar compounds having experimental
properties data to find out which estimation method provides estimation results close
to the experimental data. Table 11 presents similar compounds to the three estimating

compounds, and Figure 7 presents their molecular structures.

Table 11 Similar compounds to palmitoylethanolamide and sucrose palmitate.

Estimating compound Similar compound  Formula MW. NBP (°C)

(1) Palmitoylethanolamide  2-Acetamidoethanol  C4HoNO, 103.12  296.09

(2) Sucrose monopalmitate  1-Monopalmitin CioHsgOq  330.51  421.20
2-Monopalmitin CioHis04  330.51 426.17
(3) Sucrose dipalmitate 1,3-Dipalmitin CasHegOs  568.92  543.66

Task 2A: Property parameters estimation of similar compounds using Aspen Plus's

built-in estimation methods

In “Components” | “Specifications” | “Selection” tab, clicked on the “User
Defined” button. The “User-Defined Component Wizard” window would show up as
Figure 8. First, we entered the component ID and selected the type of component as
the conventional type. Next, we entered the molecular structure, molecular weight
and normal boiling point from Table 11. For molecular structure, we could draw the
structures by ourselves or import .mol file from online databases such as ChemSpider,

NIST, SciFinder", etc., as shown in Figure 9. After that, the added components would
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show up under “Molecular Structure” folder. Went to the “Structure and Functional

Group” tab and clicked on “Calculate Bonds” button, as shown in Figure 10.
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Figure 7 Molecular structures of 2-Acetamidoethanol (a), 1-Monopalmitin (b),

2-Monopalmitin (c) and 1,3-Dipalmitin (d).

B User-Defined Component Wizard % | B User-Defined Component Wizard X
User-Defined Component Wizard i Basic data for conventional component
| Welcome to the User-Defined Component Wizard, the quickest way to enter properties for user-defined | Component ID: 2-ACETAM e
component. This wizard will lead you through the steps to enter the required physical properties for the
user-defined component based on its type. Ehter milerukir st
T Molecular structure is
¢ i -_— | Draw/import/Edit structure reiibio et
LompRteie 2-ACETAM Type  conventional ~ —
| Define molecule by its connectivity.
Alias | e
Required propetties for conventional components include Eifies avaliabie pXopatty data
i : 296.09
Molecular weight, normal boiling point, molecular structure, vapor pressure and ideal gas heat capacity ldolaczarweint
Normal boiling point: 10314 e~
Specific gravity at 60 deg. F:
Ideal gas enthalpy of formation: | calfmol v
Ideal gas Gibbs energy of formation: [ calfmol v
Click Next> to continue or Finish to accept the component and exit.
Cancel Next> Finish Cancel <Back | | Next> Finish

Figure 8 User-Defined Component Wizard window.
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Figure 10 Molecular structure window.

Then, we switched the run mode to “Estimation”. In “Estimation” | “Input” |
“Setup” tab, we chose “Estimate only the selected parameters” option and selected
“Pure component scalar parameters” and “Pure component temperature-dependent
property correlation parameters” in the check box. For “Pure component” and “T-
Dependent” tabs, selected similar compound and all Aspen Plus's built-in estimation
methods for each property parameter, as discussed in Chapter 2. Finally, clicked run
the property estimation. The estimation results would display on the “Estimation” |
“Results” tab sheet. Figure 11 and 12 show the example of estimating the critical

temperature of 2-Acetamidoethanol.
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Figure 12 Estimating critical temperature of 2- Acetamidoethanol.
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Task 3A: Comparing the estimation results to the experimental data of each property

In this work, we compared the estimation results to the property parameters

retrieved from databanks available in the Aspen Physical Property System. NIST-TRC

Databank was used for 2-Acetamidoethanol and 1,3-Dipalmitin. Meanwhile, BIODIESEL

databank was used for Monopalmitin. We compared the accuracy of each estimation

method in terms of the absolute deviation (AD) and the absolute relative deviation

(ARD) [36] as defined in equation (5) and (6). The estimation methods with the lowest

AD and ARD values for each property would be used to estimate property parameters

of palmitoylethanolamide and sucrose palmitate.

Absolute deviation (AD) = |estimated value - experimental value

Absolute relative deviation (ARD) =

estimated value - experimental value

experimental value

(5)
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Task 4A: Property parameters estimation of palmitoylethanolamide and sucrose

palmitate

We estimated the property parameters using the best estimation methods from
task 3A by the procedure as for task 2A. The minimum required information such as
molecular structure, molecular weight and normal boiling point are presented in Figure
13 and Table 12. Lastly, the estimated parameters were used for the simulation of

palmitoylethanolamide and sucrose palmitate production processes.
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Figure 13 Molecular structures of palmitoylethanolamide (a), sucrose monopalmitate

(b) and sucrose dipalmitate (c).
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Table 12 Properties of palmitoylethanolamide and sucrose palmitate [37].

Estimating compound Formula M.W. NBP (°C) Reference

(1) Palmitoylethanolamide CisHssNO,  299.4919  461.5£28.0  ChemSpider
(2) Sucrose monopalmitate CoeHs,01,  580.7053  744.9+60.0 ChemSpider
(3) Sucrose dipalmitate CaqHgoOq3  819.1273  863.2+65.0  ChemSpider

3.2. Conceptual process design
Task 1B: Data collection

The objective of task 1B was to define feed and product specifications such as
purity, price and storage condition. Appendix B presents feed and product properties

and specifications for the three production processes.

Moreover, reaction information was collected, such as the molar ratio of
reactants, temperature, pressure, catalyst, solvent, reaction time, main reaction, side
reaction, conversion and yield. The specifications of the reactor units were based on

reaction information obtained from open literature, as presented in Table 13 — 15.

Table 13 Reaction information for the palmitoylethanolamide production process.

Operating condition Wang et al. [11]
Reaction Amidation of methyl palmitate with monoethanolamine
Catalyst 3%wt sodium methoxide

Molar ratio of reactants  20: 1 of monoethanolamine to methyl palmitate

Temperature 60 °C

Pressure Atmospheric pressure

Reaction time 1.5h

Conversion 100% conversion of methyl palmitate

Reaction pathway MP + MEA — PEA + MeOH




Table 14 Reaction information for the sucrose palmitate production process.
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Operating condition

Gutierrez et al. [12]

Reaction

Catalyst

Surfactant

Molar ratio of reactants
Temperature

Pressure

Reaction time
Conversion

Yield

Reaction pathway

Transesterification of methyl palmitate with sucrose
5%wt potassium carbonate

16.15%wt sucrose palmitate

2.5: 1 of methyl palmitate to sucrose

136 °C

0.334 bar

392 h

43.09% conversion of methyl palmitate

22.86%wt of sucrose palmitate (52.50% Mono-SE)
Sucrose + MP — Mono-SE + MeOH

Mono-SE + MP — Di-SE + MeOH

Table 15 Reaction information for the normal alkanes production process.

Operating condition

Yan et al. [13]

Reaction

Catalyst

Molar ratio of reactants
Temperature

Pressure

Reaction time
Conversion

Yield

Reaction pathway

Deoxygenation of methyl palmitate with hydrogen
3% Mo-Ni@PSi

14: 1 of hydrogen to methyl palmitate [38]

220 °C

10 bar

25N

100% conversion of methyl palmitate

70.0%wt of pentadecane and 28.3% of hexadecane
MP + H, — Palmitic acid + CH4

Palmitic acid + H, — Hexadecanal + H,O
Hexadecanal — Pentadecane + CO

Hexadecanal + H, — Hexadecanol

Hexadecanol + H, — Hexadecane + H,O
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Task 2B: Simple mass balance

The objective of task 2B was to perform an input-output structure and block
flow diagram, which is composed of the reactor feed preparation system, reactor
system, phase separation system and separation system. Besides, calculate a mass

balance for all streams, including recycle streams, as shown in Appendix C.
Task 3B: Process flowsheet generation

The objective of task 3B was to define all unit operations in each system and
their operating conditions such as temperature, pressure, reaction conversion and

separation factor.
Task 4B: Process simulation

The objective of task 4B was to perform a simulation of the three production
processes using Aspen Plus V11 software based on the information from the previous
steps. The most appropriate property methods for each simulation were considered
using the decision trees by Eric C. Carlson [39]. Lastly, we obtained the base case design

with stream tables.
Task 5B: Equipment sizing and costing

The objective of task 5B was to perform equipment sizing and costing for the
major equipment using Aspen Plus Process Economic Analyzer. First, we matched the
equipment type with each unit operation in the flowsheet. After that, we clicked on

“Evaluate Project” button to continue the sizing and costing calculations.
Task 6B: Economic analysis

The objective of task 6B was to evaluate economic profitability using Aspen
Plus Process Economic Analyzer. In this work, we compared the three production
processes in terms of discounted present value (DPV), discounted payback period (DPP)
and discounted cash-flow rate of return (DCFROR). Moreover, we studied the sensitivity

analysis by varying methyl palmitate purchasing cost, products selling prices and total
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project cost. Table 16 and 17 provide the cost of utilities and the main parameters

used for the economic analysis.

Table 16 Cost of utilities [6].

Utility

Description Cost (USD) for unit  Unit

Cooling tower water

Refrigerated water

Glycol solution
Low-pressure steam
High-pressure steam
Dowtherm
Electricity

Air supply

Process water

inlet temperature = 35 °C 0.378 GJ
outlet temperature = 50 °C
inlet temperature = 5 °C a.77 GJ

outlet temperature = 15 °C

available at -13.7 °C 8.49 GJ

5 barg, 160 °C 4.54 GJ
41 barg, 254 °C 5.66 GJ
available at 400 °C 13.88 GJ

- 0.0674 kWh
3.3 barg (50 psig) 0.005 std m’
1/3 cost of potable water 0.177 tonne

Table 17 Investment an

alysis parameters.

