
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Detection of Wagyu Beef Sources with Image Classification using Convolutional Neural 
Network 

 

Mr. Nattakorn Kointarangkul 
 

A  Thesis Submitted in Partial Fulfillment of the Requirements 
for the Degree of Master of Science in Computer Science 

Department of Computer Engineering 
FACULTY OF ENGINEERING 
Chulalongkorn University 

Academic Year 2020 
Copyright of Chulalongkorn University 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

การตรวจหาต้นกำเนิดเนื้อวากิวด้วยการจำแนกภาพแบบโครงข่ายประสาทคอนโวลูชัน 
 

นายณัฏฐกร โคอินทรางกูร  

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต 
สาขาวิชาวิทยาศาสตร์คอมพิวเตอร์ ภาควิชาวิศวกรรมคอมพิวเตอร์ 

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย 
ปีการศึกษา 2563 

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย  
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Thesis Title Detection of Wagyu Beef Sources with Image 

Classification using Convolutional Neural Network 
By Mr. Nattakorn Kointarangkul  
Field of Study Computer Science 
Thesis Advisor Associate Professor Yachai Limpiyakorn, Ph.D. 

  
 

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn University in 
Partial Fulfillment of the Requirement for the Master of Science 

  
   

 

Dean of the FACULTY OF 
ENGINEERING 

 (Professor SUPOT TEACHAVORASINSKUN, D.Eng.) 
 

  
THESIS COMMITTEE 

   
 

Chairman 
 (Assistant Professor SUKREE SINTHUPINYO, Ph.D.) 

 

   
 

Thesis Advisor 
 (Associate Professor Yachai Limpiyakorn, Ph.D.) 

 

   
 

External Examiner 
 (Paskorn Apirukvorapinit, Ph.D.) 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 iii 

 
ABSTRACT (THAI)  ณัฏฐกร โคอินทรางกูร : การตรวจหาต้นกำเนิดเนื้อวากิวด้วยการจำแนกภาพแบบ

โครงข่ายประสาทคอนโวลูชัน. ( Detection of Wagyu Beef Sources with Image 
Classification using Convolutional Neural Network) อ.ที่ปรึกษาหลัก : รศ. ดร.
ญาใจ ลิ่มปิยะกรณ์ 

  
เนื้อวากิวมีต้นกำเนิดในญี่ปุ่น อย่างไรก็ตาม ยังมีเนื้อวากิวประเภทต่างๆจำหน่ายในตลาด

ทั่วโลก แหล่งผลิตหลักๆ อาทิ ออสเตรเลีย สหรัฐอเมริกา แคนาดา และอังกฤษ ทั้งนี้ เนื้อวากิว
ญี่ปุ่นแท้จะเป็นที่รู้จักกันดีสำหรับลายเนื้อหินอ่อนที่หนาแน่น ความนุ่มและรสชาติที่ฉ่ำลิ้น เป็นที่
สังเกตว่า เนื้อวากิวจากแหล่งผลิตที ่ต่างกันจะมีรสชาติ เนื้อสัมผัส และคุณภาพที่แตกต่างกัน 
งานวิจัยนี้นำเสนอแนวทางบนพื้นฐานปัญญาประดิษฐ์เพื่อระบุแหล่งผลิตเนื้อวากิวด้วยการจำแนก
ประเภทภาพ ข้อมูลนำเข้าเป็นภาพที่รวบรวมจากแหล่งที่น่าเชื่อถือบนอินเทอร์เน็ต และเพ่ิมจำนวน
ภาพด้วยดีซีแกน โครงข่ายประสาทเชิงลึกซีเอ็นเอ็นถูกสร้างขี้นเพ่ือตรวจหาแพตเทิร์นลายไขมันหิน
อ่อนของเนื้อวากิวสองแหล่ง คือ ญี่ปุ ่นและออสเตรเลีย ผลการทำนายให้ค่าความแม่นยำสูงที่ 
94.2% การดำเนินการทดลองขั้นต่อไปได้เพิ่มเนื้อวากิวสหรัฐอเมริกาสำหรับการจำแนกหลาย
ประเภท แบบจำลองการตรวจหาวัตถุได้ถูกสร้างขึ้นโดยการฝึกสอนซีเอ็นเอ็นเชิงภูมิภาคหรืออาร์ซี
เอ็นเอ็น ซึ่งให้ผลลัพธ์การทำนายที่ความแม่นยำ 79.8% พบว่า แบบจำลองการเรียนรู้โครงข่าย
ประสาทคอนโวลูชันทั ้งสองเป็นวิธีที ่หวังว่าสามารถใช้สำหรับเรียนรู ้ลักษณะแพตเทิร์นของ
เอกลักษณ์ชั้นลายไขมันหินอ่อนได้อย่างรวดเร็ว ซึ่งจักเป็นประโยชน์กับลูกค้าสำหรับการเลือกซื้อ
เนื้อวากิวในราคาที่เหมาะสม 

 

สาขาวิชา วิทยาศาสตร์คอมพิวเตอร์ ลายมือชื่อนิสิต ................................................ 
ปีการศึกษา 2563 ลายมือชื่อ อ.ที่ปรึกษาหลัก .............................. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 iv 
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 Nattakorn Kointarangkul : Detection of Wagyu Beef Sources with Image 

Classification using Convolutional Neural Network. Advisor: Assoc. Prof. 
Yachai Limpiyakorn, Ph.D. 

