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Chapter I

INTRODUCTION
Smartphones and tablets have become an essential part of our daily lives. The

usage of mobile devices has grown beyond the global population [1]. With more

than 75% market share, Android is the most popular mobile operating system [2].

The Google Play Store has approximately 3 million applications available for down-

load [3]. Mobile devices store Personally Identifiable Information (PII) such as

contact information, email addresses, geolocation information, and unique device

identifiers for a variety of reasons. In concept, PII is sensitive personal information

that should not be shared with anyone without the user’s permission. Legislation

such as the EU General Data Protection Regulation [4] is designed to protect users’

privacy. Applications must fully disclose their data collection activities and obtain

user consent before accessing user data. In practice, however, users rarely read the

privacy policies of applications or pay attention to permission requests. They often

agree to all requests in order to use applications without fully understanding the risks

involved [5]. As a result, users may have unknowingly agreed to allow their PII to be

transmitted to remote servers such as application servers, ad servers, trackers, and

malicious sites directly or through the use of third-party libraries by applications

and sometimes applications intentionally fail to disclose that they collect PII [6].

This is recognized as the PII transmission problem [7].

Before downloading and installing an application, users should be able to

quickly check and verify if it transmits PII. Because downloading is interactive,

these checks should only take a few seconds. When users receive the verification

result, they can choose to install the application or decline to install it in order to

protect their personal information from being transmitted by the application. As a

result, fast, reliable, and accurate real-time detection is required.

To detect PII transmissions made by applications, a variety of techniques have



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

been proposed. They can be divided into three categories. The first approach is

based on static analysis of the application source code by decompiling and analyz-

ing the information in the source code without running it. The analysis is heavy-

weight in that it creates a complete control flow graph by tracing all method calls in

the source code to find potential PII leakage paths. [8; 9; 10; 11]. The second ap-

proach is dynamic analysis of application behavior by analyzing the network traffic

generated while running the application [11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21;

22; 23; 24]. The last approach is a combination of the first two approaches [11].

While all of these approaches are effective at detecting PII tranmissions, they are

all heavy-weight in that they take a long time to run, from many minutes to hours.

These approaches are ineffective for real-time detection.

In contrast, we use fast static code analysis to detect PII transmissions. It is

a light-weight approach that takes less than a minute to run. We take a similar

approach to static analysis in that we analyze the source code without running the

application. However, we take a step back and do not generate the control flow call

graph. We are the first to argue that detecting PII transmissions using simple pattern

matching to analyze strings in the source code is already highly effective. In this

thesis, we present a real-time approach for detecting PII transmissions in mobile

applications using fast static code analysis.

The main contributions of this thesis are:

• An approach for detecting PII transmissions in Android applications, using

learning algorithms on features generated by fast static code analysis for over

19,000 applications. Our work is suitable for application users who want a

real-time analysis on an application before deciding to install it, all in under a

minute.

• An evaluation that compares the performance of classification models with

different features and learning algorithms. Our model is capable of achieving

an F1 score of greater than 0.70.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

• As part of our experimental evaluation, we found that 51.8% of the top mobile

applications in today’s Google Play Store are identified as applications that

transmit PII. This is a much larger-scale analysis with a much higher number

of PII-vulnerable applications than previously reported.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter II

BACKGROUND
In this section, we cover background knowledge that relates to our work. The

first section is about defining Personally Identifiable Information (PII). The next

section is about learning algorithms that we select from related work to apply to our

work. The last section is about metrics that we use to evaluate the performance of

the classification model.

2.1 Personally Identifiable Information (PII)

Definition
Even though there is no universally accepted definition of Personally Identi-

fiable Information (PII), many countries have enacted legislation that defines PII as

“any information or opinion that directly or indirectly relates to an identifiable live

natural person (excluding data about the deceased or legal persons) [11]”.

There is no standardized list of data elements defined as PII, despite the fact

that there is a vast body of related work in mobile application privacy [8; 9; 10; 16;

17; 18; 19; 20; 21; 22; 23] as shown in Table A.1 in the Appendix. Because each

study defines and detects different sets of data elements, we utilize a comprehensive

list compiled from previous work, as shown in Table 2.1 [11]. There are 32 PII data

items in total that can be divided into 4 types based on the source of PII: device,

SIM card, user, and location information.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

Table 2.1: Comprehensive PII List.

PII Type PII List
Device Advertiser ID, Android ID, Device Serial Number,

Information Google Services Framework ID, IMEI, MAC Address
SIM Card GSM Cell ID, ICCID, IMSI, Location Area Code,

Information Phone Number
User Age, Audio, Calendar Event, Contract Book, Country,

Information Credit Card Number and CCV, Date Of Birth, Email,
Gender, Name, Password, Photo, Physical Address,
Relationship Status, SMS Message, SSN, Time Zone,
Username, Video, Web Browsing Log

Location GPS (Latitude and Longitude)
Information
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2.2 Learning Algorithms
We select the following learning algorithms used by previous work related to

fast static code analysis to create the classification model for detecting PII transmis-

sion.

1. Neural Network (NN): A neural network is a computational system based on

the human brain’s neural structure. A Neural Network has multi-layer net-

works of neurons. A neuron is a mathematical function that takes inputs and

applies a function on them to get the output. To transfer its knowledge, each

neuron in the same layer connects to neurons in other layers.

2. Logistic Regression (LR): Logistic Regression is an algorithm that finds a lo-

gistic curve that best fits the dataset. It requires the creation of a logit variable

containing the natural log of the probability of the class occurring or not oc-

curring. The probabilities are then estimated using the maximum likelihood

estimation algorithm.

3. Support Vector Machine (SVM): Support Vector Machine is an algorithm for

determining the best hyperplane for separating two classes of data. The best

hyperplane has the minimum error, maximizing the margin of separation be-

tween two classes. For data with high dimensions, one needs to use a map-

ping function to make the data linearly separable. The mapping function can

be represented in SVM training and prediction by the dot product of the map-

ping or the kernel function, which can be efficiently computed and is usually

easier than the mapping function. The Gaussian function and RBF (Radial-

Basis function) are the most commonly used kernel functions.