Parameter Value
Project lifetime 20 years
Number of week per year 52 weeks
Tax rate 40%

Interest rate/Desired rate of return  20%

Working capital
Operating charge
Plant overhead

General and administra

5% of fixed capital investment
25% of operating labor costs
50% of operating labor and maintenance costs

tive costs 8% of subtotal operating costs
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CHAPTER 4
RESULTS AND DISCUSSION

This chapter presents the results and interpretation of the results obtained
from property estimation and conceptual process design of the three production

processes. The contents are divided into six sections, as follows.
4.1.  Property estimation of the similar compounds

In this section, we summarized the comparison between the estimation results
and the data retrieved from Aspen databanks. Figure 14 — 20 present in terms of the
absolute deviation (AD) and the absolute relative deviation (ARD). Meanwhile, the

property parameters obtained from estimation methods are presented in Appendix F.
4.1.1. Critical temperature (TC)

From Figure 14 (a), the critical temperature of 2-Acetamidoethanol could not
be estimated using GANI method because of missing group contribution values for
some functional groups. In terms of deviations, Joback method provided less error
than other methods for 2-Acetamidoethanol and Monopalmitin, as shown in Figure 14
(a), (b) and (c). Joback, Lydersen, Ambrose and Gani methods had similar accuracy (0.7
- 1.5%) [40]. AUl of the methods, except Gani method, used molecular structure and
normal boiling point as input information. Whereas, Gani method used only molecular
structure. The second-order groups account for the effect of neighboring atoms that
make it has higher accuracy. However, Joback method was recommended for the

broadest range of compounds except for silicon groups because it easiest to use [26].

For 1,3-Dipalmitin compound, Fedors method showed the least deviation with
4.68% ARD, as shown in Figure 14 (d). This result is consistent with the work of Yener
[41], who reported that Fedors and Ambrose methods provided the most accurate

estimated results for long-chain lipids, especially for triglycerides.
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Acetamidoethanol (a), 1-Monopalmitin (b), 2-Monopalmitin (c) and 1,3-Dipalmitin (d).
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4.1.2. Critical pressure (PC)

Likewise, Gani method could not be used to predict the critical pressure of 2-
Acetamidoethanol. As shown in Figure 15, Joback method gave the lowest deviations
for 2-Acetamidoethanol and 1,3-Dipalmitin. Meanwhile, Gani method provided the
best results for Monopalmitin. Tahami et al. [42] reported that Joback method and
Gani methods presented the similar %AARD for nitrogen compounds (23.40%, 18.13%)
and esters (5.46%, 5.11%). We thought that these two methods could be used to

estimate the critical pressure because the deviations were not significant differences.
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Figure 15 Deviations of critical pressure estimation methods for 2-Acetamidoethanol

(a), 1-Monopalmitin (b), 2-Monopalmitin (c) and 1,3-Dipalmitin (d).

4.1.3. Critical volume (VC)

Reidel method required normal boiling point, critical temperature and critical
pressure for critical volume estimation. We used the critical temperature estimated
from Joback method for 2-Acetamidoethanol and Monopalmitin and Fedors method
for 1,3-Dipalmitin. Meanwhile, we used critical pressure estimated from Joback method
for 2-Acetamidoethanol and 1,3-Dipalmitin and Gani method for Monopalmitin. These
selected methods were the methods giving the lowest deviations for each property.
However, Riedel method gave the most considerable deviations for all compounds, as
shown in Figure 16. This might happen because the Riedel method was recommended

for hydrocarbon only [25].

As the same reason, Gani method also could not be used to estimate the
critical volume of 2-Acetamidoethanol. The results showed that Fedors, Joback and
Lydersen methods provided the lowest deviations for 2-Acetamidoethanol, Mono-
palmitin and 1,3-Dipalmitin, respectively. Sastri et al. [43] reported that these three
methods gave a similar average absolute deviation (3.6 - 3.8%) for non-hydrocarbons.

Whereas, Ambrose method provided less accuracy compared to Joback method.
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Figure 16 Deviations of critical volume estimation methods for 2-Acetamidoethanol

(a), 1-Monopalmitin (b), 2-Monopalmitin (c) and 1,3-Dipalmitin (d).



33

4.1.4. Standard heat of formation (DHFORM)

As shown in Figure 17 (b) and (c), Benson and BensonR8 gave the lowest
deviations for 1-Monopalmitin and 2-Monopalmitin. We would consider in term of the
sum of squares of absolute deviation to compare these two methods. The result
showed that BensonR8 provided the lower SSE, so we used this method for sucrose
monopalmitate estimation. In Figure 17 (d), BensonR8 was the most accurate method
for 1,3-Dipalmitin. For 2-Acetamidoethanol, the deviations from Benson and BensonR8
methods were equal. Therefore, we chose BensonR8 method like other compounds
for further estimating. These estimation results were the same as described in [25],

that Benson and BensonR8 methods gave higher accuracies than Joback and Gani

methods.
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Figure 17 Deviations of standard heat of formation estimation methods for 2-

Acetamidoethanol (a), 1-Monopalmitin (b), 2-Monopalmitin (c) and 1,3-Dipalmitin (d).

4.1.5. Ideal gas heat capacity (CPIG)

From Figure 18, the results of ideal gas heat capacity estimation are presented
at various temperatures (300, 500 and 1,000 K). We would compare each method in
term of the sum of squares of absolute deviation. The results showed that the Joback
method gave the least SSE for 2-Acetamidoethanol and 1,3-Dipalmitin. On the contrary,
Benson method provided the least SSE for Monopalmitin. However, these methods
could be used to predict ideal gas heat capacity because they gave similar accurate

results (1.1 — 1.4% ARD) [25].
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4.1.6. Vapor pressure (PL)

Riedel method required normal boiling point, critical temperature and critical
pressure for vapor pressure estimation. The values of these critical properties were
obtained from the same methods as described in 4.1.3. From Figure 19, Riedel method
provided lower deviations for all components at 0.9 of critical temperature and critical

temperature.

These results were the same as in the work of Vlad et al [44]. They reported
that Riedel method presented the more accurate vapor pressure than Li-Ma method

for methyl oleate (Ester) when the normal boiling point was known.
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Figure 19 Deviations of vapor pressure estimation methods for 2-Acetamidoethanol

(a), 1-Monopalmitin (b), 2-Monopalmitin (c) and 1,3-Dipalmitin (d).

4.1.7. Enthalpy of vaporization (DHVL)

Enthalpy of vaporization can be calculated by definition, as presented in Table
9. The values of critical temperature and critical pressure were obtained from the same
methods used in Riedel method as described in 4.1.3. For vapor pressure, we used the

values estimated from the Riedel method for all compounds.

From Figure 20, The definition method gcave the lowest deviations for all
compounds. Whereas, Ducros method could not be used to estimate this property
parameter for 2-Acetamidoethanol because of missing group contribution values for

some functional groups.
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Figure 20 Deviations of enthalpy of vaporization (at TB) estimation methods for 2-

Acetamidoethanol (a), 1-Monopalmitin (b), 2-Monopalmitin (c) and 1,3-Dipalmitin (d).
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From the results, we would select the best estimation methods with the lowest

AD and ARD values for estimating the properties of palmitoylethanolamide and sucrose

palmitate. Table 18 summarizes the most appropriate method for each property and

each compound.

Table 18 The best methods for estimating the properties of palmitoylethanolamide

and sucrose palmitate.

Property name Parameter PEA MONO-SE DI-SE
Critical temperature TC Joback Joback Fedors
Critical pressure PC Joback Gani Joback
Critical volume VvC Fedors Joback Lydersen
Standard heat of formation DHFORM BensonR8  BensonR8  BensonR8
Ideal gas heat capacity CPIG Joback Benson Joback
Vapor pressure PL Riedel Riedel Riedel
Enthalpy of vaporization DHVL Definition Definition Definition

4.2.  Property estimation of palmitoylethanolamide and sucrose palmitate

4.2.1.

Palmitoylethanolamide

From Table 18, we used these property methods to estimate each property

parameter. Table 19 and 20 present estimated pure component constants and

temperature-dependent properties for palmitoylethanolamide.

Table 19 Estimated pure component constants for palmitoylethanolamide.

Property name Estimation method Estimated value Unit
Critical temperature Joback 900 K
Critical pressure Joback 1.296E+06 N/sgm
Critical volume Fedors 1.076 cum/kmol
Standard heat of formation Benson -6.990E+08 J/kmol




40

Table 20 Estimated temperature-dependent properties for palmitoylethanolamide.

Parameter Ideal gas heat Vapor Enthalpy of
capacity pressure vaporization

Estimation method Joback Riedel Definition
Cyi -2,034 147 7.943E+07
Coi 1,796 -21,390 735
Csi -1.016 0 0.404
Cyi 2.143E-04 0 -0.948
Csi 0 -16.1 735
Cei 0 1.242E-18 -
Cai 280 6 -
Cgi 1,100 735 -
Coi 36,029 900 -
Cioi 83.2 - )
Cpai 1.5 - ;
Temperature unit K K K
Property unit J/(kmol-K) N/sgm J/kmol

4.2.2. Sucrose monopalmitate

From Table 18, we could not use GANI method to estimate the critical pressure

of sucrose monopalmitate because of missing group contribution values for some

functional groups. Thus, we replaced it with the Joback method, which had the second

smallest AD and ARD values. Table 21 and 22 present estimated pure component

constants and temperature-dependent properties for sucrose monopalmitate.

Table 21 Estimated pure component constants for sucrose monopalmitate.

Property name

Estimation method

Estimated value Unit

Critical temperature
Critical pressure
Critical volume

Standard heat of formation

Joback
Joback
Joback

BensonR8

1.045E+06

-2.485E+09

K
N/sgm
cum/kmol

J/kmol
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Table 22 Estimated temperature-dependent properties for sucrose monopalmitate.

Parameter Ideal gas heat Vapor Enthalpy of
capacity pressure vaporization

Estimation method Benson Riedel Definition
Cyi -86,421 -18.6 1.327E+07
Coi 3,453 1,059 1,018
Csi -2.33 0 0.294
Cyi 5.931E-04 0 -2.642
Csi 0 4.20 407
Cei 0 -2.190E-22 -
Cai 280 6 -
Cg 1,100 1,018 _
Coi 36,029 2,014 -
Cio 144 - -
Cyyj 1.5 - -
Temperature unit K K K
Property unit J/(kmol-K) N/sgm J/kmol

4.2.3. Sucrose dipalmitate

Likewise, the property parameters of palmitoylethanolamide were predicted
by the best estimation methods, as presented in Table 18. Table 23 and 24 present
estimated pure component constants and temperature-dependent properties for

sucrose dipalmitate.

Table 23 Estimated pure component constants for sucrose dipalmitate.