  
Wagyu beef originated in Japan. However, there are many types of Wagyu 

beef in the market around the globe. Primary sources include Australia, USA, Canada 
and the United Kingdom. The authentic Japanese Wagyu is well known for its intense 
marbling, juicy rich flavor and tenderness. Observing that there are differences in 
flavor, texture, and quality between distinct sources of Wagyu. This research presents 
an AI-based approach to identify Wagyu beef sources with image classification. The 
input images were collected from reliable sources on the internet and augmented 
with DCGAN. Deep neural networks, CNN, was constructed to detect the marbled fat 
patterns of two sources, Japanese Wagyu and Australian Wagyu. The prediction of 
Wagyu sources achieved high accuracy of 94.2%. Further experiment was conducted 
for multi-classification with the additional source of the US wagyu. The object 
detection model was trained using Region-based CNN, R-CNN, providing the 
prediction accuracy of 79.8%. The learning models of Convolutional Neural Networks 
were found to be promising methods for the rapid characterization of the unique 
patterns of marbled fat layers. These classifiers would benefit the customers for 
buying Wagyu beef at reasonable prices. 
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CHAPTER 1 

Introduction 

1.1 Statement of the problems 

According to the research and questionnaires conducted, many Wagyu Beef related 

occupations, for instance, Chefs and Main Kitchen Buyers, usually struggle to tell the 

difference between the true sources of the Wagyu Beef if they were not labelled [1]. 

When purchasing the Wagyu Beef, if the meat was wrongly labelled, more than often, 

the buyers would end up buying the Wagyu they do not desire. Since the sources of 

the Wagyu Beef could not be distinguished through eyesight, it leaves the buyers no 

choice but to blindfold-purchase them on some occasions. Whether the case was by 

intention or not, it often leaves the buyers in confusion, and more than likely, lead 

them to obtain lower graded Wagyu Beef as opposed to buying premium one. As one 

of the solutions to this problem, since each kind of Wagyu Beef have very 

distinguishable fatty marble layers, we shall play this feature to our advantage via deep 

learning (computer vision based). These fatty layers are expected to have different 

patterns for each source; therefore, computer vision would be a suitable tool in order 

to perform the classification task on this specific topic. However, computer vision is 

considered a very broad subject; in order to be more specific, the model used for this 

computer vision assignment would be Convolutional Neural Network or CNN. Later in 

the next section, CNN’s architecture and implementations will be illustrated and 

explained in detail. Although, CNN has been invented and existed for some time, yet 

it remains as one the most powerful tool for deep learning-based approach. As a result, 

CNN architecture would be supporting this research as the backbone throughout. 

Although, some adjustments may have to be made and modified; the main and unique 
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characters of CNN would still hold, and inevitably, serve as the base for several models 

used to train the data sets of this research. 

1.2 Objective 

To present and implement an AI-based approach for classifying the true origins of the 

given Wagyu beef images. 

1.3 Scope of Study 
1. The chosen sources of Wagyu beef images will be binary based and expand to multi-

classification; including out of distribution classification  

2. The sources of datasets come from the internet, e.g.  

• Australian Wagyu Association [1] 

• American Wagyu Association [2] 

• The Wagyu Shop [3] 

3. The model performance will be evaluated by the accuracy on the test set after the 

model has been trained and satisfies the requirements specification. 

1.4 Research Methodology 

1. Study several related works about CNNs and GANs. 

2. Collect and preprocessing the datasets of Wagyu beef images. 

3. Train and fine-tune the model. 

4. Analyze the findings. 

5. Evaluate and summarize the outcome. 

5. Publish the article. 

6. Complete thesis writing. 
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1.5 Outcomes 

Gain an AI-based visual aid for classifying the authentic origin of a Wagyu beef image 

in order to encourage and promote a fair trade in the Wagyu Beef exchanged market. 

1.6 Thesis Publication 

Parts of the thesis had been published in the conference as following: 

N. Kointarangkul and Y. Limpiyakorn, “Detection of Wagyu beef sources with image 

classification using convolutional neural network”, in Proceedings of the 6th 

International Workshop on Pattern Recognition, 2021, Chengdu, China. 
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CHAPTER 2 

Literature Review 

2.1 Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) [4] was chosen as the network architecture in this 

research due to its ability to handle multidimensional data. For cases associated with 

images, a CNN will take in a total of 3-dimensional data (height x width x depth) and 

then arrange the same number of neurons in order to proceed further to latter stages 

as shown in Figure 1. Furthermore, each neuron, within the given CNN, will have full 

connection to all elements of the previous layer, and would also have access to some 

elements of the neighbouring region through the “receptive field (filter size)”. The 

CNN’s neurons share the same weights and bias throughout the network. The so-called 

convolutional layers would act as a filter (kernel) in order to modify the image, which 

in the end, would lead to a feature transformation. Figure 1 illustrates an example of 

convolution operation computed on the given matrix. The formal mathematical term 

for the previous operation is ‘cross-correlation’ [3]. The cross-correlation of a matrix, 

x, with a filter, w, is provided in equation (1). The convolution results could be obtained 

from the formula below by flipping the kernels before it. 

 

                          (1) 
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Figure 1. The process of calculating convolutional layers and the architecture of the 
network [3]. 

2.2 Deep Convolutional Generative Adversarial Network (DCGAN) 

Before exploring the DCGAN [5], the standard Generative Adversarial Networks (GANs) 

[6] would be looked at first. GANs are divided into 2 parts: 1) A generator, and 2) A 

discriminator. 

The generator (‘the artist’)  creates fake images that look as close to the real ones as 

possible and will always try to convince the discriminator (‘the art critic’) that the 

images created are real [7]. Whereas the discriminator will act as a detective and try 

to tell the difference between real images and fake images. 

As the training processes illustrated in Figure 2, the generator will become so much 

better at creating images and at the same time the discriminator will also become so 

much better at catching fake images. The process would keep continuing until it 

reaches the equilibrium point where the discriminator could no longer tell the 

difference between real images and fake images. 
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Figure 2. How both the generator and the discriminator improve over time [6] 
 

However, the DCGANs [5] are an adjusted model based on the original GANs. Figure 3 

depicts the architecture of the generator of DCGAN. Basically, DCGANs are the ‘image 

version’ of the most fundamental implementation of GANs. The deep convolutional 

neural networks are embedded deep within the system of Generator-Discriminator 

Framework, in which, the images generated are created from the given distribution of 

noisy data [7]. 