4. Naive Bayes (NB): Naive Bayes is a probabilistic classifier based on Bayes

theorem for conditional probabilities. It is based on the assumption that all

attributes in a dataset are independent of one another. As a result, it assumes

that the presence or absence of a characteristic representing a specific class

has no bearing on the presence or absence of any other characteristic, which
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is not true for the majority of classification tasks. The maximum likelihood

algorithm is commonly used in Naive Bayes training.

5. k-Nearest Neighbor (kNN): k-Nearest Neighbor algorithm saves all training

data and classifies new data points based on the majority class of their k-

nearest neighbors in the given dataset. The Euclidean distance is used by

kNN to calculate the distance between pairs of data in order to find the near-

est neighbors for each data.

6. Random Forest (RF): Random Forest is an ensemble algorithm that chooses

the majority of decision tree results. Each tree is built using a unique set of

training dataset.

2.3 Performance Metrics
We use the following metrics to evaluate the performance of each classification

model.

True Positives, False Positives, True Negatives, False Nega-
tives

True Positives (TP) is the number of applications that transmit PII that are

correctly classified, while False Positives (FP) is the number of applications do not

transmit PII that are incorrectly classified.

True Negatives (TN) is the number of applications that do not transmit PII that

are correctly classified, while False Negatives (FN) is the number of applications

that transmit PII that are incorrectly classified.
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Accuracy, Precision, Recall, F1 Score
Accuracy is the ratio between the number of correct predictions and the num-

ber of total predictions.

Accuracy =
TP + TN

TP + FP + TN + FN
(2.1)

Precision is the ratio between the number of correct positive predictions and

the number of positive predictions.

Precision =
TP

TP + FP
(2.2)

Recall is the ratio between the number of correct positive predictions and the

number of positive labels.

Recall =
TP

TP + FN
(2.3)

F1 score is the weighted average of precision and recall defined below. It is

different from accuracy in that it does not take true negatives into consideration.

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(2.4)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter III

RELATED RESEARCH
In this section, we discuss related research based on three approaches to de-

tecting PII transmission: dynamic analysis, static analysis, and a combination of

both dynamic and static analysis.

3.1 Dynamic Analysis for PII Transmission De-

tection
The goal of dynamic analysis is to keep track of network traffic flows while

the application is running. Interaction and input for applications can be cre-

ated manually or automatically with the help of a tool like Monkey [25], Ap-

pium [26], and Sapienz [27]. Setting up a proxy server as an intermediate server

between the mobile device and the Internet is required to capture network traf-

fic while applications are running. Various techniques, such as string match-

ing [12; 13; 14; 15; 16; 19; 20; 21; 22; 23], rules for identifier detection [17], and

time-series flow construction [18] are then used to extract the captured traffic.

Dynamic analysis is a popular approach because if a leak is detected, it is

definitive. However, there is one major flaw: there is no comprehensive and scal-

able method for generating input for the application. Although manual testing has

the potential to provide comprehensive coverage, it is not scalable when dealing

with a large number of applications. On the other hand, automated input generation

tools that are currently available are scalable but not comprehensive, as they can

only achieve around 50% code coverage [28]. Furthermore, dynamic testing takes

much longer than static testing because it requires many time-consuming steps, such

as starting a mobile device, installing the app, and running the app long enough to

capture traffic for analysis. An application is typically tested in 10 minutes. How-
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ever, it is sometimes necessary to spend more than 90 minutes [19].

3.2 Static Analysis for PII Transmission Detec-

tion
The focus of static analysis is to examine application source code rather than

run the application. Using decompiler tools like Apktool [29], jadx [30],or baks-

mali [31], the application package must be decompiled to acquire the original source

code. After that, information is extracted and analyzed from the source code. There

are two types of static analysis: heavy-weight and light-weight.

Source code is analyzed in the heavy-weight approach by reconstructing con-

trol flow graphs to find source-sink paths using tools like LeakMiner [8], Androi-

dLeaks [9], and FlowDroid [10]. A source is a method for reading or writing non-

constant data to a shared memory resource, while a sink is a method for sending

non-constant data from shared memory to a remote connection. If PII-related meth-

ods are defined as sources, this approach can be used to find PII source-sink paths

in the code. Reconstructing call graphs ensures that all of the application’s pos-

sible paths are explored. As a result, heavy-weight static analysis provides more

comprehensive code coverage than dynamic analysis.

However, when leaks are found on paths that are not reachable during execu-

tion, such as dead code branches [10], heavy-weight static analysis may produce

false positives. False negatives may also occur if the source-sink list is missing,

the control flow graph is incorrectly constructed, or the application source code is

obfuscated to avoid detection.

FlowDroid is the most advanced heavy-weight static approach, with high pre-

cision (0.86) and very high recall (0.93) when compared to LeakMiner’s precision

of 0.475 and AndroidLeaks’ precision of 0.65.
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In the light-weight approach, application manifest files (application meta-

data) and source code are analyzed using fast static code analysis techniques such

as pattern matching to extract strings and tokens. Light-weight static analysis using

tools such as MobSF [32] have been used as features for malware and virus detec-

tion machine learning models [33; 34; 35; 36; 37; 38], but there is no previous work

exploring the relationship between data extracted from light-weight approaches and

privacy. This thesis is the first study to use light-weight static analysis for detecting

PII transmissions.

When comparing state-of-the-art heavy-weight vs. light-weight static analy-

sis, specifically FlowDroid vs. MobSF, FlowDroid’s call graphs can be difficult to

fully reconstruct, depending on the size and complexity of the application. It is pos-

sible that some paths will be completely overlooked. Furthermore, FlowDroid takes

longer to analyze, taking an average of 2-3 minutes vs. 45 seconds for MobSF.

While light-weight approaches are faster, it is questionable whether they are

effective or not. In this thesis, we argue and demonstrate that light-weight static

analysis can be used to detect PII transmissions as an alternative to heavy-weight

static and dynamic approaches.

3.3 Combined Dynamic and Static Analysis for

PII Transmission Detection
Because both dynamic analysis and static analysis have flaws, relying solely

on one of them for detection may not be sufficient. As a result, we combine their

results to compensate for their individual weaknesses, leading to better detection in

by VULPIX (VULnerable Personal Information Leaks) [11]. VULPIX uses both

static (VULPIXS) and dynamic analysis (VULPIXD) to detect PII transmissions

in Android applications. When a PII transmission is detected by any approach,

VULPIX will flag the application as having a PII transmission.
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VULPIXS improving FlowDroid’s call graph construction and source-sink

matching by updating the PII-related sources, i.e., methods listed in the official An-

droid API references [39], into the source-sink file. As a result, this improves the

detection of PII.