Property name Estimation method Estimated value Unit
Critical temperature Joback 1,083 K
Critical pressure Joback 4.496E+05 N/sgm

Critical volume Joback 2.558 cum/kmol

Standard heat of formation BensonR8 -2.982E+09 J/kmol
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Table 24 Estimated temperature-dependent properties for sucrose dipalmitate.

Parameter Ideal gas heat Vapor Enthalpy of
capacity pressure vaporization

Estimation method Joback Riedel Definition
Cyi -28,909 -724 3.850E-07
Coi 4,569 1.1325E+05 758
Csi -2.577 0 0.081
Cyi 5.345E-04 0 2.096
Csi 0 91 303
Cei 0 -1.795E-18 -
Cai 280 6 -
Csi 1,100 758 -
Coi 36,029 1,083 -
Cio 219 - -
Cpai 1.5 - ;
Temperature unit K K K
Property unit J/(kmol-K) N/sgm J/kmol

4.2.4. Solid-phase

Palmitoylethanolamide and sucrose palmitate remained in the solid phase at
the end of processes. Thus, the simulations would require solid property parameters
such as solid molar volume (VS), solid heat capacity (CPS) and solid standard enthalpy
of formation (DHSFRM). Since Aspen Plus has no estimation method for solid molar
volume, we would retrieve the data from the ChemSpider database, as shown in Table
25. For solid heat capacity and solid standard enthalpy of formation, only the Mostafa
method is available for predicting these values. Table 26 and 27 present the solid

properties estimated by Mostafa method.
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Table 25 Solid molar volume for palmitoylethanolamide and sucrose palmitate.

Compound Solid molar volume Unit Reference
Palmitoylethanolamide 329.0 cc/mol ChemSpider
Sucrose monopalmitate 456.3 cc/mol ChemSpider
Sucrose dipalmitate 717.9 cc/mol ChemSpider

Table 26 Estimated solid heat capacity for palmitoylethanolamide and sucrose

palmitate.

Parameter PEA MONO-SE DI-SE
Estimation method Mostafa Mostafa Mostafa
Cyi 4.082E+05 8.494E+05 1.167E+06
Ca 1,061 1,459 2,324
Csi -0.057 -0.067 -0.113
Cyi 0 0 0
Csi -1.179E+10 -2.440E+10 -3.315E+10
Csi 0 0 0
Cyi 280 280 280
Cai 1,100 1,100 1,100
Temperature unit K K K
Property unit J/kmol J/kmol J/kmol

Table 27 Estimated solid standard enthalpy of formation for palmitoylethanolamide

and sucrose palmitate.

Compound Estimation method Estimated value Unit
Palmitoylethanolamide Mostafa -5.437E+08 J/kmol
Sucrose monopalmitate Mostafa -4.060E+09 J/kmol

Sucrose dipalmitate Mostafa -4.149E+09 J/kmol
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4.3. Conceptual process design

4.3.1. Process description of palmitoylethanolamide production

Process flow diagram for the production of palmitoylethanolamide is shown in
Figure 21. Fresh methyl palmitate (Stream 1) with a feed rate of 100,000 tonnes per
year is mixed with fresh stream and recycle stream of monoethanolamine (Stream 2
and 4) in a liquid mixing tank (D-101). The temperature of the liquid mixture is adjusted
to reaction temperature in a heat exchanger (E-101) before sent to the reactor (R-201).
The operating conditions of the reactor are presented in Table 13. Next, the reactor
effluent is sent to a vacuum distillation column (C-301) to remove the methanol by-
product. The liquid bottom stream is mixed with the fresh water in a liquid mixing tank
(D-401). The agqueous stream containing the desired product is cooled to a temperature
of 6 °C through a heat exchanger (E-401) before sent to a crystallizer (CR-401). In the
crystallizer, palmitoylethanolamide is converted from a liquid state to a solid-state.
After that, the solid is isolated from the liquid by a filter (F-401). The liquid stream
containing monoethanolamine and water is passed through a pump (P-401) and sent
to a distillation column (D-401). The distillate product stream, which consists of water,
is removed from the process. Meanwhile, monoethanolamine in the bottom stream is
delivered to a pressure reducing valve (V-101) and recycled back to the mixing tank.
Because some of the liquids remain in the solid stream, a dryer (DR-401) is used to
evaporate these liquid compounds. Finally, we obtained 112,995 tonnes per year of
98%wt palmitoylethanolamide (Stream 21). Stream table of the process and summary

of unit operating conditions are summarized in Appendix D.



"apluweioueyiakoiuied jo uondnpold sy o) WRISeIP MO} $S9201d TZ 24nSiH

) 4
2]

pOv-3

L 10740 T 10542

O—@e— = —> <D

apluejoUeYID A0} IW e —

121BAN
1094
.UA} T4
1SI0W + 1Y

<
¢
&
8
@
!

.UA 8

JouRUIB|\ - DISeM

(P92) SUILR)OUBY}SOUO

T e m'

(pa24) arenuwned Ay

G



a6

4.3.2. Process description of sucrose palmitate production

Process flow diagram for the production of sucrose palmitate is presented in
Figure 22. 100,000 tonnes per year of methyl palmitate (Stream 1) are fed into a liquid
mixing tank (D-101), which it is mixed with sucrose, sucrose palmitate (surfactant) and
the recycled methyl palmitate (Stream 2, 3 and 5). This liquid mixture is sent to a
pressure reducing valve (V-101) and a heat exchanger (E-101) to bring it to reaction
pressure and temperature before entering a reactor (R-201). The operating conditions
of the reactor are presented in Table 14. The outlet stream of the reactor is delivered
to a flash drum (D-301) to remove methanol vapor. Then, the liquid effluent from D-
301 is adjusted to room pressure and temperature by passing a pump (P-301) and a
heat exchanger (E-301). For the product purification, this step is divided into 3 sub-
steps. (1) Methyl palmitate separation: Ethyl acetate, which is used to extract the
unreacted methyl palmitate, is mixed with the stream 13 in a mixing tank (D-401). After
that, the solid and liquid are separated from each other by a filter (F-401). The liquid
stream containing the unreacted methyl palmitate and ethyl acetate is sent to a
distillation column (C-401). These two compounds are separated and then recycled to
D-101 and D-403, respectively. Meanwhile, the solid stream is sent to the evaporator
(EV-401) to vaporize the remaining ethyl acetate. The ethyl acetate vapor is condensed
in a condenser (E-404) and then mixed with the ethyl acetate from C-401 in a mixing
tank (D-402) before it recycles back to D-401. The solid is then cooled to the room
temperature in a heat exchanger (E-405) and sent to the next sub-steps. (2) Sucrose
separation: Water is added to dissolve the unreacted sucrose, and the additional
sucrose is used to decrease the solubility of sucrose palmitate in water. Water, sucrose
and the solid are mixed in a mixing tank (D-404). The aqueous solution is removed
from the process by a filter (F-402). Next, the solid stream containing the desired
product is delivered to (3) the drying process to remove the remaining water by a dryer
(DR-401). Finally, we obtained 164,510 tonnes per year of 98%wt sucrose palmitate
(Stream 34). These products consisted of sucrose monopalmitate and sucrose
dipalmitate. Stream table of the process and summary of unit operating conditions are

summarized in Appendix D.
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4.3.3. Process description of normal alkanes production

Figure 23 present the process flow diagram for the production of normal
alkanes. Methyl palmitate with a feed rate of 100,000 tonnes/year (Stream 4) and
recycled hexadecanol and palmitic acid (Stream 6) is fed to a liquid mixing tank (D-
101). The liquid mixture is flowed through a pump (P-101) to increase the pressure as
required in the reactor. Meanwhile, the hydrogen feed (Stream 1) is passed through a
pressure reducing valve (V-101). The gas and liquid streams are mixed and then heated
in a heat exchanger (E-101) before sent to the reactor (R-201). The operating conditions
of the reactor are presented in Table 15. The reaction product stream is cooled in a
heat exchanger (E-301) and then delivered to flash drum (D-301 and D-302) to separate
the gas phase from the liquid phase. After that, the gaseous stream consisting mainly
of the unreacted hydrogen is split into two streams: purge and recycle streams. The
Purge stream is removed from the process to avoid an accumulation of by-products
(CO and CHy), whereas the remaining stream is recycled back to the front end of this
process. The two liquid streams from the flash drums are mixed in a mixing tank (D-
303) and followed by a decanter (D-404) to remove water. The liquid mixture stream
is then passed through a pressure reducing valve (V-401) and sent to a distillation
column (C-401) equipped with a partial condenser. The vapor distillate stream, which
consists of light gases (H,, CO and CHy), is removed from the process. The bottom
product stream is delivered to the next distillation column (D-402). This column
separates the desired products from hexadecanol and palmitic acid. These unreacted
intermediates are recycled back to D-101 through a pressure reducing valve (V-102).
The distillate product is delivered to a pump (P-401) and then sent to a final distillation
column (C-403). Purified pentadecane and hexadecane streams are adjusted to the
storage conditions via pressure-reducing valves (V-402 and V-403) and heat exchangers
(E-407 and E-408). Finally, we obtained 55,448 and 24,612 tonnes per year of 99%wt
pentadecane (Stream 31) and hexadecane (Stream 33), respectively. Stream table of

the process and summary of unit operating conditions are summarized in Appendix D.
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4.3.4. Thermodynamics model selection

For the production of palmitoylethanolamide and sucrose palmitate, these
processes contain some of the polar compounds, and no electrolytes are presented.
According to the decision trees by Eric C. Carlson [39], activity coefficient models are
preferred for these low-pressure systems. Since palmitoylethanolamide and sucrose
palmitate are non-databank components, binary parameters are not available. Thus,
we chose the UNIFAC method for these process simulations. The UNIFAC method uses
the group contributions to predict the interaction parameters; hence we needed to

add the group contributions of these products, as follows.

O
K OH
HsC /\/\/\/\/\/\/\) N/\/
H
(a)
HO OH
OH
0 0.
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HO OH
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Figure 24 The UNFAC groups of palmitoylethanolamide (a), sucrose monopalmitate

(b) and sucrose dipalmitate (c).
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Table 28 The UNIFAC groups of palmitoylethanolamide.

Group Group number Number of occurrences
CH2 1010 15
CH3 1015 1
OH (P) 1200 1
CONHCH2 3560 1

Table 29 The UNIFAC groups of sucrose monopalmitate and sucrose dipalmitate.