 
Figure 3. The network architecture of the generator of DCGANs [5] 
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These points are the adjustments made based on the original GANs  [8]: 

• Replace all max pooling with convolutional stride 

• Use transposed convolution for upsampling 

• Eliminate fully connected layers 

• Use batch normalization except the output layer for the generator and input layer 

of the discriminator 

• Use ReLU in the generator except for the output which uses tanh 

• Use LeakyReLU in the discriminator 

 

2.3 Felzenszwalb Segmentation 

Felzenszwalb [9] is brought in to extract the segments; all of these components in the 

image chosen would be taken into consideration via the procedure.  

• Color 

• Texture 

• Size 

• Shape Compatibility 

An example of Felzenszwalb is illustrated below in Figure 4. 
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Figure 4. An example of an image transformed by Felzenszwalb Segmentation. 

2.4 Selective Search 

Selective Search is an algorithm created based on the distinction of color, texture, size 

and shape compatibility of an image given [9]. It is designed to have a very high recall 

along with quick response when implemented and is widely used as an algorithm for 

object detection. 

Selective search is nitiated by implementing the graph-based segentation method by 

Felzenzwalb and Huttenlocher. Figure 5 shows the result after transforming the input 

image with the segmentation method stated. Then, the intensity of the pixels is over-

segmented by the algorithm. 
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Figure 5. A result in steps when Selective Search is implemented 
 
The selective search algorithm would then take these oversegments as its starting 

point and continue via the following steps: 

1. Add all bounding boxes corresponding to the divided segment parts to the list 

of regional proposal 

2. Group adjacent segment parts based on similarity 

3. Go back to step 1 and iterate 

After each iteration, larger segments will be formed and added to the list of region 

proposals. Therefore, as the algo iterates the segments will keep getting larger by 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 25 

forming and adding to the list of region proposals. This is seen as a bottom-up approach 

by many [10], since the structures are originate formed from small segments and piling 

up to become larger ones as shown in Figure 6. 

 

Figure 6. An illustration of selective search capturing the possible target objects [10]. 
 

In order to iterate successfully, the selective search must rely on its unique way of 

calculating similarity between two regions. The method could be examined and 

classified into 4 categories as follow: 

• Color Similarity:- A color histogram of 25 bins is figured for each channel of the 

image [10]. Afterwards, the all of the channels of the histograms are 

concatenated to form a color descriptor resulting into a 25x3 = 7-dimensional 

color descriptor. 

The calculation of color similarity of 2 regions based on histogram intersection 

is processed as Equation (2): 

 

where ck
i is the histogram value for the kth bin in color descriptor  (2) 
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• Texture Similarity:- Texture features are performed by extracting Gaussian 

derivatives at 8 orientations for each channel [10]. Within a single color channel 

for each channel, a 10-bin histogram is calculated and formed a 10x8x3 = 240-

dimensional feature descriptor. 

Texture Similarity of 2 regions is processed by using histograms intersection as 

shown in Equation (3): 

 

where tk
i is the histogram value for the kth bin in texture descriptor  (3) 

• Size Similarity:- This feature ensures that small regions merge early. It also 

guaranteed that the region proposals at all scales and sizes are formed at every 

parts of the image given [10]. However, if this so-called size similarity does not 

exist.  The region proposals at multiple scales would be generated at one 

location only, since that particular region will keep concatenating all the small 

regions one by one. 

Size Similarity is defined by Equation (4): 

 

 where size (im) is the size of image in pixels    (4) 

• Shape Compatibility:- This feature is designed for measuring how well the 2 

regions(ri and rj) concatenate and fit into each other [10]. If ri fits into rj they 

would be merged into each other and all the gaps would be filled. However, 

if the 2 regions are not overlapping or even touching each other, the merging 

process would be terminated and cancelled. 
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Shape Compatibility is defined by Equation (5): 

 

 where size BBij is a bounding box around ri and rj   (5) 

• Final similarity:- Previously explained, the final similarity between the given two 

regions is defined as a linear combination of the four similarities [10], shown in 

Equation (6): 

(6) 

where   ri and rj are two regions or segments in the image, 

and      ai  [1] denotes if the similarity measure is used or not. 

• Results 

Usually, 1000-1200 proposals are good enough to get all the right regions 

proposals [9] as shown in Figure 7. When presenting the image as a result, a 

given range of top region is often set to crop the desired features and objects. 

2.5 Insection over Union (IoU) 

Intersection over Union [9] is a tool built for detecting the accuracy of the predictions 

of bounding boxes created for the target objects. It is designed to measure how 

overlapping the predicted and actual bounding boxes are, while at the same time, 

would also measure the overall space possible for overlap. Basically, IoU is the ration 

between the overlapping region of the 2 bounding boxed and the combined region of 

both bounding boxes. Figure 8 was installed to explain the procedure previously 

mentioned. 
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Figure 7. An example of possible proposals generated by Selective Search [9]. 

 

Figure 8. The formula used for calculating IoU. 
 
The ration explained (IoU) could be examined and illustrated by Figure 9. By 

considering the left bounding box as the ground truth (the exact location of the object; 

Xmin, Xmax, Ymin, Ymax) and the right bounding box as the predicted location of the 

object, the result would be a ratio ranging from zero to one, with one representing the 

highest possible accuracy and zero representing lowest possible accuracy (no 
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overlapping). In other words, as IoU decreases, the overlap will inevitably decrease as 

well. Hence, no overlapping would mean that the IoU metric is equivalent to zero. 

 

Figure 9. Examples of IoU scores generated by various positions of bounding box [9]. 

2.6 Region-based Convolutional Neural Network (R-CNN) 

Region-based algorithm [9] is used in order to sync with the region proposals of 

the target object. Figure 10 illustrates the procedure of executing R-CNN visually.The 

steps to implement R-CNN are as follow. 

• Extract the region proposals from the image given 

• Resize (warp) all of the extracted regions to get all the images align by having 
the size 

• Pass along the altered-images with newly reconfigured sizes through the 
network.  