Instead of using Monkey [25] to generate user interaction during dynamic

testing, VULPIXD uses Mankey, a new tool that addresses Monkey’s shortcomings:

unable to perform human-like tasks, such as entering values into text fields. This is

a common interaction in modern applications (i.e., logging in with a username and

password), and it restricts the application coverage achievable by Monkey. Mankey,

which is specifically designed to handle PII input, was built using Appium’s testing

framework [26]. Mankey outperforms Monkey in the following ways:

• Rather than randomly selecting any position on the screen, Mankey selectively

performs actions on interactive elements, such as clicking on buttons, clicking

on clickable elements, filling in text fields, and pressing the back button, as if

it were a real human user.

• Mankey’s text input is designed to look like a human user filling in the cor-

rect information for data elements like credit card numbers, usernames, and

passwords, rather than randomly filling in text fields. Mankey achieves this by

detecting all visible elements on the screen and determining whether or not

any of them are text fields. It then loops through each of these fields, looking

for a clue as to what data that field is attempting to collect. For example, if

the field has a resource-id of the string “pass”, “pwd”, or “pword”, Mankey

will enter the password in this field.

• If there are no interactive elements on the current screen, Mankey will revert

to Monkey’s default behavior. However, Mankey enacts a few limitations in

order to facilitate data collection. Mankey will not perform any system-level

actions other than the back button because these other actions may interfere

with the device’s wifi (i.e., turn it off) and disable the network traffic capturing
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process.

• To enable apps that need login using third-party OpenID providers like Google

or Facebook, Mankey permits a maximum of 5 actions to be performed outside

the target application.

VULPIXD performs automated testing on the application using Mankey while

capturing network traffic through a proxy, mitmproxy [40].

VULPIXD uses three PII detection algorithms on the network traffic: exact-

matches, regular expression matches, and field extraction from HTTP request mes-

sage. When the PII value is known and unique, such as the device IMEI, exact-

matches are used [11]. When the PII is not unique but has a well-defined format,

such as a credit card number, regular expression matches are used [11]. When field

values are obfuscated or encrypted, field extraction from HTTP request message

are used. HTTP request messages consist of 3 parts; request lines (method, URL,

and version), header lines (pairs of header field name and value), and body (post

data for POST method only). Values of URL, header field name, and post data are

extracted by focusing on field names (e.g. username, password, lat, lon) to bypass

the obfuscated or encrypted field values. There are two methods to extract these

field names; exact-match with unique string for the specific field name and regular

expression matching for the common field name.

VULPIX can detect all 32 PII elements listed in Table 2.1 by combining both

static and dynamic approaches, whereas VULPIXS can only detect 24. VULPIXD

can theoretically detect all 32 PII elements, but in our initial evaluation of 19,608

applications, 20 PII elements were detected as shown in the “This Thesis Dataset”

column of Table A.1 in the Appendix due to (i) Mankey’s limited application test-

ing capabilities, which may miss certain application interactions, or (ii) the tested

applications did not send those PII.

VULPIX’s detection may be comprehensive, but it is heavy-weight because it
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takes around 15 minutes to test, making it unsuitable for real-time detection. The

detection results from VULPIX are used as labels in this thesis to train features

extracted from MobSF’s light-weight static analysis. Because light-weight static

analysis is fast, we argue that it can be used in place of heavy-weight approaches to

reduce the detection time to under a minute.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter IV

METHODOLOGY
In this section, we describe the methodology we use to identify mobile appli-

cations that transmit PII. We envision our work being used by mobile application

users to quickly check and verify whether an application transmits PII before down-

loading and installing it. We would like to be able to do this in real-time to support

users who are browsing the application market for new applications to install.

Our methodology is to use light-weight static features from MobSF’s fast static

code analysis results to create a classification model for detecting mobile applica-

tions that transmit PII from those that do not, using a number of learning algorithms

as depicted in Figure 4.1. Our methodology consists of three parts. The first part is

“Features Extraction”. We use MobSF to extract light-weight static features from

applications and VULPIX to generate labels for PII transmissions applications. The

next part is “Features Preparation”. We select features and convert them into a for-

mat that can be used to train the classification model. The last part is “Model Train-

ing”. We train each classification model by using different learning algorithms.

Finally, we have classification models that can detect applications that transmit PII.

Figure 4.1: Overview of methodology to detect mobile applications that
transmit PII.
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We can guarantee fast detection in under a minute because extracting features

from a new application that we have not previously analyzed using light-weight

static analysis takes less than a minute, and running those features through our clas-

sification model takes less than a second. Next, we describe each of these parts in

detail.

4.1 Feature Extraction
We extract light-weight static features from a mobile application package

(.apk) file using MobSF. These features can be divided into two different sets of

information based on the source of the feature: S1 are features obtained from the

Android manifest file and S2 are features obtained from the source code as shown

in Table 4.1. The extraction times for S1 and S2 are different, with the manifest file

taking 5-10 seconds and the source code taking 15-30 seconds. Given that S1 is

much faster to obtain than S2, we are interested in understanding if using S1 alone

can result in good classification performance. If so, the time it takes to classify

applications can be even shorter.

The features in S1 contain basic application information such as package name

and version, manifest analysis, and permissions that the application requests from

the device such as access to the camera, location, etc. Note that the largest number

of features permission requests. There are 1005 different permission requests across

all the applications we looked at. The features in S2 contain results from MobSF’s

binary analysis (if the application is vulnerable to buffer overflow attacks), APKiD

analysis (if the application uses vulnerable obfuscation techniques), code analysis

(if the application performs methods that are considered insecure), signer certificate

analysis, file analysis (if the application hardcodes the location of certificates or

keystores), and lastly Android API analysis for all the Android API calls used by

the application. More details and examples of features are described in Table 4.1.
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Table 4.1: Feature sets for training based on source of information.

Feature set Features Description #Features
S1 application basic information about the application: package name 2

Manifest info and real application name
manifest activities and properties in the manifest that MobSF 45
analysis identifies as not secure such as an activity that is

found to be shared with other apps on the device.
permissions permissions that the application requests from 1005

the device, including standard Android permissions
(camera, location, internet, etc.) and custom
permissions for application-specific objectives typically
used to share resources and capabilities with other apps.

