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Wagyu beef originated in Japan. However, there are many types of Wagyu
beef in the market around the globe. Primary sources include Australia, USA, Canada
and the United Kingdom. The authentic Japanese Wagyu is well known for its intense
marbling, juicy rich flavor and tenderness. Observing that there are differences in
flavor, texture, and quality between distinct sources of Wagyu. This research presents
an Al-based approach to identify Wagyu beef sources with image classification. The
input images were collected from reliable sources on the internet and augmented
with DCGAN. Deep neural networks, CNN, was constructed to detect the marbled fat
patterns of two sources, Japanese Wagyu and Australian Wagyu. The prediction of
Wagyu sources achieved high accuracy of 94.2%. Further experiment was conducted
for multi-classification with the additional source of the US wagyu. The object
detection model was trained using Region-based CNN, R-CNN, providing the
prediction accuracy of 79.8%. The learning models of Convolutional Neural Networks
were found to be promising methods for the rapid characterization of the unique
patterns of marbled fat layers. These classifiers would benefit the customers for

buying Wagyu beef at reasonable prices.
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CHAPTER 1

Introduction

1.1 Statement of the problems

According to the research and questionnaires conducted, many Wagyu Beef related
occupations, for instance, Chefs and Main Kitchen Buyers, usually struggle to tell the
difference between the true sources of the Wagyu Beef if they were not labelled [1].
When purchasing the Wagyu Beef, if the meat was wrongly labelled, more than often,
the buyers would end up buying the Wagyu they do not desire. Since the sources of
the Wagyu Beef could not be distinguished through eyesight, it leaves the buyers no
choice but to blindfold-purchase them on some occasions. Whether the case was by
intention or not, it often leaves the buyers in confusion, and more than likely, lead
them to obtain lower graded Wagyu Beef as opposed to buying premium one. As one
of the solutions to this problem, since each kind of Wagyu Beef have very
distinguishable fatty marble layers, we shall play this feature to our advantage via deep
learning (computer vision based). These fatty layers are expected to have different
patterns for each source; therefore, computer vision would be a suitable tool in order
to perform the classification task on this specific topic. However, computer vision is
considered a very broad subject; in order to be more specific, the model used for this
computer vision assignment would be Convolutional Neural Network or CNN. Later in
the next section, CNN’s architecture and implementations will be illustrated and
explained in detail. Although, CNN has been invented and existed for some time, yet
it remains as one the most powerful tool for deep learning-based approach. As a result,
CNN architecture would be supporting this research as the backbone throughout.

Although, some adjustments may have to be made and modified; the main and unique
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characters of CNN would still hold, and inevitably, serve as the base for several models

used to train the data sets of this research.

1.2 Objective

To present and implement an Al-based approach for classifying the true origins of the

given Wagyu beef images.

1.3 Scope of Study

1. The chosen sources of Wagyu beef images will be binary based and expand to multi-

classification; including out of distribution classification

2. The sources of datasets come from the internet, e.g.
® Australian Wagyu Association [1]
® American Wagyu Association [2]

® The Wagyu Shop [3]
3. The model performance will be evaluated by the accuracy on the test set after the

model has been trained and satisfies the requirements specification.

1.4 Research Methodology
1. Study several related works about CNNs and GANS.

2. Collect and preprocessing the datasets of Wagyu beef images.
3. Train and fine-tune the model.

4. Analyze the findings.

5. Evaluate and summarize the outcome.

5. Publish the article.

6. Complete thesis writing.
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1.5 Outcomes

Gain an Al-based visual aid for classifying the authentic origin of a Wagyu beef image

in order to encourage and promote a fair trade in the Wagyu Beef exchanged market.

1.6 Thesis Publication

Parts of the thesis had been published in the conference as following:

N. Kointarangkul and Y. Limpiyakorn, “Detection of Wagyu beef sources with image
classification using convolutional neural network”, in Proceedings of the 6"

International Workshop on Pattern Recognition, 2021, Chengdu, China.
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CHAPTER 2

Literature Review

2.1 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) [4] was chosen as the network architecture in this
research due to its ability to handle multidimensional data. For cases associated with
images, a CNN will take in a total of 3-dimensional data (height x width x depth) and
then arrange the same number of neurons in order to proceed further to latter stages
as shown in Figure 1. Furthermore, each neuron, within the given CNN, will have full
connection to all elements of the previous layer, and would also have access to some
elements of the neighbouring region through the “receptive field (filter size)”. The
CNN’s neurons share the same weights and bias throughout the network. The so-called
convolutional layers would act as a filter (kernel) in order to modify the image, which
in the end, would lead to a feature transformation. Figure 1 illustrates an example of
convolution operation computed on the given matrix. The formal mathematical term
for the previous operation is ‘cross-correlation’ [3]. The cross-correlation of a matrix,
x, with a filter, w, is provided in equation (1). The convolution results could be obtained

from the formula below by flipping the kernels before it.

Vi € [0,H, — 1] and Vj € [0, W, — 1]

el
B

~1 k-1
(w * :C)i,j = Wim * Ti+l,j+m
! 0 )

g
i
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Figure 1. The process of calculating convolutional layers and the architecture of the

network [3].

2.2 Deep Convolutional Generative Adversarial Network (DCGAN)

Before exploring the DCGAN [5], the standard Generative Adversarial Networks (GANs)
[6] would be looked at first. GANs are divided into 2 parts: 1) A generator, and 2) A
discriminator.

The generator (‘the artist’) creates fake images that look as close to the real ones as
possible and will always try to convince the discriminator (‘the art critic’) that the
images created are real [7]. Whereas the discriminator will act as a detective and try
to tell the difference between real images and fake images.

As the training processes illustrated in Figure 2, the generator will become so much
better at creating images and at the same time the discriminator will also become so
much better at catching fake images. The process would keep continuing until it
reaches the equilibrium point where the discriminator could no longer tell the

difference between real images and fake images.
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Figure 2. How both the generator and the discriminator improve over time [6]

However, the DCGANSs [5] are an adjusted model based on the original GANs. Figure 3
depicts the architecture of the generator of DCGAN. Basically, DCGANs are the ‘image
version’ of the most fundamental implementation of GANs. The deep convolutional
neural networks are embedded deep within the system of Generator-Discriminator
Framework, in which, the images generated are created from the given distribution of

noisy data [7].

Stride 2

CONV 2

Figure 3. The network architecture of the generator of DCGANs [5]
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These points are the adjustments made based on the original GANs [8]:

Replace all max pooling with convolutional stride
Use transposed convolution for upsampling
Eliminate fully connected layers

Use batch normalization except the output layer for the generator and input layer

of the discriminator
Use RelLU in the generator except for the output which uses tanh

Use LeakyRel U in the discriminator

2.3 Felzenszwalb Segmentation

Felzenszwalb [9] is brought in to extract the segments; all of these components in the

image chosen would be taken into consideration via the procedure.