• Create data intended for model training, where the input features are extracted 
by passing the region proposals through the model, and the outputs are the 
classes according the to the regions given 

• Connect 2 output heads, one is the class of the image and the other would be 
the bounding box, which corresponds to the offset of the region proposal with 
the ground truth bounding box  

• Train the model 

• Make prediction of the class of the object cropped by the bounding box. 
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Figure 10. The process of calculating Region-based CNN [9]. 
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CHAPTER 3 
METHODOLOGY 

3.1 Methodology and Working Environments 

This research is separated into two phases: 

• Phase 1: Model construction with CNN for Classification problem containing 

1.1 Binary class 

1.2 Multi-class 

• Phase 2: Model construction with R-CNN for Object Detection problem 

containing 

2.1 Binary class 

2.2 Multi-class 

The first phase was conducted to test whether the assumption is valid. Since the 

method was original and therefore, the outcome was unpredictable to some extent. 

Hence, this first phase was initiated to test out the algorithm and models, if achieving 

the desired result as intended initially. 

The test started off with a binary classification between Japanese Wagyu Beef and 

Australian Wagyu Beef, since Japanese Wagyu is considered as the most of premium 

of all Wagyu Beef existed and, on the other hand, the Australian Wagyu Beef is 

considered as the least premium. Therefore, the binary-classification conducted was 

expected to be the easiest out of all the possible binary classifications between the 

Wagyu Beef from different sources. 

The model in this first phase was trained on a balanced dataset containing images of 

Wagyu Beef from two distinct sources: Japanese and Australian via the CNN 

architecture described previously. The images of various sizes were scaled down to 

256x256 pixels (RGB color PNG files) via the Imagedatagenerator function attached with 
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Tensorflow. The model was implemented using Keras Tensorflow 2.0 library. The 

computer’s CPUs were 2 GHs Quad-Core Intel Core i5 with RAM of 16GB. The python 

version was 3.6 along with Keras Tensorflow version 2.0. The last layer, Fully Connected 

layer, was implemented with ‘sigmoid’ activation function, producing the output value 

ranging from 0.0 to 1.0. In this work, the threshold was set to 0.5; that is, the output 

value < 0.5 (closer to 0.0) would be classified as Australian Wagyu, otherwise it would 

be classified as Japanese where the output value no less than 0.5 (closer to 1.0). 

As the experiment turned out to be successful by reaching the expected accuracy of 

above 90%, the test was then expanded from a binary-classification to multiclass 

including. Australian Wagyu, Japanese Wagyu, and US Wagyu. The test ran on the same 

CNN architecture platform and the same computer configuration. 

After training the model with the same balanced data set, the accuracy turned out to 

be lower than the required level (90%). The main issue was the missing of a powerful 

enough GPUs such as NVIDIA CUDA. By having NVIDIA CUDA embedded within the 

system, it would allow the system to perform complex computer vision tasks, 

especially when a multi-classification was preferred over a binary one. 

As a result, the second phase protocol was initiated to serve the need of a more 

complex computer vision tasks. This second phase was trained on a Window platform 

with GPU enabled ability.  Since the code and algorithms written, involved a CUDA 

command, which required a GPU from NVIDIA CUDA (Figure 11) to perform such task, 

and that only Window and Ubuntu platforms are capable of executing NVIDIA GPU. 

Hence, the macOS system was dropped and replaced with the Window platform (GPU 

enabled) platform. 
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Figure 11. An example NVIDIA CUDA ,which could be used as GPU. 

This latter phase was designed to tackle the multi-classification problem including the 

Out-of-Distribution problem (OOD) via the R-CNN model to build an object detection 

framework. Furthermore, this second attempt was trained on the same balanced 

datasets as the first one, which means that the DCGAN images were included along 

with the original files. 

The test started off by multi-classifying Australian Wagyu, Japanese Wagyu, and OOD 

(Out of Distribution class such as other types of meat, which were not Wagyu related). 

After training the data via the Region-Based CNN architecture, the model reached the 

accuracy above the required level of 90%, and consequently, proving that Region 

Based CNN, together with, CUDA enabled platform were capable of performing such 

tasks. 

After previous success, the test was then expanded, including the US Wagyu Beef in 

order to make the model more robust and more complete in terms of a multi-

classification CNN platform. The accuracy proved was satisfying and rose above the 

desired level of accuracy (90%) and brought the test to an end. 

The main programming language used in this work was mainly Python3. The code 

written was divided into 4 main parts:  
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• Data preparation and customization 

• Construction of the network architecture (CNN and Region based CNN) 

• Model training via the architecture built 

• Evaluation of the outcome 

Both PyTorch and Keras Tensorflow were chosen to perform the neural network and 

deep learning algorithm. To be precise, Keras Tensoflow was used for the first phase 

(CNN) since it is a more user-friendly platform than PyTorch and was therefore a good 

starting point in order to gain knowledge from the experiment during the initial stages. 

This particular framework required external libraries as follow: 

• Numpy to create and contain elements in an array 

• Pandas for performing data mining and analysing tasks 

• Pillow to read images as input and output 

• Keras Tensorflow 2.0 to perform CNN algorithm 

However, for Phase 2, PyTorch was chosen to run the model since it had the capability 

of handling NVIDIA CUDA. Figure 12 shows an example of how to check whether CUDA 

is enabled in PyTorch framework via Python Scripts. 

 
Figure 12. An example of NVIDIA CUDA command to trigger its GPU. 
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3.2 Data Preparation 
The sources of data came from the internet, including Australian Wagyu Association 

[1], American Wagyu Association [2], and The Wagyu Shop [3]. The dataset used for 

training were square fractions of the image files of the meat and had to be of high 

definition along with the fact that the fatty layers must be presented in a visible 

manner. The research goes by the rule of one data per one piece of Wagyu Beef, with 

that being said, due to the limited number of the original images of both Japanese and 

Australian Wagyu, DCGAN was applied for data augmentation to increase the number 

of training data in order to avoid the problems of bias and overfittings. 

Table 1 & 2 summarize the number collected images, augmented images with DCGAN, 

and the total size of the dataset of each Wagyu source. 