S2 binary vulnerability of the application binary that MobSF 1
Source code analysis identifies as not secure, specifically, an executable (elf)

built without the Position Independent Executable flag
that helps prevent against buffer overflow attacks

APKiD source code obfuscation techniques used by the 66
analysis application that MobSF identifies as not being secure

such as Arxan obfuscator, Baidu packer, etc.
code use of methods in the application source code that 33

analysis MobSF identifies as not secure such as reading or
writing to external storage, copying data to clipboard,
creating temp file, etc.

signer type and status of certificate that is used to sign 5
certificate the application

file a certificate or keystore is hardcoded in the application 1
analysis source code
Android types of Android API used in application source code 43

API such as get System Service, send Broadcast, etc.

4.2 Feature Preparation
The light-weight static features we obtain directly from MobSF listed in Ta-

ble 4.1 are not immediately ready to be used as input for training the classification

model. To make these features more appropriate, we need to perform the following

feature preprocessing tasks:
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• Discard features that are unique for each application such as application names

as they are not useful for learning.

• Convert features from strings to categorical values using one-hot encoding.

• Discard features that have the same value for every application.

• Select only important features that are useful for learning to avoid the curse of

dimensionality that is detrimental to classification performance. The absolute

value of the correlation between the feature and the label is used to select

important features. The stronger the relationship between that feature and

label, the higher the absolute value of correlation. We use a dropout threshold

to determine which features to keep as discussed in the evaluation results in

Section 5.

• Normalize all features to keep values within the same range.

4.3 Model Training
To train our model, we use six learning algorithms similar to those used in

malware detection: Neural Network (NN), Logistic Regression (LR), Support Vec-

tor Machine (SVM), Naive Bayes (NB), k-Nearest Neighbor (kNN), and Random

Forest (RF). The scikit-learn and Keras Python libraries are used to create clas-

sification models. For the Neural Network model, we also use dropout [41] and

batch normalization layers [42] to improve model performance. The dropout layer

is used to prevent a model from overfitting. Meanwhile, the batch normalization

layer is used to reduce the gradient vanishing problem. For each algorithm, we per-

form 5-fold cross validation and evaluate performance based on the average of each

model’s performance metrics. We also use hyperparameters listed in Table 4.2 se-

lected based on our initial evaluation of hyperparameters in each algorithm as shown

in Table B.1 in the Appendix. The hyperparameter that gives a model its best F1

score is selected to use in experiments except for the Random Forest model. For

Random Forest, we use 128 trees because there is no significant difference between
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the F1 scores of models using 128, 256, 512, and 1,024 trees. Since increasing the

number of trees also increases the training time, using 128 trees in the model is a

good performance trade off with a reasonable training time [43].

Table 4.2: Hyperparameters configured for each learning algorithms.

Learning Algorithm Configuration
Neural Network 4 fully connected layers

Logistic regression lbfgs solver
Support Vector Machine rbf kernel

Naive Bayes Multinomial Naive Bayes
k-Nearest Neighbor k=7

Random Forest number of trees = 128



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter V

RESULTS
In this section, we discuss the application dataset and label that was used in

experiments. Then, we report on our experimental results to see how well features

extracted by fast static code analysis can be used to classify mobile applications

that transmit PII. We have three different test environments: (i) using features only

from the manifest file S1, (ii) using features only from the source code S2, and (iii)

using features from both manifest files S1 and source code S2. If the results from

any of the above settings are comparable to heavy-weight dynamic and static detec-

tion, then we can conclude that light-weight static analysis is effective at classifying

applications that transmit PII.

5.1 Application Dataset and Label
We are unable to use any publicly available application package datasets in

our research. Applications collected and analyzed in previous work are (i) 3 to 8

years old and may accurately not reflect current application behavior, and (ii) too

few to benefit from machine learning, mostly under 1,000 applications. As a result,

we collected a new dataset of recent applications. We scrape applications from the

Google Play Store by selecting top free applications from all categories in February

2019, obtaining a total of 22,905 distinct applications from 51 categories.

However, when we run VULPIX on all applications in our dataset to detect PII

to use as our labels, 3,297 applications are unable to complete the VULPIXD process

because of two problems. First, Appium, used by our dynamic testing tool Mankey,

automatically focused on the wrong application activity when the application has

multiple activities. This results in the application being detected as not running and

failing to generate network traffic. This is a known issue and can be handled by
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Figure 5.1: Overview of the percentage of applications that transmit PII in
each application category.
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iteratively specifying the activity name to Appium based on the activity that ran in

the initial attempt. Secondly, some applications can detect that there is a man-in-

the-middle proxy, and application servers refuse user connections.

After that, we obtain the initial detection result from VULPIX. However, this

result may incorrectly classify some applications. So, we recheck the result with

the actual traffic to confirm the correctness of the result. Then, we update detec-

tion algorithms to make sure they correctly classify the application. We repeat this

process until making sure that our labels are accurate.

Of the 19,608 applications that successfully ran, VULPIX identified 10,150

(51.8%) applications as having PII transmissions and 9,458 (48.2%) applications as

not having any PII transmissions. Figure 5.1 shows the percentage of applications

that transmit PII for each application category. The x-axis represents the percentage

of applications that transmit PII and the y-axis represents the application category.

As an example, consider the dating category, 68.31% (194 of 284 applications) of

the applications in this category transmit PII.

Overall, around half of all applications (51.8%) transmit PII. Considering that

75% of people have at least 11 applications downloaded and installed on their mo-

bile devices [44], then there is a 51.8% chance a user downloads and installs an

application that transmits PII. If users download and install 11 applications, this

means that there is a 99.96% chance that they will have at least one application that

transmits PII. We make the following observations about Figure 5.1.

• The five categories with the highest percentage of applications that transmit

PII heavily rely on user PII for personalization. For example, dating applica-

tions need user information to personalize for the best matching and weather

applications need user location to report the precise information

• The five categories with the lowest percentage of applications that transmit

PII are less likely to require user PII for personalization.
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• Game categories have a larger percentage of applications that transmit PII than

other categories even though most games should not require access to PII.