® (Color

® Texture

® Size

® Shape Compatibility

An example of Felzenszwalb is illustrated below in Figure 4.
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Figure 4. An example of an image transformed by Felzenszwalb Segmentation.

2.4 Selective Search

Selective Search is an algorithm created based on the distinction of color, texture, size
and shape compatibility of an image given [9]. It is designed to have a very high recall
along with quick response when implemented and is widely used as an algorithm for

object detection.

Selective search is nitiated by implementing the graph-based segentation method by
Felzenzwalb and Huttenlocher. Figure 5 shows the result after transforming the input
image with the segmentation method stated. Then, the intensity of the pixels is over-

segmented by the algorithm.
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v

Figure 5. A result in steps when Selective Search is implemented

The selective search algorithm would then take these oversegments as its starting

point and continue via the following steps:

1. Add all bounding boxes corresponding to the divided segment parts to the list

of regional proposal
2. Group adjacent segment parts based on similarity
3. Go back to step 1 and iterate

After each iteration, larger segments will be formed and added to the list of region

proposals. Therefore, as the algo iterates the segments will keep getting larger by
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forming and adding to the list of region proposals. This is seen as a bottom-up approach
by many [10], since the structures are originate formed from small segments and piling

up to become larger ones as shown in Figure 6.

Figure 6. An illustration of selective search capturing the possible target objects [10].

In order to iterate successfully, the selective search must rely on its unique way of
calculating similarity between two regions. The method could be examined and

classified into 4 categories as follow:

® (Color Similarity:- A color histogram of 25 bins is fisured for each channel of the
image [10]. Afterwards, the all of the channels of the histograms are
concatenated to form a color descriptor resulting into a 25x3 = 7-dimensional

color descriptor.

The calculation of color similarity of 2 regions based on histogram intersection

is processed as Equation (2):

n
SEGECH"(TT:: T‘j) = Z min(c? 3 cﬁ}
k=1

where c*; is the histogram value for the k™ bin in color descriptor (2)
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® Texture Similarity:- Texture features are performed by extracting Gaussian
derivatives at 8 orientations for each channel [10]. Within a single color channel
for each channel, a 10-bin histogram is calculated and formed a 10x8x3 = 240-

dimensional feature descriptor.

Texture Similarity of 2 regions is processed by using histograms intersection as

shown in Equation (3):

n
Steature(Ti, ?“j) = Z T??-i".ﬂ.{f'i;.. f;”)
k=1

where t¥; is the histogram value for the k™ bin in texture descriptor (3)

® Size Similarity:- This feature ensures that small regions merge early. It also
guaranteed that the region proposals at all scales and sizes are formed at every
parts of the image given [10]. However, if this so-called size similarity does not
exist. The region proposals at multiple scales would be generated at one
location only, since that particular region will keep concatenating all the small

regions one by one.
Size Similarity is defined by Equation (4):

size(r;) + size(r;)

size(im)

S.s-izc{ri-. r_j) =
where size (im) is the size of image in pixels (4)

® Shape Compatibility:- This feature is designed for measuring how well the 2
regions(ri and rj) concatenate and fit into each other [10]. If ri fits into rj they
would be merged into each other and all the gaps would be filled. However,
if the 2 regions are not overlapping or even touching each other, the merging

process would be terminated and cancelled.
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Shape Compatibility is defined by Equation (5):

size(BB;;) — size(r;) — size(r;)

sfin(ri,rj) =1— stze(im)

where size BB; is a bounding box around ri and rj (5)

® Final similarity:- Previously explained, the final similarity between the given two
regions is defined as a linear combination of the four similarities [10], shown in

Equation (6):

S(T’i-. T’j) = alsr;oioi'(?"i-. T’j) + aQStcxtw'e(ri-. T'j:] + 335.‘,—1’36(7’1'-. T’j) + (14-5’fiEE(?"i-. T’j)

(6)

where ri and rj are two regions or segments in the image,

and ai € [1] denotes if the similarity measure is used or not.

® Results

Usually, 1000-1200 proposals are good enough to get all the right regions
proposals [9] as shown in Figure 7. When presenting the image as a result, a

given range of top region is often set to crop the desired features and objects.

2.5 Insection over Union (loU)

Intersection over Union [9] is a tool built for detecting the accuracy of the predictions
of bounding boxes created for the target objects. It is designed to measure how
overlapping the predicted and actual bounding boxes are, while at the same time,
would also measure the overall space possible for overlap. Basically, loU is the ration
between the overlapping region of the 2 bounding boxed and the combined region of
both bounding boxes. Figure 8 was installed to explain the procedure previously

mentioned.
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Figure 7. An example of possible proposals generated by Selective Search [9].

Overlapping Region
loU =

Combined Region

Figure 8. The formula used for calculating loU.

The ration explained (loU) could be examined and illustrated by Figure 9. By
considering the left bounding box as the ground truth (the exact location of the object;
Xmin, Xmax, Ymin, Ymax) and the right bounding box as the predicted location of the
object, the result would be a ratio ranging from zero to one, with one representing the

highest possible accuracy and zero representing lowest possible accuracy (no
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overlapping). In other words, as loU decreases, the overlap will inevitably decrease as

well. Hence, no overlapping would mean that the loU metric is equivalent to zero.

Sample loU scores

0.95 0.65 0.25 0

Figure 9. Examples of loU scores generated by various positions of bounding box [9].

2.6 Region-based Convolutional Neural Network (R-CNN)

Region-based algorithm [9] is used in order to sync with the region proposals of
the target object. Figure 10 illustrates the procedure of executing R-CNN visually.The

steps to implement R-CNN are as follow.

® [xtract the region proposals from the image given

® Resize (warp) all of the extracted regions to get all the images align by having

the size

® Pass along the altered-images with newly reconfigured sizes through the

network.

® (reate data intended for model training, where the input features are extracted
by passing the region proposals through the model, and the outputs are the

classes according the to the regions given

® (Connect 2 output heads, one is the class of the image and the other would be
the bounding box, which corresponds to the offset of the region proposal with

the ground truth bounding box
® Train the model

® Make prediction of the class of the object cropped by the bounding box.
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1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions

Figure 10. The process of calculating Region-based CNN [9].
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CHAPTER 3
METHODOLOGY

3.1 Methodology and Working Environments

This research is separated into two phases:

® Phase 1: Model construction with CNN for Classification problem containing
1.1 Binary class

1.2 Multi-class

® Phase 2: Model construction with R-CNN for Object Detection problem

containing

2.1 Binary class

2.2 Multi-class
The first phase was conducted to test whether the assumption is valid. Since the
method was original and therefore, the outcome was unpredictable to some extent.
Hence, this first phase was initiated to test out the algorithm and models, if achieving
the desired result as intended initially.
The test started off with a binary classification between Japanese Wagyu Beef and
Australian Wagyu Beef, since Japanese Wagyu is considered as the most of premium
of all Wagyu Beef existed and, on the other hand, the Australian Wagyu Beef is
considered as the least premium. Therefore, the binary-classification conducted was
expected to be the easiest out of all the possible binary classifications between the

Wagyu Beef from different sources.