Number of occurrences
Group Group number

Sucrose monopalmitate Sucrose dipalmitate

C 1000 1 1
CH 1005 5 5
CH2 1010 15 27
CH3 1015 1 2
OH (P) 1200 7 6
CH2CO 1400 1 2
CH-O 1605 3 3
CH20 1610 1 2

For the production of normal alkanes, this simulation contains some of the
polar compounds, and no electrolytes are presented. All components in this system
are available in Aspen Plus, so they have the binary parameters in the databanks.
According to the decision tree, we chose the PENG-ROB as the property method for
the high-pressure (=10 bar) unit operations and the NRTL method for the remaining
units. Moreover, Henry parameters are required because the supercritical gases (H,, CO,

and CHy) are presented in this simulation.
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4.3.5. Value-added chemicals production yield

The feed rate of methyl palmitate was set equal to 100,000 tonnes per year
for each process. Figure 25 presents the comparison of product yield from the three
processes. The results showed that the sucrose palmitate production gave the highest
product yield, followed by palmitoylethanolamide and normal alkanes, respectively.
Considering the selling prices of products, even the price of sucrose palmitate was
lower than palmitoylethanolamide and hexadecane, the total annual product sales of

the sucrose palmitate production were still highest.

180,000 400
160,000 350 =
2
E 140,000 300 3
) C
€ 120,000 S
< 250 =
£ 100,000 E
o 200 §
280,000 ]
£ 150 5
S 60,000 s
S 8
& 40,000 100 £
=
20,000 50 =
l_

0 0

Palmitoylethanolamide Sucrose palmitate Normal alkanes

Value-added chemicals production process

Figure 25 Product yield by 100,000 tonnes of methyl palmitate feedstock.
4.4,  Economic analysis

Table 30 summarized the sales and expenses for each process. Considering the
total project cost, palmitoylethanolamide production is the most expensive process.
This was caused by the high costs of crystallizer (CR-401), distillation column (C-401),
and reboiler (E-403), as shown in Appendix E. These unit operations were larger than
in other processes because of much higher inlet mass flow rates. Moreover, the total
annual utilities cost of this process also higher than others. The cost of high-pressure
steam influenced this cost because of the high energy consumption required in a

reboiler (E-403). Even though palmitoylethanolamide's selling price was the highest,
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this process had lower sales and higher expenses than the production of sucrose
palmitate. This meant that the production of palmitoylethanolamide was not as

economically attractive as sucrose palmitate production.

On the contrary, the production of normal alkanes was the cheapest process.
This process had the lowest total equipment purchasing cost, although it had more
equipment than other processes. The solvent did not present in this process that might
cause smaller sizes of unit operations. Besides, this reduced the total annual raw
material cost. Unfortunately, this alternative produced less amount of the primary
product than other processes. The selling price of pentadecane was also the cheapest.

When considering in terms of the annual profit, this process provided the lowest value.

For the production of sucrose palmitate, this alternative provided the most
considerable sales with 370 million USD. In contrast, it had the second-largest total
capital investment and total annual operating costs. Table 31 shows that sucrose
palmitate production was the optimal alternative in terms of the highest discounted
present value (DPV), lowest discounted payback period (DPP), and highest discounted
cash-flow rate of return (DCFROR). The second and third attractive processes were the

production of palmitoylethanolamide and normal alkanes, respectively.
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Table 30 Summary of the economic performances of the three processes.

Indicator Palmitoylethanolamide  Sucrose palmitate = Normal alkanes

DPV (USD) 327,000,000 451,000,000 64,600,000
DPP (year) 3.10 297 7.15
DCFROR (%) 87.96 96.47 35.13

4.5. Comparing the results with other literature

For the production of normal alkanes, we compared the economic analysis
results with other literature. For example, we compared the total equipment direct
cost with the work of Kantama et al. [45]. They studied the production of hydrogenated
renewable diesel from palm fatty acid distillate (PFAD) with the feed rate of 17,250
tonnes/yr. The unit operation of their process also similar to our work. However, the
feed rate was not equal to our work, so we should use the cost curve method, as
presented in equation 7. The comparison of total equipment direct cost is shown in

Table 32. We found that these values are similar.

Cost A (Size A)0'6

(7)

CostB  \Size B

Table 31 The comparison of the total equipment direct cost.

Our work Kantama et al.

Total equipment direct cost (USD) 7,070,000 8,950,000
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4.6. Sensitivity analysis

In this work, a sensitivity analysis was conducted to study the effects of three
variables such as methyl palmitate purchasing cost, products selling prices and total

project cost. The results were compared in terms of DPV, DPP and DCFROR.

4.6.1. Effect of variation of methyl palmitate purchasing cost

According to biodiesel prices reported by the Ministry of Energy of Thailand,
the biodiesel price for the last 5 years was in the range of 19.32 to 42.10 bath/litre.
This meant that it varied from -32% to 48% of the average price. Therefore, we studied
the change of methyl palmitate purchasing cost between -50% to 50% of the original
value (700 to 2,100 USD/tonne).

Figure 26 to 28 present the effect of methyl palmitate purchasing cost for the
three production processes. The NPV value decreased by 46 — 51 million USD per 10%
increased in methyl palmitate cost for palmitoylethanolamide and sucrose palmitate
production processes. Meanwhile, the DPP values were less than 10 years, and the
DCFROR values were more than 20% at the highest cost of methyl palmitate. This
meant that these processes still kept profitable even if methyl palmitate purchasing

cost would change from the original value.

For the production of normal alkanes, at methyl palmitate cost above 1,540
USD (10%), the NPV value would become negative. This process could not recover the
total investment costs within 20 years. The results showed that this alternative was

the most sensitive for the variation of the methyl palmitate purchasing cost.
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Figure 26 The effect of methyl palmitate purchasing cost on DPV (a), DPP (b) and
DCFROR (c) for palmitoylethanolamide production.
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Figure 27 The effect of methyl palmitate purchasing cost on DPV (a), DPP (b) and

DCFROR (c) for sucrose palmitate production.



(b)

400 H

0

DP\gﬂ(IYIiIIion UsD)

DPP (Years)

%

fal
T T T T U

-40% -30% -20% -10% Ope
-100 4

10%

-200 A

-300 -

30%

40%

50%

Variation

-50%

DCFROR (%)

160
140
120

80
60
40
20

D

10%

-40% -30% -20% -10% 0%

Variation

-50% -40% -30% -20% -10%

0%
Variation

20%

30%

40%

50%

10%

20%

30%

40%

50%

59

Figure 28 The effect of methyl palmitate purchasing cost on DPV (a), DPP (b) and

DCFROR (c) for normal alkanes production.
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4.6.2. Effect of variation of product selling prices

Likewise, we studied the change of product selling price between -50% to 50%
of the original value. Figure 29 shows the effect of the palmitoylethanolamide selling
price between 1,500 and 4,500 USD/tonne. When the product selling price was less
than or equal to 2,100 USD/tonne (-30%), this process would provide negative NPV,
and the DPP value was beyond the project lifetime. As shown in Figure 30 to 31, the
prices of products changed from 1,125 to 3,375 USD/tonne for sucrose palmitate, 1,000
to 3,000 USD/tonne for pentadecane and 1,500 to 4,500 USD/tonne for hexadecane.
The sucrose palmitate selling prices were required more than 1,350 USD/tonne (-40%)
to make this alternative feasible. Meanwhile, normal alkanes production required
product selling prices of pentadecane and hexadecane greater than or equal to 1,800
and 2,700 USD/tonne (-10%). The results showed that sucrose palmitate production

could be profitable at the lowest of product selling price among other processes.

1 -
(a) ,000
800 -
a 600
D
c
.2
2
>
gl T T T T T T T 1
-50% -30% -20% -10% Ope 10% 20% 30% 40% 50%
-200 -
Variation

-400 -



(b)

(c)

50%

10 -~
9 -
8 _
7
Td 6
© 5
= 4
%‘ 3
2
1 -
r T T T T C T T T T 1
-50% -40% -30% -20% -10% 0% 10% 20% 30% 40%
Variation
300 -
250 -

0 T T T .-.-.I e

-50% -40% -30% -20% -10%

0%

10%

Variation

20%

50%

30% 40%

61

Figure 29 The effect of palmitoylethanolamide selling price on DPV (a), DPP (b) and

(a)

DCFROR (c) for palmitoylethanolamide production.
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Figure 30 The effect of sucrose palmitate selling price on DPV (a), DPP (b) and

(a)

DPV (Million USD)

DCFROR (c) for sucrose palmitate production.
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Figure 31 The effect of pentadecane and hexadecane selling prices on DPV (a), DPP

(b) and DCFROR (c) for normal alkanes production.

4.6.3. Effect of variation of fixed capital investment (FCI)

According to the cost estimation method, it has an error of +35%. Therefore,
we studied the change of fixed capital investment between -35% to 35% of the original
value. Figure 32 to 34 presents the effect of fixed capital investment on the economic
indicators for the palmitoylethanolamide, sucrose palmitate and normal alkanes
production processes. The NPV values decreased by 1 — 4, 2, and 1 million USD per
10% increased in fixed capital investment for the three processes. Whereas, the DPP

values increased by 0.02 - 0.09, 0.03, and 0.14 - 0.15 years. The DCFROR value
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decreased by 1 - 5%, 1 - 3%, and 0.4 — 0.8%, respectively. However, these processes
still kept profitable. We could see that the change in fixed capital investment between

-35% and 35% had less impact than the cost of raw material and products for all

processes.
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Figure 32 The effect of total capital investment on DPV (a), DPP (b) and DCFROR (c)
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for palmitoylethanolamide production.
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Figure 33 The effect of total capital investment on DPV (a), DPP (b) and DCFROR (c)

for sucrose palmitate production.
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Figure 34 The effect of total capital investment on DPV (a), DPP (b) and DCFROR (c)

for normal alkanes production
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CHAPTER 5
CONCLUSION

5.1. Conclusion

In this work, we presented an alternative for using methyl palmitate as a raw
material to produce the value-added chemicals instead of selling as a biofuel. These
chemicals were palmitoylethanolamide, sucrose palmitate and normal alkanes. Firstly,
we estimated property parameters of palmitoylethanolamide and sucrose palmitate,
which were not available in Aspen Plus V11. We chose the most accurate Aspen Plus's
built-in estimation methods based on the results of property estimation of structurally
similar compounds to our chemicals. They were 2-Acetamidoethanol, 1-Monopalmitin,
2-Monopalmitin and 1,3-Dipalmitin, which had experimental properties. The expected
estimation results of palmitoylethanolamide and sucrose palmitate were further used
in the process simulation step. Next, the three production processes were simulated
using Aspen Plus V11. We specified the methyl palmitate feed rate of 100,000 tonnes
/year for all processes. The simulation results reported that the production rates were
112,995 tonnes/year, 164,510 tonnes/year and 80,060 tonnes/year for the production
of palmitoylethanolamide, sucrose palmitate and normal alkanes, respectively. Finally,
we performed an economic analysis of each process using Aspen Process Economic
Analyzer. The results presented that the production of sucrose palmitate was the best
alternative with the higher NPV, higher DCFROR and lower DPV values. Besides, this
process was the least sensitive alternative to the changes in methyl palmitate cost

and product selling price.