Our dataset is the largest of its kind across all privacy-related studies as listed

in Table 5.1. We detect that more that half of the tested applications transmit PII,

which is significantly more than previously detected by ReCon (29.1% more), Agri-

gento (22.5% more), and COPPA (33% more).

We also consider how VULPIX is more comprehensive in detecting PII trans-

mission when compared to the static or dynamic approach alone. Figure 5.2

shows the percentage of applications that transmit PII detected by VULPIXS and

VULPIXD in each application category. The x-axis represents the percentage of

applications that detected as transmitting PII by each approach of VULPIX and the

y-axis represents the application category. As an example, consider the dating cat-

egory, 23.71% of applications are detected as transmitting PII by the VULPIXS ap-

proach but not by VULPIXD, 36.08% are detected as transmitting PII by VULPIXD

approach but not but by VULPIXS. And lastly, 40.21% are detected as transmit-

ting PII by both VULPIXS and VULPIXD approach. This mean that if we use only

VULPIXS , 36.08% of applications in the dating category that actually transmit PII

are not detected. On the other hand, 23.71% of applications in the dating category

that actually transmit PII are not detected if we were to use only VULPIXD.

Table 5.1: Comparison between dataset age, size, and percentage of applica-
tions that leak PII with previous work.

Research Approach for obtaining features Dataset date #apps % of apps w/ leaks
ReCon [16] Dynamic Analysis Aug 2015 950 22.7% (216/950)

Agrigento [19] Dynamic Analysis Aug 2015 950 29.3% (278/950)
COPPA [21] Dynamic Analysis Nov 2016 - March 2018 5,855 18.8% (1,100/5,855)
This thesis VULPIX (Static & Dynamic Analysis) Feb 2019 19,608 51.8% (10,150/19,608)
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Figure 5.2: Proportion of applications that have PII transmission detected by
VULPIXS and VULPIXD in each application category.
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Overall, if we use only VULPIXS, 42.05% of applications that actually trans-

mit PII are not detected and labeled as no PII transmission. On the other hand,

26.83% of applications that actually transmit PII are not detected and labeled as no

PII transmission if we use only VULPIXD. Therefore, using VULPIX with both

VULPIXS and VULPIXD provides the most comprehensive labels for our experi-

ments.

5.2 Classification using the feature set from the

manifest file S1

In this experiment, we examine if classification using only the features from

the manifest file is effective. Feature sets S1 and S2 as defined in Section 4 have a

large number of features. We need to determine if we ought to use all of them for

training because we need to avoid the curse of dimensionality that makes our model

overfit. Figure 5.3 shows the cumulative distribution function (CDF) chart of the

absolute value of correlation between each feature and the label. The Cumulative

Distribution Function (CDF) is a function that calculates the probability that a ran-

dom variable is less than or equal to the independent variable of the function. The

x-axis represents the absolute value of correlation of each feature and the label and

the y-axis represents the CDF. As an example, consider the black line, which has

a CDF of 0.55 when the absolute value of correlation is 0.1. This means that 55%

(0.55) of features in feature set S2 have an absolute value of correlation less than or

equal to 0.1.

From the CDF, we observe that a large percentage of features in S1 and S1+S2

are not correlated with the label. The correlation distribution is different between

S1 and S2, suggesting that different correlation thresholds should be used to filter

out features.
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Figure 5.3: Cumulative distribution function of the absolute value of corre-
lation between each feature and the label.

Figure 5.4: The number of features that have an absolute correlation value
higher than the correlation threshold for each feature set.
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To reduce the number of features, we select 5 correlation value as dropout

thresholds based on Figure 5.3: 0.005, 0.01, 0.02, 0.05, and 0.1. Figure 5.4 shows

the relation between the correlation threshold and the number of features for each

feature set. The x-axis represents the correlation threshold and the y-axis represents

the number of features in each feature set. For example, the green bar at 0.005

correlation threshold means that feature set S1 has 792 features left when we set the

correlation threshold to 0.005.

Table 5.2 shows the results of all six algorithms that are trained using only

the features from S1. The average value and standard deviation of the five models

created during training using 5-fold cross-validation are shown in the table as per-

formance metrics for each model. The higher the average value for each metric, the

better the model’s performance. The lower the standard deviation for each metric,

the more stable the model’s prediction performance. As an example, consider the

first row for the NN (Neural Network) model that uses a correlation threshold of

0.005. This model has 0.6642 average accuracy and 0.0037 standard deviation. We

explore various dropout thresholds ranging from low thresholds of 0.005 where we

have 792 features to a more selective threshold of 0.1 where we are left with just 11

features as shown in Figure 5.4. Note that without using any dropout threshold, we

would have 901 features in S1.

Overall, the classification performance has high precision but low recall when

only the features from the manifest file (S1) are used. With a dropout threshold of

0.005, the Random Forest model has the highest average F1 score of 0.6623. We

can train effective Random Forest models even when there are a large number of

features to learn.

Increasing dropout thresholds, i.e., dropping more features, too aggressively

results in worse performance in terms of lower F1 scores across all algorithms be-

cause there are fewer features to work with when training the model except for Naive

Bayes. When the dropout threshold is increased from 0.005 to 0.1, average F1



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28

scores improve from 0.5816 to 0.6073 for Naive Bayes. However, even the best

Naive Bayes model performed poorer than other algorithms like Neural Network

and Random Forest.

Table 5.2: Classification performance using the feature set from the manifest
file S1.