The model in this first phase was trained on a balanced dataset containing images of
Wagyu Beef from two distinct sources: Japanese and Australian via the CNN
architecture described previously. The images of various sizes were scaled down to

256x256 pixels (RGB color PNG files) via the Imagedatagenerator function attached with
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Tensorflow. The model was implemented using Keras Tensorflow 2.0 library. The
computer’s CPUs were 2 GHs Quad-Core Intel Core i5 with RAM of 16GB. The python
version was 3.6 along with Keras Tensorflow version 2.0. The last layer, Fully Connected
layer, was implemented with ‘sigmoid’ activation function, producing the output value
ranging from 0.0 to 1.0. In this work, the threshold was set to 0.5; that is, the output
value < 0.5 (closer to 0.0) would be classified as Australian Wagyu, otherwise it would

be classified as Japanese where the output value no less than 0.5 (closer to 1.0).

As the experiment turned out to be successful by reaching the expected accuracy of
above 90%, the test was then expanded from a binary-classification to multiclass
including. Australian Wagyu, Japanese Wagyu, and US Wagyu. The test ran on the same
CNN architecture platform and the same computer configuration.

After training the model with the same balanced data set, the accuracy turned out to
be lower than the required level (90%). The main issue was the missing of a powerful
enough GPUs such as NVIDIA' CUDA. By having NVIDIA CUDA embedded within the
system, it would allow the system to perform complex computer vision tasks,
especially when a multi-classification was preferred over a binary one.

As a result, the second phase protocol was initiated to serve the need of a more
complex computer vision tasks. This second phase was trained on a Window platform
with GPU enabled ability. Since the code and algorithms written, involved a CUDA
command, which required a GPU from NVIDIA CUDA (Figure 11) to perform such task,
and that only Window and Ubuntu platforms are capable of executing NVIDIA GPU.
Hence, the macOS system was dropped and replaced with the Window platform (GPU

enabled) platform.
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Figure 11. An example NVIDIA CUDA ,which could be used as GPU.

This latter phase was designed to tackle the multi-classification problem including the
Out-of-Distribution problem (OOD) via the R-CNN model to build an object detection
framework. Furthermore, this second attempt was trained on the same balanced
datasets as the first one, which means that the DCGAN images were included along

with the original files.

The test started off by multi-classifying Australian Wagyu, Japanese Wagyu, and OOD
(Out of Distribution class such as other types of meat, which were not Wagyu related).
After training the data via the Region-Based CNN architecture, the model reached the
accuracy above the required level of 90%, and consequently, proving that Region
Based CNN, together with, CUDA enabled platform were capable of performing such

tasks.

After previous success, the test was then expanded, including the US Wagyu Beef in
order to make the model more robust and more complete in terms of a multi-
classification CNN platform. The accuracy proved was satisfying and rose above the

desired level of accuracy (90%) and brought the test to an end.

The main programming language used in this work was mainly Python3. The code

written was divided into 4 main parts:
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® Data preparation and customization

® (Construction of the network architecture (CNN and Region based CNN)
® Model training via the architecture built

® Fvaluation of the outcome

Both PyTorch and Keras Tensorflow were chosen to perform the neural network and
deep learning algorithm. To be precise, Keras Tensoflow was used for the first phase
(CNN) since it is a more user-friendly platform than PyTorch and was therefore a good
starting point in order to gain knowledge from the experiment during the initial stages.

This particular framework required external libraries as follow:
® Numpy to create and contain elements in an array
® Pandas for performing data mining and analysing tasks
® Pillow to read images as input and output

® Keras Tensorflow 2.0 to perform CNN algorithm

However, for Phase 2, PyTorch was chosen to run the model since it had the capability
of handling NVIDIA CUDA. Figure 12 shows an example of how to check whether CUDA
is enabled in PyTorch framework via Python Scripts.

1]: import torch

2]: torch.cuda.current_device()
: @

: torch.cuda.device(®)
: <torch.cuda.device at Ox7efce@b@3bel>

: torch.cuda.device_count()
: 1

5]: torch.cuda.get_device_name(@)
5]: "GeForce GTX 958M'

6]: torch.cuda.is_available()
6]: True

Figure 12. An example of NVIDIA CUDA command to trigger its GPU.
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3.2 Data Preparation

The sources of data came from the internet, including Australian Wagyu Association
[1], American Wagyu Association [2], and The Wagyu Shop [3]. The dataset used for
training were square fractions of the image files of the meat and had to be of high
definition along with the fact that the fatty layers must be presented in a visible
manner. The research goes by the rule of one data per one piece of Wagyu Beef, with
that being said, due to the limited number of the original images of both Japanese and
Australian Wagyu, DCGAN was applied for data augmentation to increase the number

of training data in order to avoid the problems of bias and overfittings.

Table 1 & 2 summarize the number collected images, augmented images with DCGAN,

and the total size of the dataset of each Wagyu source.

Table 1. Size of dataset containing images of Japanese and Australian Wagyu for

binary classification.

JPN AUS Total
Collected Images 350 350 700
DCGAN Images 250 250 500
Total 600 600 1200

Table 2. Size of dataset containing images of Japanese, Australian, and US Wagyu

for multi-classification.

JPN AUS us Total
Collected Images 350 350 350 1050
DCGAN Images 250 250 250 750

Total 600 600 600 1800
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The desired parts from the images of Wagyu beef from both Japan and Australia will
be cropped showing a detectable marbled fatty layer of the Wagyu beef. Then all the
images were resized to formal size and were arranged to the format of TensorFlow
ImageGeneration folder as depicted in Figure 13. Please note that if the images were
not exactly arranged by the format given, the neural network process would not be

able to perform.

data
Japan_Wagyu
train

Australian_Wagyu

Japan_Wagyu
test

Australian_Wagyu

Figure 13. A format of constructing a data folder for training via Keras Tensorflow.

In this research, YBAT program [11] would be used in order to perform the conversion
of JPEG or PNG files to XML files. The reason why XML files are needed is because that
it could be transformed into CSV files, which as a result, would contain the location
(Xmin, Xmax, Ymin, Ymax) of the objects of each files we wish the machine to leamn.
The YBAT program could be easily download since it is an open source. The steps to
proceed in order to create the XML files locating the objects correctly are

demonstrated in Appendix.
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3.3 Phase 1

The modelling of Convolutional Neural Networks contained the total number of ten
layers, each of which was assigned independent parameters such as activation
function, padding size, etc. Figure 14 illustrates the basic architectural nature of the
network implemented. Note that the last dense layer was implemented with ‘sigmoid’
activation function due to its binary nature.

Convolution 2D

Dropout

Convolution 2D

Dropout

Flatten

Dropout

T

Figure 14. The architecture of trained CNNs.