5.2. Recommendation

5.2.1. The more structurally similar compounds can provide more accuracy of the
estimation property parameters.

5.2.2. Vary the operating conditions of solid handling equipment to find the optimal
conditions for each process.

5.2.3. Compare the three production processes in terms of energy consumption and

carbon dioxide emissions.
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APPENDIX A
GROSS PROFIT MARGIN ANALYSIS

Assumption

- The amount of methyl palmitate (feedstock) is 1 tonne.

- Process conversion (x) = 1

No capital costs, utility costs, and operating costs have been considered.

By-products are classified as non-valuable products.

Gross profit margin is obtained by subtracting the raw materials costs from revenue
products [6]. Table 33 presents raw materials costs and products selling prices. The

gross profit margin for each alternative process is given in Table 34.

Table 32 Raw materials costs and products selling prices

Chemicals CAS No. Prices (USD/tonne) Reference
Ascorbic acid 50-81-7 4,800 [46]
Ascorbyl palmitate 137-66-6 5,000 [47]
Butanol 71-36-3 781 [46]
Butyl palmitate 111-06-8 1,000 [48]
Cetyl alcohol 36653-82-4 1,200 [47]
Cetyl palmitate 540-10-3 1,000 (48]
Ethanol 64-175-5 1,028 [46]
Ethyl palmitate 628-97-7 1,000 [47]
Hexadecane 544-76-3 3,000 [47]
Hydrogen 1333-74-0 2,000 [49]
Isopropanol 67-63-0 1,208 [46]
Isopropyl palmitate 142-91-6 1,500 [47]
Methanol 67-56-1 287 [46]
Methyl palmitate 112-39-0 1,400 [47]
Monoethanolamine 141-43-5 1,000 [47]

Palmitic acid 57-10-3 1,200 [47]
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Table 33 Raw materials costs and products selling prices (cont.)

Chemicals CAS No. Prices (USD/tonne) Reference
Palmitoylethanolamide 544-31-0 3,000 [47]
Pentadecane 629-62-9 2,000 [47]
Retinol 68-26-8 1,990 [47]
Retinyl palmitate 79-81-2 2,550 [47]
Sucrose 57-50-1 370 (9]
Sucrose palmitate 26446-38-8 2,250 (9]

Example Gross profit margin for ascorbyl palmitate production process

Reaction Methyl palmitate + Ascorbic acid — Ascorbyl palmitate + Methanol
MW 270.45 176.12 414.53 32.04
Mole stoi 1 1 1 1
Mass stoi 270.45 176.12 414.53 32.04
Feed (tonne) 1 5 x 176.12 = x 41453 = x 32.04
270.45 270.45 270.45
20654 = 1.533 =0.118

Gross profit margin = (1.533 tonne)(5,000 USD/tonne) — (1 tonne)(1,400 USD/tonne)
- (0.651 tonne)(4,800 USD/tonne)

Gross profit margin = 3,138 USD
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APPENDIX B
FEED AND PRODUCT SPECIFICATIONS

Table 34 Properties and specification of methyl palmitate

Property Methyl palmitate

Physical and chemical properties

Chemical formula Cy7H340,
Molecular weight 270.456
Appearance Light yellow clear liquid
Odor Wax-like
Melting point 29.9 °C
Boiling point 324.55 °C
Vapor pressure 1.49E-04 Torr at 25 °C
Density 0.852 g/cm’
Solubility Insoluble in water
Storage 35°C, 1 atm
Cost 1,400 USD/tonne
NFPA Classification Health: 0
Flammability: 1
Instability: 0

Specific hazard: N/A
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APPENDIX C
SIMPLE MASS BALANCE

C.1. Palmitoylethanolamide production

Table 38 Input-output structure of palmitoylethanolamide production.

Component Classification Destination code  NBP (°C)
Methanol Gas Byproduct Vent 64.7 (1)
Monoethanolamine Liquid Reactant Recycle 170.0
Methyl palmitate Liquid Reactant - 324.6
Palmitoylethanolamide  Solid Product Primary product 461.5 (2)

* Methyl palmitate is completely consumed.

Methyl palmitate (1) Vent (Methanol)

\ 4
v

Process

Monoethanolamine (2) Primary product

\4

(Palmitoylethanolamide)

Figure 35 Input-output structure of palmitoylethanolamide production.

Design basis

- Methyl palmitate feed rate of 100,000 tonnes/year

- Reaction conversion: x = 1 (Reaction pathway as in Table 13)
- Process conversion: x = 1

- No excess of the reactant at process inlet

- Calculation basis 12,500 kg/h of methyl palmitate (S1)
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C.2.  Sucrose palmitate production

Table 39 Input-output structure of sucrose palmitate production.

84

Component Classification Destination code NBP (°C)
Methanol Gas Byproduct  Vent 64.7 (1)
Methyl palmitate Liquid Reactant  Recycle 324.6
Sucrose Solid Reactant Waste ar7.9 2)
Sucrose monopalmitate  Solid Product/ Primary product 744.9

Surfactant
(3)
Sucrose dipalmitate Solid Product/ Primary product 863.2
Surfactant
Methyl palmitate
Sucrose q (1) Vent (Methanol) -
Process

Sucrose palmitate

A 4

(Surfactant)

(3) Primary product

(Sucrose palmitate)

(2) Waste (Sucrose)

v

Figure 37 Input-output structure of sucrose palmitate production.

Design basis

Methyl palmitate feed rate of 100,000 tonnes/year

Reaction conversion: x; = 0.3098, x, = 0.1755

(Reaction pathway as in Table 14)

Process conversion: x; = 1

- No excess of the reactant at process inlet

Calculation basis 12,500 kg/h of methyl palmitate (S1)

\4
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C.3.

Normal alkanes production

Table 40 Input-output structure of normal alkanes production.
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Component Classification Destination code NBP (°C)
Hydrogen Gas Reactant Recycle and purge  -252.8

Carbon monoxide Gas Byproduct Recycle and purge  -191.5 (1)
Methane Gas Byproduct Recycle and purge  -161.5

Water Liquid Byproduct  Waste 100.0 (2
Pentadecane Liquid Product Primary product 1~ 270.7 (3)
Hexadecane Liquid Product Primary product 2 286.9 (4)
Hexadecanal Liquid Reactant - 320.6

Methyl palmitate Liquid Reactant = 324.6
Hexadecanol Liquid Reactant Recycle 324.9

Palmitic acid Liquid Reactant Recycle 350.0

* Hexadecanal and methyl palmitate are completely consumed.

(1) Purge (H,/CO/CH,)

Hydrogen

h 4

Methyl palmitate

h 4

Process

(3) Primary product 1
(Pentadecane)

v

(4) Primary product 2
(Hexadecane)

v

v

(2) Waste (Water)

v

Figure 39 Input-output structure of normal alkanes production.

Design basis

Methyl palmitate feed rate of 100,000 tonnes/year

Reaction conversion: x; = 1, X, = 0.9915, x5 = 0.706, X, = 0.294, Xs = 0.9708

(Reaction pathway as in Table 15)

Process conversion: x; = 1

10% excess hydrogen at process inlet

Calculation basis 12,500 kg/h of methyl palmitate (S1)



L8

"uodNpold saue|e 1euIOU 10} 9duUejeq euaiely Of 24nsiH

¢0T | 0T 0 0 400! 401 pioe dSijiued
66 66 0 0 66 66 JouedspeXaH
0 0 0 0 0 00621 Syeyuned Aylew
0 0 0 0 0 0 JeuedspexsH
0 110'¢ | 0 0 L110¢ |0 auedapexsH
0 1¢69 | 0 0 1¢69 | 0 SuedapeIURd
0 L10T | 0 0 10T |0 1218/
0 0 9G6‘1¢ | 869C¢ | 869°C¢ | 956°T¢ sueyla
0 0 16£'6¢ | SO0V | GOS0V | T6£'6¢ | SPXOUOW uogied
0 0 6207 €907 €907 p0g'T U950IPAH
0TS 8S LS SS ) ¢S jusuodwio)
» 2124031 pinbi7
01S
Uy £20'T (1238/1) S35BM 6S
v
cr wasAs w1sAs y u/3 00521
¢ \A d
Wt LL0'e ZPn MOJMumﬂwwwM s < uoljesedas < WID1SAS 101003y |4 uoneledaid ¢s areuned Kpaw
uonesedss 85 oco S €s ot someos L u/8y 99z
U/ 1569 SuesapeIuad Ud P99 101083y (4 < Y
1 1npoud Aewid -
118
qS
» 910021 sen
U8 ThL "HD 25.nd 9S LS
U pT6 0D
us bz H




APPENDIX D

STREAM TABLE AND EQUIPMENT SUMMARY

D.1. Palmitoylethanolamide production

Table 41 Stream table for the production of palmitoylethanolamide.