 
Table 1. Size of dataset containing images of Japanese and Australian Wagyu for 
binary classification. 

 JPN AUS Total 

Collected Images 350 350 700 

DCGAN Images 250 250 500 

Total 600 600 1200 

 
Table 2. Size of dataset containing images of Japanese, Australian, and US Wagyu 
for multi-classification. 

 JPN AUS US Total 

Collected Images 350 350 350 1050 

DCGAN Images 250 250 250 750 

Total 600 600 600 1800 
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The desired parts from the images of Wagyu beef from both Japan and Australia will 

be cropped showing a detectable marbled fatty layer of the Wagyu beef.  Then all the 

images were resized to formal size and were arranged to the format of TensorFlow 

ImageGeneration folder as depicted in Figure 13. Please note that if the images were 

not exactly arranged by the format given, the neural network process would not be 

able to perform. 

 

Figure 13. A format of constructing a data folder for training via Keras Tensorflow. 

In this research, YBAT program [11] would be used in order to perform the conversion 

of JPEG or PNG files to XML files. The reason why XML files are needed is because that 

it could be transformed into CSV files, which as a result, would contain the location 

(Xmin, Xmax, Ymin, Ymax) of the objects of each files we wish the machine to learn. 

The YBAT program could be easily download since it is an open source. The steps to 

proceed in order to create the XML files locating the objects correctly are 

demonstrated in Appendix. 
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3.3 Phase 1 
The modelling of Convolutional Neural Networks contained the total number of ten 

layers, each of which was assigned independent parameters such as activation 

function, padding size, etc. Figure 14 illustrates the basic architectural nature of the 

network implemented. Note that the last dense layer was implemented with ‘sigmoid’ 

activation function due to its binary nature. 

 

Figure 14. The architecture of trained CNNs. 

The model was trained on a balanced dataset containing the images of Wagyu Beef 

from two distinct sources: Japanese and Australian. The images of various sizes were 

scaled down to 256x256 pixels (RGB color PNG files) via the Imagedatagenerator 

function attached with Tensorflow. The model was implemented using Keras 

Tensorflow 2.0 library. The computer’s CPUs were 2 GHs Quad-Core Intel Core i5 with 

RAM of 16GB. The python version was 3.6 along with Keras Tensorflow version 2.0. The 

last layer, Fully Connected layer, was implemented with ‘sigmoid’ activation function, 

producing the output value ranging from 0.0 to 1.0. In this work, the threshold was set 

to 0.5; that is, the output value < 0.5 (closer to 0.0) would be classified as Australian 

Wagyu, otherwise it would be classified as Japanese where the output value no less 

than 0.5 (closer to 1.0). 
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For the multi-classification model, the same computer system was used along with 

the same CNN architecture. However, the last dense layer was inevitably changed to 

‘SoftMax’ to support multi-classification task. Hence, the outcome or the predicted 

value was created in a form of a probability for each class. For example, if the outcome 

was stated as follows:  [0.1  0.2 0.7] 

The 3rd class would be predicted as the class of the inserted Wagyu Beef image, since 

it possessed the highest probability (0.7). Note that the total sum of all the probabilities 

of the classes will always add up to exactly 1.0, i.e. from the above predicted value 

the total sum = 0.1 + 0.2 + 0.7 = 1.0 

3.4 Phase 2 
For this latter stage of the research, Region-based CNN was implemented to perform 

object detection with multi-class labels. The architecture of the network constructed 

is shown in Figure 15. Note that there were 4 added layers at the end with the last 

layer activated as a tanh function to classify the data. 

      

Figure 15. The architecture of Region-based CNN. 
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CHAPTER 4 

Experiments 

4.1 Results of generating images via DCGAN 
Five hundred images were successfully augmented via DCGAN for both Japanese and 

Australian Wagyu; Figure 16 illustrates the evolution of DCGAN images throughout the 

experiment. The generated images were then added to the original training dataset. 

Figure 17 and Figure 18 show and compare the original images and the augmented 

images of Japanese and Australian Wagyu, respectively. 

Epoch:0, Step:0, D-Loss:1.231, D-Acc:20.000, G-Loss:0.671 

Epoch:0, Step:50, D-Loss:0.986, D-Acc:80.000, G-Loss:10.366  

……… 

Epoch:199, Step:150, D-Loss:0.035, D-Acc:100.000, G-Loss:3.451 

Epoch:199, Step:200, D-Loss:0.021, D-Acc:100.000, G-Loss:3.558 

 

Figure 16. How DCGAN images evolved over the period trained. 
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Figure 17. Original Japanese Wagyu images (Left) and Japanese Wagyu images 
augmented with DCGAN (Right). 
 

    

Figure 18. Original Australian Wagyu images (Left) and Australian Wagyu images 
augmented with DCGAN (Right). 

4.2 Results of Phase 1 

4.2.1 Results of Phase 1.1 

The data were successfully trained through the created CNN, which the last layer was 

adjusted to ‘sigmoid’ since the experiment was based upon a binary classification. The 

first round of training was trained without the DCGAN images in the data set and 

achieved an accuracy via 5-fold cross validation at 91.16% 
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1st Fold 

  

Figure 19. Accuracy (Left) and loss (Right) of the 1st fold of 5-fold cross validation of 
the CNN binary classification without DCGAN images. 

2nd Fold  

  

Figure 20. Accuracy (Left) and loss (Right) of the 2nd fold of 5-fold cross validation of 
the CNN binary classification without DCGAN images. 

3rd Fold 

  

Figure 21. Accuracy (Left) and loss (Right) of the 3rd fold of 5-fold cross validation of 
the CNN binary classification without DCGAN images. 
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4th Fold 

  

Figure 22. Accuracy (Left) and loss (Right) of the 4th fold of 5-fold cross validation of 
the CNN binary classification without DCGAN images. 

5th Fold 

  

Figure 23. Accuracy (Left) and loss (Right) of the 5th fold of 5-fold cross validation of 
the CNN binary classification without DCGAN images. 