The model was trained on a balanced dataset containing the images of Wagyu Beef
from two distinct sources: Japanese and Australian. The images of various sizes were
scaled down to 256x256 pixels (RGB color PNG files) via the Imagedatagenerator
function attached with Tensorflow. The model was implemented using Keras
Tensorflow 2.0 library. The computer’s CPUs were 2 GHs Quad-Core Intel Core i5 with
RAM of 16GB. The python version was 3.6 along with Keras Tensorflow version 2.0. The
last layer, Fully Connected layer, was implemented with ‘sigmoid’ activation function,
producing the output value ranging from 0.0 to 1.0. In this work, the threshold was set
to 0.5; that is, the output value < 0.5 (closer to 0.0) would be classified as Australian
Wagyu, otherwise it would be classified as Japanese where the output value no less

than 0.5 (closer to 1.0).
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For the multi-classification model, the same computer system was used along with
the same CNN architecture. However, the last dense layer was inevitably changed to
‘SoftMax’ to support multi-classification task. Hence, the outcome or the predicted
value was created in a form of a probability for each class. For example, if the outcome

was stated as follows: [0.1 0.2 0.7]

The 3" class would be predicted as the class of the inserted Wagyu Beef image, since
it possessed the highest probability (0.7). Note that the total sum of all the probabilities
of the classes will always add up to exactly 1.0, i.e. from the above predicted value

the total sum =0.1+02+0.7=1.0

3.4 Phase 2

For this latter stage of the research, Region-based CNN was implemented to perform
object detection with multi-class labels. The architecture of the network constructed
is shown in Figure 15. Note that there were 4 added layers at the end with the last

layer activated as a tanh function to classify the data.

. = E 8
( RelU ] ( RelU ] ( RelU ]
. .
‘ / ‘ Convolution 2D Convolution 2D
“% o A R T e
] . @
Convolution 2D Convolution 2D Convolution 2D Convolution 2D Convolution 2D
[ Rew [ [ Rew /] [ Rew /) [ Rew || [ Rew | ?

Figure 15. The architecture of Region-based CNN.



39

CHAPTER 4

Experiments

4.1 Results of generating images via DCGAN

Five hundred images were successfully augmented via DCGAN for both Japanese and
Australian Wagyu; Figure 16 illustrates the evolution of DCGAN images throughout the
experiment. The generated images were then added to the original training dataset.
Figure 17 and Figure 18 show and compare the original images and the augmented

images of Japanese and Australian Wagyu, respectively.
Epoch:0, Step:0, D-Loss:1.231, D-Acc:20.000, G-Loss:0.671
Epoch:0, Step:50, D-Loss:0.986, D-Acc:80.000, G-Loss:10.366

Epoch:199, Step:150, D-Loss:0.035, D-Acc:100.000, G-Loss:3.451

Epoch:199, Step:200, D-Loss:0.021, D-Acc:100.000, G-Loss:3.558

.~ s o, ¥
“ /| 4 %
.

Figure 16. How DCGAN images evolved over the period trained.
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Figure 17. Original Japanese Wagyu images (Left) and Japanese Wagyu images
augmented with DCGAN (Right).

Figure 18. Original Australian Wagyu images (Left) and Australian Wagyu images
augmented with DCGAN (Right).

4.2 Results of Phase 1

4.2.1 Results of Phase 1.1

The data were successfully trained through the created CNN, which the last layer was
adjusted to ‘sigmoid’ since the experiment was based upon a binary classification. The
first round of training was trained without the DCGAN images in the data set and

achieved an accuracy via 5-fold cross validation at 91.16%
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Figure 19. Accuracy (Left) and loss (Right) of the 1°' fold of 5-fold cross validation of
the CNN binary classification without DCGAN images.
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Figure 20. Accuracy (Left) and loss (Right) of the 2™ fold of 5-fold cross validation of
the CNN binary classification without DCGAN images.
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Figure 21. Accuracy (Left) and loss (Right) of the 3" fold of 5-fold cross validation of
the CNN binary classification without DCGAN images.
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Figure 22. Accuracy (Left) and loss (Right) of the 4" fold of 5-fold cross validation of

the CNN binary classification without DCGAN images.

th
5" Fold
10
—— accuracy 0.8 1 — loss
09 0.7
0.6
0.
05
07 0.4
03
06 02
01
0.5 T T T U T T T T T T T T
o 5 10 15 20 25 30 o 5 10 15 20 5 30
epoch epoch

Figure 23. Accuracy (Left) and loss (Risht) of the 5" fold of 5-fold cross validation of

the CNN binary classification without DCGAN images.

Afterwards, the DCGAN created images were added to the dataset, and hence the

second round of test was trained through the 5-fold cross validation method. The
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results were as expected as the CNN model with DCGAN dataset included

outperformed the accuracy of the previous model (No DCGAN images) by about 1%.
The result of the training is as follows:
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Figure 24. Accuracy (Left) and loss (Right) of the 1°" fold of 5-fold cross validation of
the CNN binary classification with DCGAN images.
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Figure 25. Accuracy (Left) and loss (Right) of the 2™ fold of 5-fold cross validation of
the CNN binary classification with DCGAN images.
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Figure 26. Accuracy (Left) and loss (Rigsht) of the 3™ fold of 5-fold cross validation of
the CNN binary classification with DCGAN images.

th
4" Fold
] 08 4
e - accuracy — loss
07 4
0.9 A
0e 4
0.8 031
04 4
0.7 A 03
02 4
0.6
01 4
; ; v T . . T . . T
o 5 10 15 20 25 30 a 5 10 15 20 25 30
epoch epoch

Figure 27. Accuracy (Left) and loss (Right) of the 4" fold of 5-fold cross validation of
the CNN binary classification with DCGAN images
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Figure 28. Accuracy (Left) and loss (Risht) of the 5™ fold of 5-fold cross validation of
the CNN binary classification with DCGAN images.
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4.2.2 Results of Phase 1.2

After the initial experiment was proved successful, US Wagyu images were inserted
into the DCGAN model in order to repeat the process and turn the binary-classification
into a multi one. The first time round the CNN model would be trained on the dataset
without DCGAN images and achieved the accuracy of 73.2% though 5 -fold cross

validation.
The result of this training is as follows:
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Figure 29. Accuracy (Left) and loss (Right) of the 1° fold of 5-fold cross validation of
the CNN multi-classification without DCGAN images.
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Figure 30. Accuracy (Left) and loss (Risht) of the 2™ fold of 5-fold cross validation of
the CNN multi-classification without DCGAN images.
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Figure 31. Accuracy (Left) and loss (Rigsht) of the 3™ fold of 5-fold cross validation of
the CNN multi-classification without DCGAN images.
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Figure 32. Accuracy (Left) and loss (Risht) of the 4™ fold of 5-fold cross validation of
the CNN multi-classification without DCGAN images.
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Figure 33. Accuracy (Left) and loss (Right) of the 5" fold of 5-fold cross validation of

the CNN multi-classification without DCGAN images.
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After this, the DCGAN images were added to the data set. As expected, the accuracy
running through 5-fold cross validation method of the model was more than the
accuracy of the previous one (No DCGAN images). The accuracy of this model was at