88

Stream number 1 2 3 4 5 6
Temperature (°C) 35.0 20.0 192.4 169.5 162.8 60.0
Pressure (bar) 1.01 1.01 2.00 1.01 1.01 1.01
Vapor mole fraction 0.0 0.0 0.0 0.10 0.0 0.0
Total flow (ke/h) 12,500 ~ 3,954 52,533 52,533 68,987 68,987
Total flow (kmol/h) 46.22 64.74  860.89 860.89 971.84 971.84
Component flowrates (kmol/h)

Methanol 0.0 0.0 0.0 0.0 0.0 0.0
Water 0.0 0.0 1.26 1.26 1.26 1.26
Monoethanolamine 0.0 64.74 859.63  859.63 92437  924.37
Methyl palmitate 46.22 0.0 0.0 0.0 46.22 46.22
Palmitoylethanolamide 0.0 0.0 0.0 0.0 0.0 0.0
Air 0.0 0.0 0.0 0.0 0.0 0.0
Stream number 7 8 9 10 11 12
Temperature (°C) 60.0 23.2 140.1 140.2 35.0 56.8
Pressure (bar) 1.01 0.15 0.35 1.01 1.01 1.01
Vapor mole fraction 0.0 0.0 0.0 0.0 0.0 0.0
Total flow (kg/h) 68,987 1,507 67,480 67,480 231,172 298,652
Total flow (kmol/h) 971.84 ar.av 92438 92438 12,832 13,756
Component flowrates (kmol/h)

Methanol 46.22 46.17 0.0 0.0 0.0 0.0
Water 1.26 1.21 0.05 0.05 12,832 12,832
Monoethanolamine 878.15 0.09 878.06  878.06 0.0 878.06
Methyl palmitate 0.0 0.0 0.0 0.0 0.0 0.0
Palmitoylethanolamide  46.22 0.0 46.22 46.22 0.0 46.22
Air 0.0 0.0 0.0 0.0 0.0 0.0




Table 42 Stream table for the production of palmitoylethanolamide (cont.).
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Stream number 13 14 15 16 17 18
Temperature (°C) 6.0 6.0 6.0 6.0 6.0 111.4
Pressure (bar) 1.01 1.01 1.01 1.01 2.00 1.50
Vapor mole fraction 0.0 0.0 0.0 0.00 0.0 0.0
Total flow (kg/h) 298,652 298,652 19,794 278,858 278,858 226,326
Total flow (kmol/h) 13,756 13,756 33274 13,424 13424 12,563
Component flowrates (kmol/h)

Methanol 0.05 0.05 0.0 0.05 0.05 0.05
Water 12,832 12,832  268.17 12,564 12,564 12,563
Monoethanolamine 878.06  878.06 18.35 859.71  859.71 0.09
Methyl palmitate 0.0 0.0 0.0 0.0 0.0 0.0
Palmitoylethanolamide  46.22 46.22 46.22 0.0 0.0 0.0
Air 0.0 0.0 0.0 0.0 0.0 0.0
Stream number 19 20 21 22

Temperature (°C) 35.0 300.0 125.0 125.0

Pressure (bar) 1.01 1.01 1.01 1.01

Vapor mole fraction 1.0 1.0 0.0 1.00

Total flow (kg/h) 100,164 100,164 14,124 105,834

Total flow (kmol/h) 3,460 3,460 50.84 3,742

Component flowrates (kmol/h)

Methanol 0.0 0.0 0.0 0.0

Water 0.0 0.0 0.00 268.17
Monoethanolamine 0.0 0.0 4.62 13.73

Methyl palmitate 0.0 0.0 0.0 0.0
Palmitoylethanolamide 0.0 0.0 46.22 0.0

Air 3,460 3,460 0.0 3,460
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D.2.  Sucrose palmitate production

Table 43 Stream table for the production of sucrose palmitate.
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Stream number 1 2 3 4 5 6
Temperature (°C) 35.0 23.0 35.0 355.7 323.8 153.8
Pressure (bar) 1.01 1.01 1.01 2.00 1.01 1.01
Vapor mole fraction 0.0 0.0 0.0 0.0 0.47 0.0
Total flow (keg/h) 12,500 13,122 7,057 13,438 13,438 46,118
Total flow (kmol/h) 46.22 38.34 10.47 49.83 49.83  144.85
Component flowrates (kmol/h)

Methanol 0.0 0.0 0.0 0.0 0.0 0.0
Ethyl acetate 0.0 0.0 0.0 0.20 0.20 0.20
Water 0.0 0.0 0.0 0.0 0.0 0.0
Methyl palmitate 46.22 0.0 0.0 49.62 49.62 95.84
Sucrose 0.0 38.34 0.0 0.0 0.0 38.34
Sucrose monopalmitate 0.0 0.0 6.38 0.0 0.0 6.38
Sucrose dipalmitate 0.0 0.0 4.09 0.0 0.0 4.09
Stream number 7 8 9 10 11 12
Temperature (°C) 153.8 136.0 136.0 136.0 136.0 136.0
Pressure (bar) 0.33 0.33 0.33 0.33 0.33 1.01
Vapor mole fraction 0.0 0.0 0.28 1.00 0.0 0.0
Total flow (kg/h) 46,118 46,118 46,118 1,352 44,766 44,766
Total flow (kmol/h) 144.85 14485 144.85 40.73  104.12 104.12
Component flowrates (kmol/h)

Methanol 0.0 0.0 41.30 40.39 0.91 0.91
Ethyl acetate 0.20 0.20 0.20 0.18 0.02 0.02
Water 0.0 0.0 0.0 0.0 0.0 0.0
Methyl palmitate 95.84 95.84 54.54 0.15 54.39 54.39
Sucrose 38.34 38.34 8.64 0.0 8.64 8.64
Sucrose monopalmitate 6.38 6.38 24.46 0.0 24.46 24.46
Sucrose dipalmitate 4.09 4.09 15.70 0.0 15.70 15.70




Table 44 Stream table for the production of sucrose palmitate (cont.).
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Stream number 13 14 15 16 17 18
Temperature (°C) 35.0 35.0 35.0 34.6 34.6 34.6
Pressure (bar) 1.01 1.01 1.01 1.01 1.01 1.01
Vapor mole fraction 0.0 0.0 0.0 0.0 0.0 0.0
Total flow (ke/h) 44,766 174 197,428 242,368 49,137 193,231
Total flow (kmol/h) 104.12 1.97 2,241 2,347  255.67 2,092
Component flowrates (kmol/h)

Methanol 0.91 0.0 1.02 1.92 0.17 1.75
Ethyl acetate 0.0 1.97 2,240 2,242 201.78 2,040
Water 0.0 0.0 0.0 0.0 0.0 0.0
Methyl palmitate 54.39 0.0 0.14 54.53 491 49.62
Sucrose 8.64 0.00 0.0 8.64 8.64 0.00
Sucrose monopalmitate  24.46 0.0 0.00 2446  24.46 0.00
Sucrose dipalmitate 15.70 0.0 0.00 15.70 15.70 0.00
Stream number 19 20 21 22 23 24
Temperature (°C) 34.7 89.5 771 35.0 130.0  130.0
Pressure (bar) 2.00 1.50 1.01 1.01 1.01 1.01
Vapor mole fraction 0.0 0.0 0.1 0.0 1.00 0.0
Total flow (kg/h) 193,231 179,793 179,793 179,793 17,682 31,454
Total flow (kmol/h) 2,092 2,042 2,042 2,042  200.51  55.16
Component flowrates (kmol/h)

Methanol 1.75 1.75 1.75 1.75 0.17 0.0
Ethyl acetate 2,040 2,040 2,040 2,040  200.19 1.58
Water 0.0 0.0 0.0 0.0 0.0 0.0
Methyl palmitate 49.62 0.0 0.0 0.0 0.14 4.76
Sucrose 0.0 0.0 0.0 0.0 0.0 8.64
Sucrose monopalmitate 0.0 0.0 0.0 0.0 0.0 24.46
Sucrose dipalmitate 0.0 0.0 0.0 0.0 0.0 15.70




Table 44 Stream table for the production of sucrose palmitate (cont.).

95

Stream number 25 26 27 28 29 30
Temperature (°C) 35.0 35.0 35.0 23.0 352 35.2
Pressure (bar) 1.01 1.01 1.01 1.01 1.01 1.01
Vapor mole fraction 0.0 0.0 0.0 0.0 0.0 0.0
Total flow (kg/h) 17,682 31,454 71,019 1,896 104,370 28,613
Total flow (kmol/h) 200.51  55.16 3,942 5.54 4,003  119.42
Component flowrates (kmol/h)

Methanol 0.17 0.0 0.0 0.0 0.0 0.0
Ethyl acetate 200.19 1.58 0.0 0.0 1.59 0.03
Water 0.0 0.0 3,942 0.0 3,942 78.84
Methyl palmitate 0.14 a.76 0.0 0.0 a7 0.10
Sucrose 0.0 8.64 0.0 0.0 0.0 0.0
Sucrose monopalmitate 0.0 24.46 0.0 0.0 24.46 24.46
Sucrose dipalmitate 0.0 15.70 0.0 0.0 15.70 15.70
Stream number 31 32 33 34 35
Temperature (°C) 35.2 35.0 300.0 125.0 125.0

Pressure (bar) 1.01 1.01 1.01 1.01 1.01

Vapor mole fraction 0.0 1.00 1.00 0.0 1.00

Total flow (kg/h) 75,757 43,013 43,013 27,621 44,005

Total flow (kmol/h) 3,883 1,486 1,486 64.46 1,541
Component flowrates (kmol/h)

Methanol 0.0 0.0 0.0 0.0 0.0

Ethyl acetate 1.56 0.0 0.0 0.0 0.03

Water 3,863 0.0 0.0 23.92 54.93

Methyl palmitate a.67 0.0 0.0 0.10 0.0

Sucrose 0.0 0.0 0.0 0.28 0.0

Sucrose monopalmitate 0.0 0.0 0.0 24.46 0.0

Sucrose dipalmitate 0.0 0.0 0.0 15.70 0.0

Air 0.0 1,486 1,486 0.0 1,486
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APPENDIX E
TOTAL PROJECT COST OF PLANT

E.1. Palmitoylethanolamide production

106

Table 47 Total project cost of palmitoylethanolamide production (USD).

ltems Labor cost Material cost Total cost Percentages
Equipment 198,000 8,060,000 8,260,000  47.1% of TDC
Piping 1,440,000 3,570,000 5,010,000  28.6% of TDC
Civil 341,000 419,000 760,000  4.3% of TDC
Steel 28,300 167,000 195,000 1.1% of TDC
Instruments 183,000 1,100,000 1,280,000  7.2% of TDC
Electrical 148,000 1,010,000 1,160,000  6.6% of TDC
Insulation 362,000 376,000 738,000  4.2% of TDC
Paint 82,200 33,700 116,000  0.7% of TDC
Total Direct Field 2,790,000 14,700,000 17,500,000 100.0% of TDC
Cost (TDL) (TDM) (TDQO)
Indirect Field Cost 3,380,000 121.3% of TDL
Total Field Cost 20,900,000 67.1% of TIC
Freight 147,000  1.0% of TDM
Taxes and Permits 884,000 5.0% of TDC
Engineering and HO 2,660,000 8.5% of TIC
Other Project Costs 1,820,000 5.8% of TIC
Contingency 4,750,000 15.3% of TIC
Total Non-Field Cost 10,300,000 32.9% of TIC
Total Project Cost 31,200,000 177.9% of TDC

(TIO)

Adjusted Total 35,500,000
Project Cost
Escalated Total 37,200,000

Project Cost
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Table 48 Equipment cost of palmitoylethanolamide production (USD).