 
Afterwards, the DCGAN created images were added to the dataset, and hence the 

second round of test was trained through the 5-fold cross validation method. The 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 43 

results were as expected as the CNN model with DCGAN dataset included 

outperformed the accuracy of the previous model (No DCGAN images) by about 1%. 

The result of the training is as follows: 

1st Fold 

  

Figure 24. Accuracy (Left) and loss (Right) of the 1st fold of 5-fold cross validation of 
the CNN binary classification with DCGAN images. 

 
2nd Fold 

  

Figure 25. Accuracy (Left) and loss (Right) of the 2nd fold of 5-fold cross validation of 
the CNN binary classification with DCGAN images. 

 
 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 44 

3rd Fold 

  

Figure 26. Accuracy (Left) and loss (Right) of the 3rd fold of 5-fold cross validation of 
the CNN binary classification with DCGAN images. 

4th Fold 

  

Figure 27. Accuracy (Left) and loss (Right) of the 4th fold of 5-fold cross validation of 
the CNN binary classification with DCGAN images 

5th Fold 

  

Figure 28. Accuracy (Left) and loss (Right) of the 5th fold of 5-fold cross validation of 
the CNN binary classification with DCGAN images. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 45 

4.2.2 Results of Phase 1.2 

After the initial experiment was proved successful, US Wagyu images were inserted 

into the DCGAN model in order to repeat the process and turn the binary-classification 

into a multi one. The first time round the CNN model would be trained on the dataset 

without DCGAN images and achieved the accuracy of 73.2% though 5 -fold cross 

validation. 

The result of this training is as follows: 

1st Fold 

   

Figure 29. Accuracy (Left) and loss (Right) of the 1st fold of 5-fold cross validation of 
the CNN multi-classification without DCGAN images. 

2nd Fold 

  

Figure 30. Accuracy (Left) and loss (Right) of the 2nd fold of 5-fold cross validation of 
the CNN multi-classification without DCGAN images. 
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3rd Fold 

  

Figure 31. Accuracy (Left) and loss (Right) of the 3rd fold of 5-fold cross validation of 
the CNN multi-classification without DCGAN images. 

4th Fold 

 
Figure 32. Accuracy (Left) and loss (Right) of the 4th fold of 5-fold cross validation of 

the CNN multi-classification without DCGAN images. 
5th Fold 

 
Figure 33. Accuracy (Left) and loss (Right) of the 5th fold of 5-fold cross validation of 

the CNN multi-classification without DCGAN images. 
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After this, the DCGAN images were added to the data set.  As expected, the accuracy 

running through 5-fold cross validation method of the model was more than the 

accuracy of the previous one (No DCGAN images). The accuracy of this model was at 

77.8%. 

The result of the training is as follows: 

1st Fold 

  

Figure 34. Accuracy (Left) and loss (Right) of the 1st fold of 5-fold cross validation of 
the CNN multi-classification with DCGAN images. 

2nd Fold 

  

Figure 35. Accuracy (Left) and loss (Right) of the 2nd fold of 5-fold cross validation of 
the CNN multi-classification with DCGAN images. 
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3rd Fold 

  

Figure 36. Accuracy (Left) and loss (Right) of the 3rd fold of 5-fold cross validation of 
the CNN multi-classification with DCGAN images. 

4th Fold 

  

Figure 37. Accuracy (Left) and loss (Right) of the 4th fold of 5-fold cross validation of 
the CNN multi-classification with DCGAN images. 

5th Fold 

  

Figure 38. Accuracy (Left) and loss (Right) of the 5th fold of 5-fold cross validation of 
the CNN multi-classification with DCGAN images. 
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4.3 Results of Phase 2 

4.3.1 Results of Phase 2.1 

For this latter stage of the research, Region-based CNN was implemented in order to 

perform the object detection and also to tackle the problem of multi-classification 

and Out of Distribution detection (OOD). In order to perform such tasks successfully, 

NVIDIA CUDA was triggered and enabled to allow GPUs processing power. 

The data were successfully trained through the Region Based-CNN model with its 

accuracy shown by K-Fold method (5-Folds). The first round of training in Phase 2.1 

was trained by using the original data set “only”, by which, the images generated by 

DCGAN were left out. 

The result of this training is as follows: 
1st Fold 

 
Figure 39. Accuracy of the 1st fold of 5-fold cross validation of the R-CNN binary 

classification without DCGAN images. 
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Figure 40. Loss of the 1st fold of 5-fold cross validation of the R-CNN binary 
classification without DCGAN images. 

2nd Fold 

 

Figure 41. Accuracy of the 2nd fold of 5-fold cross validation of the R-CNN binary 
classification without DCGAN images. 
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Figure 42. Loss of the 2nd fold of 5-fold cross validation of the R-CNN binary 
classification without DCGAN images. 

3rd Fold 

 

Figure 43. Accuracy of the 3rd fold of 5-fold cross validation of the R-CNN binary 
classification without DCGAN images. 
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Figure 44. Loss of the 3rd fold of 5-fold cross validation of the R-CNN binary 
classification without DCGAN images. 

4th Fold 

 

Figure 45. Accuracy of the 4th fold of 5-fold cross validation of the R-CNN binary 
classification without DCGAN images. 
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Figure 46. Loss of the 4th fold of 5-fold cross validation of the R-CNN binary 
classification without DCGAN images. 

5th Fold 

 

Figure 47. Accuracy of the 5th fold of 5-fold cross validation of the R-CNN binary 
classification without DCGAN images. 
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Figure 48. Loss of the 5th fold of 5-fold cross validation of the R-CNN binary 
classification without DCGAN images. 

 

Afterwards, the images created by the DCGAN architecture were added into the model 

in order to compare the difference between having and ‘not’ having artificial images 

created by DCGAN. 

The result of this training is as follows: 
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1st Fold 

 

Figure 49. Accuracy of the 1st fold of 5-fold cross validation of the R-CNN binary 
classification with DCGAN images. 