77.8%.
The result of the training is as follows:
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Figure 34. Accuracy (Left) and loss (Right) of the 1° fold of 5-fold cross validation of
the CNN multi-classification with DCGAN images.
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Figure 35. Accuracy (Left) and loss (Risht) of the 2™ fold of 5-fold cross validation of
the CNN multi-classification with DCGAN images.
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Figure 36. Accuracy (Left) and loss (Risht) of the 3™ fold of 5-fold cross validation of
the CNN multi-classification with DCGAN images.
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Figure 37. Accuracy (Left) and loss (Right) of the 4" fold of 5-fold cross validation of
the CNN multi-classification with DCGAN images.
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Figure 38. Accuracy (Left) and loss (Risht) of the 5" fold of 5-fold cross validation of
the CNN multi-classification with DCGAN images.
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4.3 Results of Phase 2

4.3.1 Results of Phase 2.1

For this latter stage of the research, Region-based CNN was implemented in order to
perform the object detection and also to tackle the problem of multi-classification
and Out of Distribution detection (OOD). In order to perform such tasks successfully,

NVIDIA CUDA was triggered and enabled to allow GPUs processing power.

The data were successfully trained through the Region Based-CNN model with its
accuracy shown by K-Fold method (5-Folds). The first round of training in Phase 2.1
was trained by using the original data set “only”, by which, the images generated by

DCGAN were left out.

The result of this training is as follows:
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Figure 39. Accuracy of the I1*' fold of 5-fold cross validation of the R-CNN binary

classification without DCGAN images.
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Figure 40. Loss of the 1 fold of 5-fold cross validation of the R-CNN binary
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Figure 41. Accuracy of the 2™ fold of 5-fold cross validation of the R-CNN binary

classification without DCGAN images.
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Figure 42. Loss of the 2™ fold of 5-fold cross validation of the R-CNN binary
classification without DCGAN images.
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Figure 43. Accuracy of the 3" fold of 5-fold cross validation of the R-CNN binary

classification without DCGAN images.
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Figure 44. Loss of the 3" fold of 5-fold cross validation of the R-CNN binary
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Figure 45. Accuracy of the 4™ fold of 5-fold cross validation of the R-CNN binary

classification without DCGAN images.
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Figure 46. Loss of the 4" fold of 5-fold cross validation of the R-CNN binary
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Figure 47. Accuracy of the 5" fold of 5-fold cross validation of the R-CNN binary

classification without DCGAN images.
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Figure 48. Loss of the 5" fold of 5-fold cross validation of the R-CNN binary

classification without DCGAN images.

Afterwards, the images created by the DCGAN architecture were added into the model
in order to compare the difference between having and ‘not’ having artificial images

created by DCGAN.

The result of this training is as follows:
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Figure 49. Accuracy of the 1° fold of 5-fold cross validation of the R-CNN binary
classification with DCGAN images.
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Figure 50. Loss of the 1° fold of 5-fold cross validation of the R-CNN binary
classification with DCGAN images.
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Figure 51. Accuracy of the 2™ fold of 5-fold cross validation of the R-CNN binary
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Figure 53. Accuracy of the 3" fold of 5-fold cross validation of the R-CNN binary

classification with DCGAN images.
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Figure 54. Loss of the 3" fold of 5-fold cross validation of the R-CNN binary
classification with DCGAN images.
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Figure 55. Accuracy of the 4" fold of 5-fold cross validation of the R-CNN binary
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Figure 56. Loss of the 4™ fold of 5-fold cross validation of the R-CNN binary

classification with DCGAN images.
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Figure 57. Accuracy of the 5" fold of 5-fold cross validation of the R-CNN binary

Figure 58. Loss of the 5" fold of 5-fold cross validation of the R-CNN binary

classification with DCGAN images.
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After this, the model performance of R-CNN with DCGAN images included was
evaluated on test dataset containing Japanese and Australian Wagyu. Figure 59 and

Figure 60 illustrate the results of successful detection of the patterns of marbled fat

layers of Japanese Wagyu.

N\

Original image predicted bounding box and class

Figure 59 Example 1 illustrating how R-CNN could recognize the marbled fat layers
of Japanese Wagyu.

Original image

predicted bounding box and class
WaGy

Figure 60 Example 2 illustrating how R-CNN could recognize the marbled fat layers
of Japanese Wagyu.
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Figure 61 and Figure 62 shows the results of successful detection of the patterns of

marbled fat layers of Australian Wagyu beef.

Original image

predicted bounding box and class

Figure 61. Example 1 illustrating how R-CNN could recognize the marbled fat layers
of Australian Wagyu.

We also tested the model using the US Wagyu. As a result, the R-CNN could not
recognize the patterns of Japanese Wagyu nor the Australian, therefore giving a result
as “No object found” as shown in Figure 63.

Original image predicted bounding box and class

Figure 62. Example 2 illustrating how R-CNN could recognize the marbled fat layers
of Australian Wagyu.
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Original image No objects

Figure 63. lllustrating how the machine could not recognize the pattern of the

marbled fat layers of the US Wagyu beef.

4.3.2 Results of Phase 2.2

In this stage, the R-CNN was trained for multi-class object detection by adding the US
Wagyu beef. The model was successfully trained through the same R-CNN architecture
with enabling NVIDIA CUDA. For the first round of training, the model achieved an
accuracy of 74.3% through 5-fold cross validation, the dataset of this round was limited

to original images only (No DCGAN images).
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Figure 64. Accuracy of the 1* fold of 5-fold cross validation of the R-CNN multi-

classification without DCGAN images.
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Figure 65. Loss of the 1° fold of 5-fold cross validation of the R-CNN multi-

classification without DCGAN images.
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Figure 66. Accuracy of the 2™ fold of 5-fold cross validation of the R-CNN multi-

classification without DCGAN images.
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Figure 67. Loss of the 2™ fold of 5-fold cross validation of the R-CNN multi-

classification without DCGAN images.
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Figure 68. Accuracy of the 3" fold of 5-fold cross validation of the R-CNN multi-

classification without DCGAN images.
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Figure 69. Loss of the 3" fold of 5-fold cross validation of the R-CNN multi-

classification without DCGAN images.
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Figure 70. Accuracy of the 4" fold of 5-fold cross validation of the R-CNN multi-

classification without DCGAN images.
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Figure 71. Loss of the 4™ fold of 5-fold cross validation of the R-CNN multi-

classification without DCGAN images.
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Figure 72. Accuracy of the 5" fold of 5-fold cross validation of the R-CNN multi-

classification without DCGAN images.
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Figure 73. Loss of the 5" fold of 5-fold cross validation of the R-CNN multi-

classification without DCGAN images.
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Afterwards, the R-CNN for multi-classification was trained on the dataset with DCGAN
images included. The model’s accuracy and performance were better than the
previous one through 5-K-Fold method at 79.8%.