Algorithm Correlation Accuracy Precision Recall F1
Threshold

NN 0.005 0.6642±0.0037 0.7047±0.0148 0.6057±0.0256 0.651±0.0105
0.01 0.6632±0.0032 0.7114±0.0165 0.589±0.0212 0.644±0.0088
0.02 0.6671±0.0067 0.7081±0.0127 0.6074±0.0185 0.6538±0.0115
0.05 0.6584±0.0056 0.7099±0.0293 0.5797±0.04 0.6368±0.0141
0.1 0.6354±0.0058 0.6643±0.0221 0.6013±0.0447 0.63±0.0184

LR 0.005 0.6371±0.0021 0.6651±0.0068 0.6021±0.0035 0.632±0.0033
0.01 0.6398±0.0021 0.6677±0.0053 0.6055±0.0021 0.6351±0.0019
0.02 0.6397±0.002 0.667±0.0088 0.6069±0.0044 0.6355±0.0055
0.05 0.636±0.0049 0.6626±0.012 0.6046±0.0069 0.6322±0.0083
0.1 0.6301±0.0047 0.6494±0.0125 0.6205±0.0109 0.6346±0.0085

SVM 0.005 0.6568±0.0024 0.692±0.0086 0.6071±0.0127 0.6467±0.0079
0.01 0.6567±0.0025 0.6915±0.0071 0.608±0.0126 0.647±0.0078
0.02 0.6571±0.0025 0.6944±0.0085 0.603±0.0134 0.6454±0.0086
0.05 0.6546±0.0038 0.6906±0.0108 0.6026±0.0118 0.6435±0.0093
0.1 0.636±0.0054 0.6589±0.0086 0.6151±0.0099 0.6362±0.0087

NB 0.005 0.6142±0.0061 0.663±0.0074 0.518±0.0127 0.5816±0.0097
0.01 0.6142±0.0054 0.6642±0.0076 0.5149±0.0117 0.5801±0.0097
0.02 0.6086±0.0041 0.6458±0.0082 0.5401±0.0059 0.5882±0.0066
0.05 0.5996±0.0064 0.6593±0.0122 0.4684±0.0121 0.5476±0.0122
0.1 0.5787±0.0114 0.5868±0.0162 0.6295±0.0165 0.6073±0.013

kNN 0.005 0.6336±0.0051 0.666±0.0189 0.5879±0.0167 0.6242±0.0044
0.01 0.6348±0.0052 0.667±0.0194 0.5899±0.0138 0.6257±0.0032
0.02 0.6319±0.006 0.6636±0.0198 0.5877±0.0133 0.623±0.0025
0.05 0.6352±0.0056 0.6607±0.0132 0.6067±0.0076 0.6325±0.0095
0.1 0.6065±0.0087 0.6335±0.0193 0.5712±0.0226 0.6003±0.0097

RF 0.005 0.6592±0.0018 0.6799±0.0108 0.6457±0.0072 0.6623±0.0033
0.01 0.6567±0.0025 0.6915±0.0071 0.608±0.0126 0.647±0.0078
0.02 0.6571±0.0025 0.6944±0.0085 0.603±0.0134 0.6454±0.0086
0.05 0.6546±0.0038 0.6906±0.0108 0.6026±0.0118 0.6435±0.0093
0.1 0.6282±0.0066 0.66±0.0123 0.5809±0.0124 0.6179±0.0107
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To gain insight on which features help to detect PII transmissions, we look at

the top 10 highly-correlated features listed in Table. 5.3. We find that applications

that have “an activity that is found to be shared with other apps on the device” is cor-

related to PII transmissions. Furthermore, a number of permissions are also highly

correlated. We observe that both standard Android permissions such as accessing

the device’s Wifi state and custom permissions such as receiving a broadcast when

the device’s screen is lit contribute to constructing good models.

Table 5.3: Top 10 most correlated features to PII transmissions in S1.

Feature number Type Correlation Description
Manifest-7 Manifest 0.2899 A Broadcast Receiver is found to be shared

analysis with other apps on the device therefore leaving
it accessible to any other application on the
device. The presence of intent-filter indicates
that the Broadcast Receiver is explicitly exported.

Perm-ACCESS_ Standard 0.2769 Allows applications to access information about
WIFI_STATE permission Wi-Fi networks.

Manifest-6 Manifest 0.2743 A Broadcast Receiver is found to be shared
analysis with other apps on the device therefore leaving

it accessible to any other application on the device.
Manifest-15 Manifest 0.2611 If taskAffinity is set, then other applications could

analysis read the Intents sent to Activities belonging to task.
Manifest-13 Manifest 0.2130 By setting an intent priority higher than another

analysis intent, the app effectively overrides other requests.
Manifest-3 Manifest 0.1904 An Activity should not be having the launch

analysis mode attribute set to “singleTask/singleInstance”
as it becomes root Activity and it is possible for
other applications to read the contents of the
calling Intent. So it is required to use the
“standard” launch mode attribute when sensitive
information is included in an Intent.

Perm-WAKE_LOCK Standard 0.1753 Allows using PowerManager WakeLocks to keep the
permission processor from sleeping or screen from dimming.

Perm-WRITE_ Standard 0.1681 Allows an application to read or write the system
SETTINGS permission settings.

Perm-RECEIVE_ Custom 0.1420 Allows receive a broadcast when the screen is lit.
USER_PRESENT permission

Manifest-11 Manifest 0.1288 A Service is found to be shared with other apps on
analysis the device therefore leaving it accessible to any other

application on the device. The presence of intent-filter
indicates that the Service is explicitly exported.
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5.3 Classification using the feature set from

source code S2

Features from source code in S2 take 15-30 seconds to extract, which is longer

than features from the manifest file in S1 that take only 5-10 seconds. In this ex-

periment, we examine if classification using only features from the source code is

effective. Table 5.4 shows the results of all six algorithms that are trained using

only the features from S2. We explore various dropout thresholds ranging from low

thresholds of 0.005 where we have 133 features to a more selective threshold of 0.1

where we are left with just 65 features as shown in Figure 5.4. Note that without

using any dropout threshold, we would have 147 features in S2.

Overall, across all learning algorithms, the classification performance when

using the feature set from source code alone (S2) has higher average F1 scores than

when using the feature set from the manifest file alone (S1), with increases in average

F1 scores ranging from 0.03 to 0.05. When using a low dropout threshold of 0.005,

the model with the highest F1 score of 0.6981 is based on Random Forest once again.

Furthermore, all algorithms had better precision and significantly better recall.

To gain insight on which features help to detect PII transmissions, we look

at the top 10 highly-correlated features listed in Table 5.5. Results from Android

API analysis, APKiD analysis and code analysis are highly correlated to PII trans-

mission. In fact the results of the Android API analysis detects calls to PII-related

methods such as “Get Device ID, IMEI, MEID/ESN, etc.” and “Get SIM Provider

Details” are clearly related to PII transmissions. Similarly, APKiD analysis, and

code analysis results related to PII such as “SIM operator” and “subscriber ID” for

APKiD analysis and “application uses raw SQL query that could lead to SQL in-

jection and information leakage” are also clearly contributing to the effectiveness

of the models.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

Table 5.4: Classification performance using the feature set from source code
S2.