 

 

Figure 50. Loss of the 1st fold of 5-fold cross validation of the R-CNN binary 
classification with DCGAN images. 
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2nd Fold 

 

Figure 51. Accuracy of the 2nd fold of 5-fold cross validation of the R-CNN binary 
classification with DCGAN images. 

 

 

Figure 52. Loss of the 2nd fold of 5-fold cross validation of the R-CNN binary 
classification with DCGAN images. 
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3rd Fold 

 

Figure 53. Accuracy of the 3rd fold of 5-fold cross validation of the R-CNN binary 
classification with DCGAN images. 

 

 

Figure 54. Loss of the 3rd fold of 5-fold cross validation of the R-CNN binary 
classification with DCGAN images. 
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4th Fold 

 

Figure 55. Accuracy of the 4th fold of 5-fold cross validation of the R-CNN binary 
classification with DCGAN images. 

 

 

Figure 56. Loss of the 4th fold of 5-fold cross validation of the R-CNN binary 
classification with DCGAN images. 
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5th Fold  

 

Figure 57. Accuracy of the 5th fold of 5-fold cross validation of the R-CNN binary 
classification with DCGAN images. 

 

Figure 58. Loss of the 5th fold of 5-fold cross validation of the R-CNN binary 
classification with DCGAN images. 
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After this, the model performance of R-CNN with DCGAN images included was 

evaluated on test dataset containing Japanese and Australian Wagyu. Figure 59 and 

Figure 60 illustrate the results of successful detection of the patterns of marbled fat 

layers of Japanese Wagyu.  

 

Figure 59 Example 1 illustrating how R-CNN could recognize the marbled fat layers 
of Japanese Wagyu. 

 

 

Figure 60 Example 2 illustrating how R-CNN could recognize the marbled fat layers 
of Japanese Wagyu. 
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Figure 61 and Figure 62 shows the results of successful detection of the patterns of 

marbled fat layers of Australian Wagyu beef. 

 

Figure 61. Example 1 illustrating how R-CNN could recognize the marbled fat layers 
of Australian Wagyu. 

 

We also tested the model using the US Wagyu. As a result, the R-CNN could not 

recognize the patterns of Japanese Wagyu nor the Australian, therefore giving a result 

as “No object found” as shown in Figure 63. 

 

Figure 62. Example 2 illustrating how R-CNN could recognize the marbled fat layers 
of Australian Wagyu. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 62 

 

Figure 63. Illustrating how the machine could not recognize the pattern of the 
marbled fat layers of the US Wagyu beef. 

 

4.3.2 Results of Phase 2.2 

In this stage, the R-CNN was trained for multi-class object detection by adding the US 

Wagyu beef. The model was successfully trained through the same R-CNN architecture 

with enabling NVIDIA CUDA. For the first round of training, the model achieved an 

accuracy of 74.3% through 5-fold cross validation, the dataset of this round was limited 

to original images only (No DCGAN images). 
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1st Fold 

 
Figure 64. Accuracy of the 1st fold of 5-fold cross validation of the R-CNN multi-

classification without DCGAN images. 
 

 

Figure 65. Loss of the 1st fold of 5-fold cross validation of the R-CNN multi-
classification without DCGAN images. 
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2nd Fold 

 
Figure 66. Accuracy of the 2nd fold of 5-fold cross validation of the R-CNN multi-

classification without DCGAN images. 
 

 
Figure 67. Loss of the 2nd fold of 5-fold cross validation of the R-CNN multi-

classification without DCGAN images. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 65 

3rd Fold 

 
Figure 68. Accuracy of the 3rd fold of 5-fold cross validation of the R-CNN multi-

classification without DCGAN images. 
 

 
Figure 69. Loss of the 3rd fold of 5-fold cross validation of the R-CNN multi-

classification without DCGAN images. 
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4th Fold 

 
Figure 70. Accuracy of the 4th fold of 5-fold cross validation of the R-CNN multi-

classification without DCGAN images. 
 

 
Figure 71. Loss of the 4th fold of 5-fold cross validation of the R-CNN multi-

classification without DCGAN images. 
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5th Fold 

 
Figure 72. Accuracy of the 5th fold of 5-fold cross validation of the R-CNN multi-

classification without DCGAN images. 

 
Figure 73. Loss of the 5th fold of 5-fold cross validation of the R-CNN multi-

classification without DCGAN images. 
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Afterwards, the R-CNN for multi-classification was trained on the dataset with DCGAN 

images included. The model’s accuracy and performance were better than the 

previous one through 5-K-Fold method at 79.8%. 

The result of the training is as follows: 

1st Fold 

 
Figure 74. Accuracy of the 1st fold of 5-fold cross validation of the R-CNN multi-

classification with DCGAN images. 
 

 
Figure 75. Loss of the 1st fold of 5-fold cross validation of the R-CNN multi-

classification with DCGAN images. 
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2nd Fold 

 
Figure 76. Accuracy of the 2nd fold of 5-fold cross validation of the R-CNN multi-

classification with DCGAN images. 
 

 
Figure 77. Loss of the 2nd fold of 5-fold cross validation of the R-CNN multi-

classification with DCGAN images. 
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3rd Fold 

 
Figure 78. Accuracy of the 3rd fold of 5-fold cross validation of the R-CNN multi-

classification with DCGAN images. 
 

 
Figure 79. Loss of the 3rd fold of 5-fold cross validation of the R-CNN multi-

classification with DCGAN images. 
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4th Fold 

 
Figure 80. Accuracy of the 4th fold of 5-fold cross validation of the R-CNN multi-

classification with DCGAN images. 
 

 
Figure 81. Loss of the 4th fold of 5-fold cross validation of the R-CNN multi-

classification with DCGAN images. 
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5th Fold 

 
Figure 82. Accuracy of the 5th fold of 5-fold cross validation of the R-CNN multi-

classification with DCGAN images. 
 

 
Figure 83. Loss of the 5th fold of 5-fold cross validation of the R-CNN multi-

classification with DCGAN images. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 73 

Later on, the multi-classifier R-CNN model (with DCGAN images) was tested on the test 

set which includes US Wagyu, Australian Wagyu, and Japanese Wagyu. Figure 84 shows 

the results of successful detection of the patterns of marbled fat layers of the US 

Wagyu beef. 