The result of the training is as follows:
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Fisure 74. Accuracy of the 1°' fold of 5-fold cross validation of the R-CNN multi-
classification with DCGAN images.
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Figure 75. Loss of the 1* fold of 5-fold cross validation of the R-CNN multi-
classification with DCGAN images.
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Figure 76. Accuracy of the 2™ fold of 5-fold cross validation of the R-CNN multi-
classification with DCGAN images.
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Figure 77. Loss of the 2™ fold of 5-fold cross validation of the R-CNN multi-
classification with DCGAN images.
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Figure 78. Accuracy of the 3" fold of 5-fold cross validation of the R-CNN multi-
classification with DCGAN images.
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Figure 79. Loss of the 3 fold of 5-fold cross validation of the R-CNN multi-
classification with DCGAN images.
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Figure 80. Accuracy of the 4™ fold of 5-fold cross validation of the R-CNN multi-
classification with DCGAN images.
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Figure 81. Loss of the 4™ fold of 5-fold cross validation of the R-CNN multi-
classification with DCGAN images.
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Figure 82. Accuracy of the 5" fold of 5-fold cross validation of the R-CNN multi-
classification with DCGAN images.
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Figure 83. Loss of the 5" fold of 5-fold cross validation of the R-CNN multi-

classification with DCGAN images.
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Later on, the multi-classifier R-CNN model (with DCGAN images) was tested on the test
set which includes US Wagyu, Australian Wagyu, and Japanese Wagyu. Figure 84 shows
the results of successful detection of the patterns of marbled fat layers of the US

Wagyu beef.

Original image predicted bounding box and class
. T

SEWEGY;

Figure 84. Illustrating how the machine could recognize the pattern of marbled fatty

layers of the US Wagyu Beef

Further, we tested the model using images of artificial marbling beef. As illustrated in
Figure 85, the R-CNN returned the output of “No object found” since the model could
not match the marbled fat layers with either patterns of Japanese, Australian, or the

US Wagyu beef.

Figure 85 Illustrating how the R-CNN could not recognize the pattern of marbled
fatty layers of artificial marbling beef.
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4.4 Overall Test Results

Table 3 summarizes the accuracy rates of phase 1.1 using 5-fold cross-validation.

Table 3 Comparison of accuracy of CNN binary classification
DCGAN ACC ACC ACC ACC ACC AVERAGE
AUGMENTATION FOLD1 FOLD2 FOLD3 FOLD4 FOLD5 ACCURACY

WITH ‘ 93.5 92.7 91.0 94.3 89.5 92.2
WITHOUT ‘ 87.0 90.0 91.0 93.5 94.3 91.16

Table 4 summarize the accuracy rates of phase 12 using 5-fold cross-validation.

Table 4 Comparisons of accuracy of CNN multi-classification
DCGAN ACC ACC ACC ACC ACC AVERAGE
AUGMENTATION FOLD1 FOLD2 FOLD3 FOLD4 FOLD5 ACCURACY

WITH ‘ 715 80.0 79.5 87.0 71.0 77.8
WITHOUT ‘ 70.0 70.0 72.0 80.0 74.0 73.2

Table 5 summarizes the accuracy rates of phase 2.1 using 5-fold cross-validation.

Table 5 Comparisons of accuracy of R-CNN binary classification.
DCGAN ACC ACC ACC ACC ACC AVERAGE
AUGMENTATION FOLD1 FOLD2 FOLD3 FOLD4 FOLD5 ACCURACY

WITH 935 95.0 94.0 94.0 94.5 94.2
WITHOUT | 930 925 925 94.0 93.0 93.0

Table 6 summarizes the accuracy rates of phase 2.2 using 5-fold cross-validation.

Table 6 Comparison of accuracy of R-CNN multi-classification
DCGAN ACC ACC ACC ACC ACC AVERAGE
AUGMENTATION FOLD1 FOLD2 FOLD3 FOLD4 FOLD5 ACCURACY

WITH 78.5 82.0 80.0 80.0 78.5 79.8
WITHOUT 76.5 74.5 75.0 74.0 715 74.3
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As illustrates by Table 3, the CNN model with DCGAN images included, outperformed
the one without, by gaining more accuracy by around 1%. This shows that by adding
the augmented images, in this case DCGAN images, the model’s accuracy would
increase consequently, due to that there are more sources of data for the model to
train on. As same as the result from previous Table, the results from Table 4, strongly
suggest that by adding the augmented images created via DCGAN algorithms, would
increase the performance and accuracy of the model used for training the multi-
classification tasks. In this case, the model’s accuracy improves by 4.6% after adding

the DCGAN images.

As it could be seen from Table 5, the accuracy of R-CNN for binary-classification with
DCGAN images included after 5-fold cross validation is more than the accuracy of the
one without by 1.2 %. This, again, proves that by adding the augmented image created
by DCGAN, the model was able to perform and gain more accuracy than the one
limited to just only the original dataset. As similar as the results from Table 6, which
the R-CNN model with the DCGAN images outperformed the model of the one without
by 5.5%. This clearly shows that when a task gets more demanding such as a multi-
classifying task the more dataset available, the more accuracy the model would get.
And by adding the DCGAN images to the dataset, it proved as another successful way

to increase the accuracy for the model when the number of data sources were limited.

To add on, both the binary classification and multi-classification results of R-CNN were
proven to be better than the ones of CNN architecture. This stands as a proof that
dividing the image of Wagyu Marbled fat layer into small pieces first (warped process
of R-CNN), would enable the model to train more effectively and accurately, and

consequently, enable it to detect the distinguished pattern of the source of the beef.

Furthermore, while the CNN model always returns the output belongs to the set of
class labels, the R-CNN will output “Not found” when detecting anomalous inputs out

of the training data distribution. The preliminary result of phase 2 reported that the R-
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CNN was promising for correctly detecting the testing images of which the sources not

included in the training set.
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CHAPTER 5
CONCLUSION

For this research, we proposed the deep neural network modelling for image
classification of the Wagyu sources: Japanese and Australian. Due to the small datasets,
data augmentation was carried out using DCGAN to mainly reduce bias and overfitting.
The constructed CNNs achieved the accuracy of 95% (DCGAN images included). When
the model was modified to have an activation function as Softmax as multi-
classification was required, the adjusted model with DCGAN images included reached
an accuracy at 77.8%. However, when GPUs was trigeered via NVIDIA CUDA, the model
become much more robust and achieved a higher accuracy of classification. For the
binary-classification, the accuracy arises as high as 94.2% (DCGAN images included).
And for the multi-classification, the model achieved a satisfying level of accuracy of
79.8% (DCGAN images included). Furthermore, when DCGAN images were not included
as part of the source for training, the performance and accuracy of every category

decreased, this includes both binary classification and multi-classification.

None of the less, the model could be exposed to more classes of Wagyu such as the
UK Wagyu and Canada Wagyu etc. Further direction would be adjusting the model to
be able to serve and multi-classify more sources of Wagyu beef along with OOD at the

same time.



10.

11.