Algorithm Correlation Accuracy Precision Recall F1
Threshold

NN 0.005 0.7013±0.0118 0.7515±0.0302 0.6363±0.0409 0.6877±0.0129
0.01 0.7015±0.0088 0.759±0.0308 0.6231±0.0219 0.6836±0.0026
0.02 0.7005±0.0133 0.7409±0.0362 0.6538±0.0397 0.693±0.0088
0.05 0.6994±0.0057 0.7369±0.0175 0.6533±0.0202 0.6922±0.0058
0.1 0.698±0.0082 0.7431±0.0089 0.6371±0.0197 0.6858±0.0104

LR 0.005 0.674±0.0069 0.7018±0.0062 0.6435±0.0098 0.6714±0.0078
0.01 0.6728±0.0078 0.7005±0.0071 0.6425±0.0094 0.6702±0.0082
0.02 0.6742±0.0075 0.7021±0.0068 0.6436±0.0074 0.6716±0.007
0.05 0.6744±0.0069 0.7024±0.0052 0.6436±0.0067 0.6717±0.0059
0.1 0.6734±0.0068 0.7±0.0048 0.6457±0.0061 0.6718±0.0053

SVM 0.005 0.6971±0.0054 0.7373±0.0037 0.6445±0.0102 0.6877±0.0064
0.01 0.6983±0.0048 0.7398±0.0032 0.6435±0.0085 0.6883±0.0059
0.02 0.6985±0.0048 0.7402±0.0043 0.6432±0.0077 0.6883±0.0057
0.05 0.6973±0.0072 0.7363±0.0063 0.6467±0.0115 0.6886±0.0087
0.1 0.6971±0.0061 0.7338±0.005 0.651±0.0093 0.6899±0.0067

NB 0.005 0.6607±0.0063 0.709±0.0073 0.5842±0.0121 0.6405±0.0096
0.01 0.6603±0.0063 0.7084±0.0071 0.5841±0.0124 0.6402±0.0097
0.02 0.6594±0.0077 0.709±0.0085 0.5801±0.014 0.638±0.0111
0.05 0.6557±0.0066 0.7088±0.0094 0.5681±0.0124 0.6307±0.0104
0.1 0.6542±0.0073 0.7082±0.0102 0.5643±0.0093 0.6281±0.0093

kNN 0.005 0.6761±0.0087 0.7164±0.0134 0.6195±0.0108 0.6644±0.0108
0.01 0.6762±0.0088 0.7168±0.0135 0.619±0.0116 0.6643±0.0111
0.02 0.6757±0.0109 0.7167±0.016 0.6174±0.0116 0.6634±0.0124
0.05 0.6765±0.0091 0.7149±0.0122 0.6238±0.0065 0.6663±0.0083
0.1 0.677±0.0055 0.711±0.0077 0.6335±0.0095 0.67±0.0069

RF 0.005 0.6958±0.0069 0.7178±0.0119 0.6796±0.0061 0.6981±0.0073
0.01 0.6957±0.008 0.7184±0.0096 0.6779±0.0053 0.6976±0.0063
0.02 0.694±0.0072 0.7165±0.0096 0.6766±0.0065 0.696±0.0073
0.05 0.6943±0.0054 0.7167±0.008 0.6771±0.0074 0.6963±0.0054
0.1 0.695±0.0072 0.7203±0.0077 0.6714±0.0057 0.695±0.0064
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Table 5.5: Top 10 most correlated features to PII transmissions in S2.

Feature number Type Correlation Description
API-19 Android API 0.3565 Using “Get Device ID, IMEI,MEID/ESN, etc.” API.

APKiD-47 APKiD analysis 0.3397 “SIM operator” is modified by anti VM techniques.
API-7 Android API 0.3372 Using “Get SIM Provider Details” API.

APKiD-46 APKiD analysis 0.3289 “Network operator name” is modified by anti VM techniques.
DANG-7 Code analysis 0.3134 App uses SQLite Database and executes raw SQL query.

Untrusted user input in raw SQL queries can cause
SQL Injection. Also sensitive information should be
encrypted and written to the database.

API-20 Android API 0.3060 Using “Get Subscriber ID” API.
API-21 Android API 0.3046 Using “Get Cell Location” API.
API-40 Android API 0.3030 Using “Get SIM Operator Name” API.
API-24 Android API 0.3000 Using “Sending Broadcast” API.

APKiD-25 APKiD analysis 0.2920 “Build.BOARD” is modified by anti VM techniques.

Table 5.6: Classification performance using the combined feature set from
the manifest file and source code S1+S2.

Algorithm Correlation Correlation Accuracy Precision Recall F1
Threshold S1 Threshold S2

NN 0.02 0.02 0.6998±0.0065 0.7324±0.0227 0.6653±0.0452 0.6959±0.0161
LR 0.02 0.1 0.6767±0.0071 0.7048±0.0092 0.646±0.0047 0.6741±0.0062

SVM 0.01 0.1 0.6993±0.0062 0.7395±0.0083 0.6467±0.0094 0.69±0.0088
NB 0.1 0.005 0.6592±0.0055 0.7095±0.0069 0.5783±0.0103 0.6372±0.0081
kNN 0.05 0.1 0.6872±0.0076 0.7281±0.0099 0.6314±0.01 0.6763±0.0089
RF 0.005 0.005 0.7016±0.0064 0.7231±0.008 0.6863±0.0084 0.7042±0.0058
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5.4 Classification using the combined feature set

from the manifest file and source code S1+S2

We can conclude from the results of the first two experiments that using S1

or S2 alone can achieve good detection performance, with S2 outperforming S1.

According to the high F1 scores, using machine learning on features from fast static

code analysis has comparable performance to heavy-weight PII detection.

In this experiment, we examine if combining the features from the manifest

file and source code, S1 + S2, results in even better performance. Table 5.6 shows

the result of all 6 algorithms trained using the features from S1 + S2 with the best

dropout threshold for each feature set from the previous experiments. As a result,

all learning algorithms have slightly higher F1 scores with score increases ranging

from 0.0001 to 0.006 except for Naive Bayes which has lower F1 scores. Again,

the Random Forest model had the highest average F1 score of 0.7042. The Neural

Network model has a comparable average F1 score to the Random Forest model.