 
Figure 84. Illustrating how the machine could recognize the pattern of marbled fatty 

layers of the US Wagyu Beef 
 

Further, we tested the model using images of artificial marbling beef. As illustrated in 

Figure 85, the R-CNN returned the output of “No object found” since the model could 

not match the marbled fat layers with either patterns of Japanese, Australian, or the 

US Wagyu beef. 

 

Figure 85 Illustrating how the R-CNN could not recognize the pattern of marbled 
fatty layers of artificial marbling beef. 
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4.4 Overall Test Results 
Table 3 summarizes the accuracy rates of phase 1.1 using 5-fold cross-validation. 

Table 3 Comparison of accuracy of CNN binary classification 
DCGAN 

AUGMENTATION 
ACC 

FOLD1 
ACC 

FOLD2 
ACC 

FOLD3 
ACC 

FOLD4 
ACC 

FOLD5 
AVERAGE 

ACCURACY 

WITH 93.5 92.7 91.0 94.3 89.5 92.2 
WITHOUT  87.0 90.0 91.0 93.5 94.3 91.16 

 

Table 4 summarize the accuracy rates of phase 12 using 5-fold cross-validation. 

Table 4 Comparisons of accuracy of CNN multi-classification 
DCGAN 

AUGMENTATION 
ACC 

FOLD1 
ACC 

FOLD2 
ACC 

FOLD3 
ACC 

FOLD4 
ACC 

FOLD5 
AVERAGE 

ACCURACY 
WITH 71.5 80.0 79.5 87.0 71.0 77.8 

WITHOUT  70.0 70.0 72.0 80.0 74.0 73.2 

 

Table 5 summarizes the accuracy rates of phase 2.1 using 5-fold cross-validation. 

Table 5 Comparisons of accuracy of R-CNN binary classification. 
DCGAN 

AUGMENTATION 
ACC 

FOLD1 
ACC 

FOLD2 
ACC 

FOLD3 
ACC 

FOLD4 
ACC 

FOLD5 
AVERAGE 

ACCURACY 
WITH 93.5 95.0 94.0 94.0 94.5 94.2 

WITHOUT  93.0 92.5 92.5 94.0 93.0 93.0 

 

Table 6 summarizes the accuracy rates of phase 2.2 using 5-fold cross-validation. 

Table 6 Comparison of accuracy of R-CNN multi-classification 
DCGAN 

AUGMENTATION 
ACC 

FOLD1 
ACC 

FOLD2 
ACC 

FOLD3 
ACC 

FOLD4 
ACC 

FOLD5 
AVERAGE 

ACCURACY 
WITH 78.5 82.0 80.0 80.0 78.5 79.8 

WITHOUT  76.5 74.5 75.0 74.0 71.5 74.3 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 75 

As illustrates by Table 3, the CNN model with DCGAN images included, outperformed 

the one without, by gaining more accuracy by around 1%. This shows that by adding 

the augmented images, in this case DCGAN images, the model’s accuracy would 

increase consequently, due to that there are more sources of data for the model to 

train on. As same as the result from previous Table, the results from Table 4, strongly 

suggest that by adding the augmented images created via DCGAN algorithms, would 

increase the performance and accuracy of the model used for training the multi-

classification tasks. In this case, the model’s accuracy improves by 4.6% after adding 

the DCGAN images. 

As it could be seen from Table 5, the accuracy of R-CNN for binary-classification with 

DCGAN images included after 5-fold cross validation is more than the accuracy of the 

one without by 1.2 %. This, again, proves that by adding the augmented image created 

by DCGAN, the model was able to perform and gain more accuracy than the one 

limited to just only the original dataset. As similar as the results from Table 6, which 

the R-CNN model with the DCGAN images outperformed the model of the one without 

by 5.5%. This clearly shows that when a task gets more demanding such as a multi-

classifying task the more dataset available, the more accuracy the model would get. 

And by adding the DCGAN images to the dataset, it proved as another successful way 

to increase the accuracy for the model when the number of data sources were limited. 

To add on, both the binary classification and multi-classification results of R-CNN were 

proven to be better than the ones of CNN architecture. This stands as a proof that 

dividing the image of Wagyu Marbled fat layer into small pieces first (warped process 

of R-CNN), would enable the model to train more effectively and accurately, and 

consequently, enable it to detect the distinguished pattern of the source of the beef.  

Furthermore, while the CNN model always returns the output belongs to the set of 

class labels, the R-CNN will output “Not found” when detecting anomalous inputs out 

of the training data distribution. The preliminary result of phase 2 reported that the R-
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CNN was promising for correctly detecting the testing images of which the sources not 

included in the training set. 
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CHAPTER 5 

CONCLUSION 

For this research, we proposed the deep neural network modelling for image 

classification of the Wagyu sources: Japanese and Australian. Due to the small datasets, 

data augmentation was carried out using DCGAN to mainly reduce bias and overfitting. 

The constructed CNNs achieved the accuracy of 95% (DCGAN images included). When 

the model was modified to have an activation function as Softmax as multi-

classification was required, the adjusted model with DCGAN images included reached 

an accuracy at 77.8%. However, when GPUs was triggered via NVIDIA CUDA, the model 

become much more robust and achieved a higher accuracy of classification. For the 

binary-classification, the accuracy arises as high as 94.2% (DCGAN images included). 

And for the multi-classification, the model achieved a satisfying level of accuracy of 

79.8% (DCGAN images included). Furthermore, when DCGAN images were not included 

as part of the source for training, the performance and accuracy of every category 

decreased, this includes both binary classification and multi-classification.  

None of the less, the model could be exposed to more classes of Wagyu such as the 

UK Wagyu and Canada Wagyu etc. Further direction would be adjusting the model to 

be able to serve and multi-classify more sources of Wagyu beef along with OOD at the 

same time. 
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