78

REFERENCES

Australian Wagyu Association, . [cited March 2021; Available from:

https://www.wagyu.org.au/.

American Wagyu Association. March 2021]; Available from: https://wagyu.ore/.

The Wagyu Shop. [cited March 2021; Available from: https://wagyushop.com/.

LeCun, Y., LeNet-5, convolutional neural networks. URL: http://yann. lecun.
com/exdb/lenet, 2015. 20(5): p. 14.

Radford, A, L. Metz, and S. Chintala, Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

Tensorflow, “Deep Convolutional Generative Adversarial Networks”. Available

from: https://www.tensorflow.org/tutorials/generative/dcgan.

Dosovitskiy, A., et al., Discriminative unsupervised feature learning with
exemplar convolutional neural networks. |IEEE transactions on pattern analysis
and machine intelligence, 2015. 38(9): p. 1734-1747.

R. Jagtap. Implementing Deep Convolutional Generative Adversarial Networks(

DCGANs). 2020 Available from: https://towardsdatascience.com/implementing-

deep-convolutional-generative-adversarial-networks-dcgan-573df2b63c0d.

Ayyadevara, K. and Y. Reddy, Modern Computer Vision with Pytorch. 2020: Packt
Publishing Ltd.
Towards Data Science. [cited July 2020; Available from:

https://towardsdatascience.com/.

drainingsun. ybat. [cited July 2020; Available from:

https://eithub.com/drainingsun/ybat.



https://www.wagyu.org.au/
https://wagyu.org/
https://wagyushop.com/
http://yann/
https://www.tensorflow.org/tutorials/generative/dcgan
https://towardsdatascience.com/implementing-deep-convolutional-generative-adversarial-networks-dcgan-573df2b63c0d
https://towardsdatascience.com/implementing-deep-convolutional-generative-adversarial-networks-dcgan-573df2b63c0d
https://towardsdatascience.com/
https://github.com/drainingsun/ybat

FWIAINTAUNNIINY 1Y
CHuLALONGKORN UNIVERSITY



APPENDIX



"ung Jumnes G102-R107 G wiunido) | ¢7 om0,

KOQE PO AR08 - 31T Aoy
SSSE[D A[AD - WA OHT pue d[) ssowny
SN 92K = LHOTH Pue LT Smolny
admun wed - NOLLNE LHOTY 2500jy
AT N0 WOOZ - TATHM SN0

'SLADIHOHS
| Donereg | | 020 eeeg | EIED | LIAP[0) 20,
| 0704 Breg uN ERb T |

oy iy on | 8iid esseys | isasse])

"UOIELLIGIU) BIOW SO} PUINTYIH N0 ¥08YD E
ISIN0EE LISTH 1w sabeun Buipsojay 2

“pEO| XOG0 AI0/8q PApE0| 84 15NW Sa55ED pue sebew) )
‘SILON

(a8qy cooamonolod paddiz) sexogq 'AUR § "BI0)Sal IO pBOT R
“(yeuuny seweu-, opf) sessep inod peo 2

“Big 10 Auew p mops aq By (Bud ‘Bdl) sebew) snok peo ) g
FOWEN arpggdosn uaso iy o | s asooys | ssafewn

2Jemyos ayy Aq papoddns g 10U Aewl SI9SMOIQ JYI0 SDUIS 1)NeJIP S J9SMOIg W0y Suisn JwiyiegA ayy uado

:MOY104 Se aJe sAd31S 'Sl WX OF S} DNJ 4O DI SUIHSAUOD o) | YgA SulKidde jo uolesisuowag

1




"UOIJELLLIOJUI BIOW 10j PW INAYIY N0 3o8yD g
iS3X088 1353 |IIm sebew) Buipeojey g

‘peo| Xoqq 810Joq Papeo| aq JSnw sasseo pue sabew) : |
‘S310ON

‘(seyy oooooonjojof paddiz) sexoqq ‘Aue ji ‘eio)sel 1o peOT ‘g

‘(reuwwno) sewreu-, 0joA) sesse|o JnoA peo ‘g
'Biq J0 Auew j1 mojs aq by *(Bud ‘Bdl) sebew: Jnok peo °|
39VsSN

"ung Furureld 610Z-810T @ WBUAOD | ¢'Z°0 “UOISIOA

X0qg P109]as 2A0WAI - FLATI A »
52SSB[D 9[240 - NAM O pue d) smowry
saSewt 9940 - LHOIY PUB LT SMOLY »
odew ued - NOLLNE LHORY 9Snop
23w INo/uT WOOZ - TITHAM 9SO

‘SLNDIIOHS
20N @S | (0000 @nes | [ =ep|uapoyoop
(Gonoms] o s s

uasoy |y oN | a4 @sooys |:sasse[)

BALRAN

anegpdos) uaso ozE” Fewy

8

uo}NQ (S95eWI),S9)I4 9S00YD), 9y} 938207 7




‘ung Jururel 610Z-8107 @ W3UAdOD | ¢'7°0 :UOISIIA

X0Qg PAIIINIS AWM - LTI LY o

$8SE[D 9[040 - NMOA pue df) smoury o

sagewn 91949 - LHOIY Pue LT SMOLY

adewr ued - NOLLNE LHOII SN0

oFew INO/UT WOOZ - TTHM SN0 *
‘SLNOIIOHS
[oonenes | 0000 anes | [ =ep|uopjoyoop
[esors0y | [ 0104 anes | ur"N [ sei4 @sooyp | :saxoqg

nABep~uelensny’
nABep,"uedep

sassep | o|14 #s00yD | 1535581

) L6'0VT ‘PEEXPEE
6d(-g~de(
6dlg™
6d(ydel
6d(-¢def
6d(z def
6d"}"def
6d['0"def

—
srestdary s 20 Sot3 sy | s

€8

popa3auU Sse 9zIs S}l 3Snfpe pue paules} 9 03 I} 9y} 9sooyD) ¢




‘ung Sururelq 610Z-8107 @ W3UAdOD | §'7'( :UOISIOA

X0Qg PAIOA[AS JAOWI - LA TAA LY

SISSBI 9[K - NAOA pue dn) smoiry

saFewt 9[0£d - THOTY Pue LIFT SMOLY e

a3ewi ued - NOLLNE LHOIY SN0 »

aFewr o/ur Wooz - TITHAL SN0
SLNDIMOHS
[ooAanes | [0000 ones | [ ‘eiep|uopioyoop
@150y | [ 0104 ones | uN [ sa1 050040 | :sax0qg

nABep ~uelesnsny
nABepy"ueder!

sessep | 914 asooy) | :sasse[D)

O L6'0KT “PEEXPEE
6d'g”def
6dl'g™
6d(y"def
6d(¢”def
6dlz"del
6d('|, " def’
6d(g”def