Unit

Equipment type

Total Direct cost

Equipment cost

(1) Reactor feed preparation system

D-101  Liquid mixing tank 250,000 129,000
E-101 Floating head heat exchanger 175,000 51,400
(2) Reactor system

R-201 Fixed bed reactor 317,000 155,000
(3) Phase separation system

C-301 Distillation column 510,000 185,000
E-301  Condenser (fixed tube sheet) 126,000 31,900
E-302  Reboiler (U-tube) 221,000 97,500
D-301  Reflux drum 82,500 12,700
P-301  Centrifugal pump 52,400 7,700
(4) Separation system

D-401  Liquid mixing tank 389,000 228,000
E-401 Fixed tube sheet heat exchanger 613,000 351,000
CR-401 Oslo growth type crystallizer 1,950,000 1,500,000
F-401 Rotary drum filter 342,000 242,000
P-401 Centrifugal pump 76,000 13,600
C-401 Distillation column 5,710,000 2,330,000
E-402  Condenser (fixed tube sheet) 539,000 309,000
E-403  Reboiler (U-tube) 3,620,000 1,990,000
D-402  Reflux drum 210,000 43,500
E-404  Floating head heat exchanger 267,000 96,400
DR-401 Direct rotary dryer 66,800 41,600




E.2. Sucrose palmitate production
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Table 49 Total project cost of sucrose palmitate production (USD).

ltems Labor cost Material cost Total cost Percentages
Equipment 67,200 3,790,000 3,860,000  47.1% of TDC
Piping 1,510,000 2,820,000 4,330,000  28.6% of TDC
Civil 198,000 247,000 444,000  4.3% of TDC
Steel 27,400 160,000 187,000 1.1% of TDC
Instruments 196,000 1,250,000 1,450,000  7.3% of TDC
Electrical 150,000 992,000 1,140,000  6.6% of TDC
Insulation 225,000 284,000 509,000  4.2% of TDC
Paint 107,000 36,200 144,000  0.7% of TDC
Total Direct Field 2,480,000 9,580,000 12,100,000 100.0% of TDC
Cost (TDL) (TDM) (TDO)
Indirect Field Cost 2,990,000 120.9% of TDL
Total Field Cost 15,100,000 64.3% of TIC
Freight 95,800  1.0% of TDM
Taxes and Permits 575,000 4.8% of TDC
Engineering and HO 2,660,000 11.4% of TIC
Other Project Costs 1,450,000 6.2% of TIC
Contingency 3,570,000 15.3% of TIC
Total Non-Field Cost 8,350,000 35.7% of TIC
Total Project Cost 23,400,000 194.1% of TDC

(TIO)

Adjusted Total 26,600,000
Project Cost
Escalated Total 28,000,000

Project Cost




Table 50 Equipment cost of sucrose palmitate production (USD).
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Unit Equipment type

Total Direct cost

Equipment cost

(1) Reactor feed preparation system

D-101  Liquid mixing tank 260,000 86,700
E-101  Double pipe heat exchanger 77,200 12,300
(2) Reactor system

R-201 Fixed bed reactor 266,000 107,000
(3) Phase separation system

D-301  Flash drum 145,000 25,000
P-301  Centrifugal pump 50,700 6,000
E-301  Floating head heat exchanger 105,000 22,000
(4) Separation system

D-401  Liquid mixing tank 357,000 204,000
F-401 Rotary drum filter 955,000 658,000
P-401 Centrifugal pump 78,700 14,000
C-401 Distillation column 4,250,000 707,000
E-401  Condenser (fixed tube sheet) 329,000 151,000
E-402  Reboiler (floating head) 777,000 453,000
D-402  Reflux drum 232,000 48,900
E-403 Fixed tube sheet heat exchanger 136,000 37,100
EV-401 Forced circulation evaporator 661,000 362,000
E-404  Floating head heat exchanger 87,500 16,700
D-403  Liquid mixing tank 336,000 200,000
E-405  Floating head heat exchanger 87,800 17,000
D-404  Liquid mixing tank 246,000 128,000
F-402 Rotary drum filter 477,000 329,000
E-406  Floating head heat exchanger 198,000 56,000
DR-401 Direct rotary dryer 66,800 41,600




E.3. Normal alkanes production

Table 51 Total project cost of normal alkanes production (USD).
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ltems Labor cost Material cost Total cost Percentages
Equipment 175,000 3,440,000 3,610,000  40.8% of TDC
Piping 518,000 986,000 1,500,000  17.0% of TDC
Civil 124,000 202,000 325,000  3.7% of TDC
Steel 36,300 199,000 235,000  2.7% of TDC
Instruments 226,000 1,230,000 1,460,000  16.5% of TDC
Electrical 132,000 943,000 1,080,000  12.1% of TDC
Insulation 256,000 304,000 560,000  6.3% of TDC
Paint 60,000 25,700 85,700 1.0% of TDC
Total Direct Field 1,530,000 7,330,000 8,860,000 100.0% of TDC
Cost (TDL) (TDM) (TDQO)
Indirect Field Cost 2,060,000 135.0% of TDL
Total Field Cost 10,900,000 60.6% of TIC
Freight 73,300  1.0% of TDM
Taxes and Permits 440,000 5.0% of TDC
Engineering and HO 2,740,000 15.2% of TIC
Other Project Costs 1,090,000 6.1% of TIC
Contingency 2,750,000 15.3% of TIC
Total Non-Field Cost 7,100,000 39.4% of TIC
Total Project Cost 18,000,000 203.4% of TDC

(TIO)

Adjusted Total 20,500,000
Project Cost
Escalated Total 21,500,000

Project Cost
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Table 52 Equipment cost of normal alkanes production (USD).

Unit Equipment type

Total Direct cost

Equipment cost

(1) Reactor feed preparation system

D-101  Liquid mixing tank 245,000 74,700
P-101  Centrifugal pump 50,200 17,400
E-101 U-tube heat exchanger 101,000 20,400
(2) Reactor system

R-201  Trickle bed reactor 238,000 71,000
(3) Phase separation system

E-301 Floating head heat exchanger 132,000 30,300
D-301  Flash drum 141,000 32,900
E-302  Fixed tube sheet heat exchanger 99,700 21,900
D-302  Flash drum 137,000 32,900
D-303  Liquid mixing tank 185,000 75,200
D-304  Decanter 93,300 15,800
(4) Separation system

C-401 Distillation column 332,000 90,400
E-401  Condenser (double pipe) 45,700 2,600
E-402  Reboiler (floating head) 153,000 36,500
D-401  Reflux drum 100,000 15,000
C-402  Distillation column 897,000 403,000
E-403  Condenser (double pipe) 81,300 11,900
E-404  Reboiler (fixed tube sheet) 153,000 37,500
D-402  Reflux drum 134,000 17,000
P-d01  Centrifugal pump 38,000 4,500
C-403  Distillation column 3,130,000 2,220,000
E-405  Condenser (floating head) 76,600 13,200
E-406  Reboiler (fixed tube sheet) 186,000 45,800
D-403  Reflux drum 161,000 23,400
E-407  Floating head heat exchanger 84,600 13,200
E-408  Double pipe heat exchanger 85,400 15,000




APPENDIX F
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PROPERTY PARAMETERS OF SIMILAR COMPOUNDS

Appendix F shows the comparison of each property parameter obtained from

Aspen’s databanks and estimation methods. As shown in the tables below, (a), (b), (c)

and (d) are 2-Acetamidoethanol, 1-Monopalmitin, 2-Monopalmitin and 1,3-Dipalmitin,

respectively.

Table 53 Comparison of critical temperature obtained from databanks and estimation.

Method (a) (b) (o) (d)
Databank 776.0 837.0 843.0 1,000.0
Joback 776.3 852.4 858.5 1,123.3
Lydersen 774.9 854.0 860.1 1,151.4
Fedors 677.9 858.6 858.6 953.2
Ambrose 824.4 867.4 873.6 944.2
Simple 836.3 976.4 983.4 1,110.9
GANI - 802.7 787.6 856.7

* The unit of critical temperature is Kelvin (K).

Table 54 Comparison of critical pressure obtained from databanks and estimation.

Method (a) (b) () (d)
Databank 4.863E+06 1.179E+06 1.188E+06 5.009E+05
Joback 4.863E+06 1.235E+06 1.235E+06 5.009E+05
Lydersen 4.607E+06 1.340E+06 1.340E+06 7.420E+05
Ambrose 5.015E+06 1.393E+06 1.393E+06 7.463E+05
Gani - 1.160E+06 1.173E+06 5.789E+05

* The unit of critical pressure is N/sgm.
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Table 55 Comparison of critical volume obtained from databanks and estimation.

Method (a) (b) (© (d)
Databank 0.334 1.177 1.177 2.043
Joback 0.320 1.158 1.158 2.061
Lydersen 0.320 1.142 1.142 2.029
Ambrose 0.310 1.134 1.134 2.025
Riedel 0.286 1.309 1.301 3.601
Fedors 0.338 1.111 1.111 1.964
Gani - 1.149 1.122 1.995

* The unit of critical volume is cum/kmol.

Table 56 Comparison of critical compressibility factor obtained from databanks and

estimation.
Method (a) (b) () (d)
Databank 0.252 0.199 0.199 N/A
Definition 0.241 0.190 0.190 0.128

* Critical compressibility factor has no unit.

Table 57 Comparison of standard heat of formation obtained from databanks and

estimation.

Method (a) (b) (© (d)
Databank -4.171E+08 -1.070E+09 -1.067E+09 -1.567E+09
Benson -4.182E+08 -1.066E+09 -1.066E+09 -1.558E+09
Joback -3.372E+08 -1.063E+09 -1.063E+09 -1.558E+09
BensonR8 -4.182E+08 -1.071E+09 -1.071E+09 -1.568E+09
Gani -4.194E+08 -1.076E+09 -1.069E+09 -1.545E+09

* The unit of standard heat of formation is J/kmol.
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Table 58 Coefficients for ideal gas heat capacity equation for 2-Acetamidoethanol.