E—
anegypdos) saly 20z [ sai4 8s00yD | :so3ewi

"S34 IX3° g Isnw

UoI323s SIYy eiA papeodn adA} 211} 93U} Jey) 210U 19seIep ay3 JO S955B)D 3y} peoydn pue ‘Uoing (S9SSe)d) Sy 9S00YD), 9y} 91eD07 ‘P

b8




‘ung Surureiq 610Z-810T @ WSUAAOD | §°7°0 :UOISIA

XOQg PRI JAOWNI - L TAA A9
$9sSB[O (40 - NMOJ pue d() smoury
sofew 904D - LTHOTY PUE LiHT SMoLy
a3ewr ued - NOLLNE LHOIY SN0
aFew no/ur Wooz - THTFHM SO

:SLNDIMOHS
[ 00A enes | [ 0000 anes | [ ewep|:opjoy oop
[ ei01s2y | [ 0T0A anes | uN [ send asooud | :saxoqq

nABeppueljensny
nABepy ueder
sosse|o | o|i4 asooy) |:sasse[)

3 L6'0VT pEEXPEE
6dl'g”def

T
anegpdoi saly 20z | sl 8sooy | :sagewy

G8

UOo13D939p 123(qO o) paules} 94 0} eale ay) Jo doy uo xoq ay} meiq °g




‘ung Juturesc 6102-810T & WEULD) | $T°0 UOISIIN

XOQg PADIS 0w - FLTAQ LY o
$as3RP 91243 - NAVOK pue d) smoury o
sadewt 91245 - LHOIY PUe L] Swouy o
adwvwn ued - NOLLNE LHORY 3SMOW
23ewn MO WOOZ - TTHM IO«

‘SLNOIMOHS

20A ones || 0000 oavs | [ Uep | IIPJOJ 207

| asoisay | | 0704 ares |

v N | seyd 9soou) | isavoqg

*

nABem “ueyensny
KB ued b

_

59550 | 9f14 95004D | 1sISSEL)

AN L6'0FT PEEXPEE

Bdrg™
Bdlge
Bafp
Bdlg™
Bd(Z™
6df"| "del|

Bdlo del)

‘onegydos) | ..a 202 | son4 .820.‘_ isadvwy

e

98

"A))eD13eWIOINE 3} WX SB PIARS 90 P)NOM )lj SYL "9ABRS pue U0}INg DOA Se 9ABS 3y} 91207 ‘9



L8

MOYSQ Pa3RAISN)|I SI D)1 \UX Y3 Jo 1dwexs ay |

<uoT3iejouue/>
<3o8lqo/>

<xoqpuq/>
[>ezZy< uk>
<XEBWX [>ToHy<Xewx>
<UTwA />g<utwA>
<UTWX />G<UTWX>
<xoqpug>
<ITMITIITR/>0<ATNITIITP>
PapnNT220/>9<papnTo20>
<pajeduniy/>@<pealeauniiy>
<@sod/>paTjrdadsun<asod>

<sweu/>nABep ueder<awew
<32alqo>
<pajuawbas />g<pajuaubas>
<9ZIS/>
<yidap/>g<yrdep>
<1ybBTay/>9zy<iybray>
<YIPTM/>BEH<YIPTM>

TS>
<821nos />
<aseqel}ep/>uUMouyun<aseqelep>
@2INn0S>

<

u
Jyied>

<aweuaTtd/>bd[-T6 del<a ITTI>
<Iap[o}/>el1ep<iaplos>
<UOT3}E}OUUE>

<iu@ ' TuSUOTSISA TWXE>

9\l ASD B O] (MO)2Q UMOYS Se) I} TAX 94l 1LUSAUOD O] 9P0D B 91lUM RCTNEY]



Ly (Gl 2 L niBepueder 9Ly o2y | Bdlool del
gz 8k O L niBep ueder y1z 0S¢ | Bdlrop del
9ge |1Se 0 0 nAbem uelensny 0ge  2S€ 6df-gg oid
G5z 0.2 O L niBep ueder 95z 0.2 Bd[-gedel
egr | wiv L £ nABem ueder ogy  9/v 6dl'gg™ del
9/¢z %62 € 0 niBep\"uelfensny | 8/ 862 Bdl"g a1d
orr €25 L 0 ndBep\"uelensny |y ZES 6dl"Lg7aid
0gr | 16r 0 g niBep ueder 9zy 86V 6dl-1 6 del
€6l |Sbz 0 I nAbemy uellensny velL  8re Bdl-gg oid
8gr |9l | § G niBep ueder zer  8.v Bdl-ze del
162 | gg€ O L- nABepm ueder gez  vee 6dl-gg del
¥S€ | 198 L L niBem uelensny 95 29¢ Bdl-gg™oid
iz |[1e L 0 niBep\"uelensny 91z ZLZ 6dl-267o1d
6oe ey ¢ 4 niBepueder oLe  ovv Bdlz6 del
Ggg (062 O L niBepy ueder 9zz 062 Bdl"gedel
ger el ¢ 0 nABeny uelensny 9z ogy | Bdi-gop oid
e |Lee ¢ 4 nABep\ uellensny | ZLe  veE 6dlrgg o1d
08 (€l L- L nABep\"uelensny g/e | 8L¥ Bdl'y6 aid
/02 |86k 0 L nABepm"ueder 8oz 002 Bdl"pgdel
Z6S |(¥89 T g niBepueder 965  ¥89 Bdlge del
82z G¥¢ O 0 niBemy uelensny 0eg  9re Bdlge oid

XewA Xewx ujwf upux sse;o ybley uyipm aweuajy

Ul MOYq papiroid wioy ayy duissassod sy ASD O3 Sa)1 TAIX Y} HaAUOD g



VITA

NAME Nattakorn Kointarangkul
DATE OF BIRTH 9 June 1986
PLACE OF BIRTH Bangkok

INSTITUTIONS ATTENDED Berklee College of Music, Bachelor Degree
Imperial College London, Master Degree
Chulalongkorn University, Master Degree

HOME ADDRESS 143-5 Phaholyotin Rd., Samsennai, Phayatai, Bangkok
10400



	ABSTRACT (THAI)
	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1
	1.1 Statement of the problems
	1.2 Objective
	1.3 Scope of Study
	1.4 Research Methodology
	1.5 Outcomes
	1.6 Thesis Publication

	CHAPTER 2
	2.1 Convolutional Neural Network (CNN)
	2.2 Deep Convolutional Generative Adversarial Network (DCGAN)
	2.3 Felzenszwalb Segmentation
	2.4 Selective Search
	2.5 Insection over Union (IoU)
	2.6 Region-based Convolutional Neural Network (R-CNN)

	CHAPTER 3
	3.1 Methodology and Working Environments
	3.2 Data Preparation
	3.3 Phase 1
	3.4 Phase 2

	CHAPTER 4
	4.1 Results of generating images via DCGAN
	4.2 Results of Phase 1
	4.2.1 Results of Phase 1.1
	4.2.2 Results of Phase 1.2

	4.3 Results of Phase 2
	4.3.1 Results of Phase 2.1
	4.3.2 Results of Phase 2.2

	4.4 Overall Test Results

	CHAPTER 5
	REFERENCES
	APPENDIX
	VITA