Parameter Databank Benson Joback BensonR8
Equation NIST Aly-Lee Ideal gas heat capacity polynomial
Cyi 86,771 2,675 10,682 2,675
Cyi 141,461 492 466 492
Csi 570 -0.295 -0.254 -0.295
Cai 152,880 6.789E-05 4.766E-05 6.789E-05
Csi 1,579 0 0 0
Cei 0 0 0 0
Cyi 8.31 280 280 280
Cgi 200 1,100 1,100 1,100
Coi 1,000 36,029 36,029 36,029
Cio - 18 18 18
Cyy - 1.5 1.5 1.5

Table 59 Coefficients for ideal gas heat capacity equation for 1,3-Dipalmitin.

Parameter Databank Benson Joback BensonR8
Equation NIST Aly-Lee Ideal gas heat capacity polynomial
Cyi 629,795 -18,485 25,500 -18,485
Ca 1.493E+06 3,428 3,259 3,428
Csi 809 -1.85 -1.72 -1.85
Cai 6.145E+05 3.125E-04 3.00E-04 3.125E-04
Cs;i -1.064E+04 0 0 0
Cei 0 0 0 0
Cyi 8.31 280 280 280
Cai 200 1,100 1,100 1,100
Coi 1,000 36,029 36,029 36,029
Cio - 164 165 164

Cuy - 1.5 1.5 1.5
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Table 60 Coefficients for ideal gas heat capacity equation for 1,3-Dipalmitin.

Parameter Databank Benson Joback BensonR8
Equation NIST Aly-Lee Ideal gas heat capacity polynomial
Cyi 629,795 -18,485 25,500 -18,485
Ca 1.493E+06 3,428 3,259 3,428
Csi 809 -1.85 -1.72 -1.85
Cai 6.145E+05 3.125E-04 3.00E-04 3.125E-04
Csi -1.064E+04 0 0
Cei 0 0 0
Ca 8.31 280 280 280
Cgi 200 1,100 1,100 1,100
Coi 1,000 36,029 36,029 36,029
Cio - 164 165 164
Cyy - 1.5 1.5

* The unit of ideal gas heat capacity is J/(kmol-K).

The unit of temperature is Kelvin (K).

Table 61 Comparison of ideal gas heat capacity of 2- Acetamidoethanol obtained from

databanks and estimation.

Method CPIG at 300 K CPIG at 500 K CPIG at 1,000 K
Databank 1.350E+05 1.910E+05 2.735E+05
Benson 1.255E+05 1.832E+05 2.670E+05
Joback 1.289E+05 1.861E+05 2.703E+05
BensonR8 1.255E+05 1.832E+05 2.670E+05

* The unit of ideal gas heat capacity is J/(kmol-K).
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Table 62 Comparison of ideal gas heat capacity of Monopalmitin (b,c) obtained from

databanks and estimation.

Method CPIG at 300 K CPIG at 500 K CPIG at 1,000 K
Databank 4.915E+05 7.256E+05 1.057E+06
Benson 4.842E+05 7.182E+05 1.053E+06
Joback 4.850E+05 7.112E+05 1.046E+06
BensonR8 4.842E+05 7.182E+05 1.053E+06

* The unit of ideal gas heat capacity is J/(kmol-K).

Table 63 Comparison of ideal gas heat capacity of 1,3-Dipalmitin obtained from

databanks and estimation.

Method CPIG at 300 K CPIG at 500 K CPIG at 1,000 K
Databank 8.287E+05 1.295E+06 1.836E+06
Benson 8.522E+05 1.273E+06 1.877E+06
Joback 8.561E+05 1.261E+06 1.860E+06
BensonR8 8.522E+05 1.273E+06 1.877E+06

* The unit of ideal gas heat capacity is J/(kmol-K).

Table 64 Coefficients for vapor pressure equation for 2-Acetamidoethanol.

Parameter Databank Riedel Li-Ma
Equation NIST Wagner 25 Extended Antione
Cyi -11.7 128 70.0
Coi 4.87 -16,395 -9,070
Csi -10.38 0 0
Cai -5.29 0 0
Cs 15.4 -13.9 -6.71
Cei 776 2.681E-18 2.125E-19
Cai 240 6 6
Cgi 776 569 569
Coi - 776 776
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Table 65 Coefficients for vapor pressure equation for 1-Monopalmitin.

Parameter Databank Riedel Li-Ma
Equation NIST Wagner 25 Extended Antione
Cyi -13.8 134 -2.423E+05
Coi 6.98 -18,708 1.921E+07
Csi -15.2 0 0
Cai -5.26 0 0
Csi 14.0 -14.6 32,946
Cei 837 1.590E-18 -8.129E-15
Cyi 350 6 6
Cgi 837 694 694
Coi - 852 852

Table 66 Coefficients for vapor pressure equation for 2-Monopalmitin.

Parameter Databank Riedel Li-Ma
Equation NIST Wagner 25 Extended Antione
Cy -13.8 135 -2.425E+05
Ca 7.04 -18,969 1.934E+07
Gy -15.3 0 0
Cy -5.25 0 0
Csi 14.0 -14.7 32,946
Cei 843 1.534E-18 -7.789E-15
Cai 298 6 6
Cai 843 699 699
Coi - 858 858
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Parameter Databank Riedel Li-Ma
Equation NIST Wagner 25 Extended Antione
Cyi -7.73 112 724
Coi 1.94 -17,700 -13,015
Csi -2.88 0 0
Cai -3.20 0 0
Csi 13.1 -11.8 -6.71
Cei 727 6.875E-19 2.434E-20
Cyi 71 6 6
Cgi 727 817 817
Coi - 953 953

* The unit of vapor pressure is N/sgm.

The unit of temperature is Kelvin (K).

Table 68 Comparison of vapor pressure of 2- Acetamidoethanol obtained from

databanks and estimation.

Method PL at TB PL at 0.9*TC PL at TC
Databank 1.019E+05 1.516E+06 4.863E+06
Riedel 1.013E+05 1.526E+06 4.863E+06
Li-Ma 1.013E+05 4.993E+05 9.219E+05

* The unit of vapor pressure is N/sgm.

Table 69 Comparison of vapor pressure of 1-Monopalmitin obtained from databanks

and estimation.

Method PL at TB PL at 0.9*TC PL at TC
Databank 1.013E+05 3.098E+05 1.179E+06
Riedel 1.013E+05 3.534E+05 1.160E+06
Li-Ma 1.013E+05 5.218E-33 1.805E-35

* The unit of vapor pressure is N/sgm.
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Table 70 Comparison of vapor pressure of 2-Monopalmitin obtained from databanks

and estimation.

Method PLatTB PL at 0.9*TC PLat TC
Databank 1.013E+05 3.109E+05 1.188E+06
Riedel 1.013E+05 3.555E+05 1.173E+06
Li-Ma 1.013E+05 5.218E-33 1.805E-35

* The unit of vapor pressure is N/sgm.

Table 71 Comparison of vapor pressure of 1,3-Dipalmitin obtained from databanks and

estimation.

Method PL at TB PL at 0.9*TC PL at TC
Databank 1.013E+05 2.250E+05 5.009E+05
Riedel 1.013E+05 1.724E+05 5.009E+05
Li-Ma 1.013E+05 1.568E+05 3.556E+05

* The unit of vapor pressure is N/sgm.

Table 72 Coefficients for enthalpy of vaporization equation for 2-Acetamidoethanol.

Parameter Databank Definition Vetere Gani Li-Ma
Equation NIST TDE Watson Watson

Cyi 19.1 7.041E+07 5.723E+07 9.191E+07 6.544E+07
Coi 1.71 569 569 298 569

Gsi -1.54 0.402 0.380 0.380 0.460
Cai 0.292 -0.580 0 0 0

Csi 776 569 569 298 785

Cei 4 - - - -

Cr 245 - - - -

C 776 - - - -
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Table 73 Coefficients for enthalpy of vaporization equation for 1-Monopalmitin.

Parameter Databank Definition Vetere Gani Ducros Li-Ma
Equation NIST TDE Watson

Watson
Cyi 19.3 7.036E+07 6.439E+07 1.452E+08 1.541E+08 4.330E+07
Ca 1.66 694 694 298 298 694
Csi -1.46 0.409 0.380 0.380 0.380 0.327
Cai 0.351 -0.869 0 0 0 0
Csi 837 278 278 119 119 278
Cei q - - - - -
Cai 350 - S - - -
Cgi 837 - - - - -

Table 74 Coefficients for enthalpy of vaporization equation for 2-Monopalmitin.

Parameter Databank Definition Vetere Gani Ducros Li-Ma
Equation NIST TDE Watson

Watson
Cyi 19.3 7.128E+07 6.485E+07 1.475E+08 1.610E+08 4.363E+07
Coi 1.48 699 699 298 298 699
Gsi -1.18 0.409 0.380 0.380 0.380 0.327
Cy 0.244 -0.875 0 0 0 0
Cs; 843 280 280 119 119 280
Csi al - - - - -
Cyi 300 - - - - -

C 814 - - - - -
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Parameter Databank Definition Vetere Gani Ducros Li-Ma
Equation NIST TDE Watson

Watson
Cyi 19.0 6.194E+07 7.838E+07 2.034E+08 2.261E+08 3.980E+07
Ca 3.21 817 817 298 817
Csi -5.12 0.428 0.380 0.380 0.327
Cai 2.59 -0.900 0 0 0
Csi 1,000 327 327 119 327
Cei q - - - -
Cai 345 - - - -
Cgi 1,000 - - - -

* The unit of vapor pressure is J/kmol.

The unit of temperature is Kelvin (K).

Table 76 Comparison of enthalpy of vaporization at TB obtained from databanks and

estimation.

Method €)) (b) (o) (d)
Databank 7.244E+07 7.479E+07 7.529E+07 4.726E+07
Definition 7.041E+07 7.036E+07 7.128E+07 6.194E+07
Vetere 5.723E+07 6.439E+07 6.485E+07 7.838E+07
Gani 6.687E+07 9.014E+07 9.143E+07 1.121E+08
Ducros - 9.563+07 9.977E+07 1.245E+08
Li-Ma 6.544E+07 0 0 0
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