However, the Neural Network model requires twice as much time to train as the

Random Forest model. In terms of performance and training time, the Random

Forest model is a better choice.

To gain more insight, we examine the performance of the 5 random forest mod-

els that were trained using 5-fold cross-validation to gain more insight. Table 5.7

shows the performance of all five models, as well as the average and standard devi-

ation. The number of positive (PII transmission) and negative (no PII transmission)

labels detected by each model varies slightly. However, they have little effect on

the performance metrics as shown by the low standard deviation.

Experimental results indicate that classification effectiveness increases

slightly when we used the combined feature set S1 + S2. However as a trade-off,

using only S2 as can reduce extraction time by 15-30 seconds which may more suit-

able for real-time use, with a reduced F1 score of only 0.01.
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Table 5.7: Classification performance of random forest models using the
combined feature set S1+S2 while setting correlation threshold of S1 to 0.005
and S2 to 0.005.

Model number Accuracy Precision Recall F1 TP FP TN FN
1 0.6986 0.7115 0.688 0.6995 1376 558 1364 624
2 0.7017 0.7269 0.688 0.7069 1411 530 1341 640
3 0.6951 0.7192 0.6768 0.6974 1378 538 1348 658
4 0.7121 0.7258 0.6985 0.7119 1395 527 1397 602
5 0.7003 0.7322 0.6801 0.7051 1405 514 1341 661

Average 0.7016 0.7231 0.6863 0.7042 1393 533.4 1358.2 637
SD 0.0064 0.008 0.0084 0.0058 15.7003 16.2419 23.6368 24.5967

We can effectively detect PII transmission using only features extracted by fast

static code analysis from MobSF. These features allow us to classify applications

not only faster than traditional heavy-weight approaches, but also with comparable

accuracy and precision. Experimental results show that the Random Forest model

provided the best classification results with a 0.7042 average F1 score. This model

can train and classify applications in a very short amount of time. For real-time

use of our work, we can further reduce the 45 seconds classification time without

sacrificing performance by choosing one of two options: (i) only extracting features

from the application manifest file, S1, for analysis reduces classification time to

around 5-10 seconds, resulting in a slightly lower average F1 score of 0.6623, or (ii)

only extracting features from the application source code, S2, for analysis reduces

classification time to around 15-30 seconds, resulting in a slightly lower average F1

score of 0.6981.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter VI

CONCLUSION AND FUTURE WORK
In this section, we conclude the experimental results and discuss the future

work for detecting PII transmission using features extracted from fast static code

analysis.

6.1 Conclusion
We present a novel approach to detecting PII transmissions in mobile appli-

cations using features extracted from fast static code analysis to develop a classifi-

cation model. The Random Forest model provided the best classification results in

the experiments, with an F1 score of 0.7042. In a short amount of time, this model

can train and classify applications. As a result, we believe our approach is more

suitable for real-time application evaluation than existing heavy-weight PII detec-

tion approaches. Our work will benefit individual users who want to quickly check

if an application transmits PII before installing it on their mobile devices.

Large application distribution markets, such as Google Play Store, may ben-

efit from our work because they must verify that applications clearly and correctly

disclose whether or not they transmit PII in order to comply with data privacy laws

in various countries. Using our approach, distribution markets can analyze a sub-

mitted application for review in under a minute.

6.2 Future Work
The model’s performance could be improved by considering a wider range

of features, such as features derived from combining static features and features

derived from dynamic analysis. Tuning performance for each application category
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by adjusting Mankey and learning algorithms to matching application behavior in

each category may also produce better performance.

Extending the scope of our work to detect which PII is leaked from the ap-

plication may also be useful. According to the preliminary results, the amount of

data for each PII data element is highly imbalanced which makes the problem more

challenging.

Lastly, exploring how applications can try to avoid our detection is also im-

portant for maintaining robust detection. We believe that application developers

may try to avoid detection by tampering or obscuring features obtained through fast

static code analysis. For example, they could try to modify the manifest file, which

is simple to do, in order to avoid detection by only using features from the manifest

(S1). They may also want to obfuscate the source code (S2). Some of the features we

used in this study already reflect the obfuscation attempt and the detection results

for S2 with obfuscation are already robust. This means that if we use our detection

on S2, which is more resistant to adversaries, we should still be able to detect PII

transmissions with good performance.
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Appendix I

COMPREHENSIVE PII LIST
Table A.1: PII defined and detected by previous work and VULPIX.

Static Analysis Dynamic Analysis VULPIX

PII Type Data Element
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Device Advertiser ID ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Android ID ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Device Serial Number * ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Google Services Framework ID ✓ ✓ ✓
IMEI (International Mobile Equipment Identity) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
MAC Address ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SIM GSM Cell ID ✓ ✓ ✓ ✓
Card ICCID (SIM Serial Number) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IMSI (International Mobile Subscriber Identity) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Location Area Code ✓ ✓ ✓ ✓
Phone Number ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

User Age ✓ ✓
Audio ✓ ✓ ✓ ✓
Calendar Event ✓ ✓ ✓
Contract Book ✓ ✓ ✓ ✓ ✓ ✓ ✓
Country ✓ ✓ ✓ ✓
Credit Card Number and CCV ✓ ✓ ✓
Date Of Birth ✓ ✓
Email ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gender ✓ ✓ ✓ ✓ ✓
Name ✓ ✓ ✓ ✓ ✓ ✓
Password ✓ ✓ ✓ ✓ ✓ ✓ ✓
Photo ✓ ✓ ✓ ✓
Physical Address ✓ ✓ ✓ ✓ ✓ ✓
Relationship Status ✓ ✓
SMS Message ✓ ✓ ✓ ✓
SSN (Social Security Number) ✓ ✓
Time Zone ✓ ✓ ✓ ✓
Username ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Video ✓ ✓ ✓
Web Browsing Log ✓ ✓ ✓ ✓

Location GPS (Latitude and Longitude) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
* Not stated in their paper, but defined in their source code



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix II

HYPERPARAMETER EVALUATION
Table B.1: Classification performance using different hyperparameters con-
figured for each learning algorithms.

Algorithm Hyperparameter Accuracy Precision Recall F1
NN 3 FC layers 0.7011±0.0071 0.7452±0.0087 0.6419±0.0152 0.6896±0.0097

4 FC layers 0.6995±0.0088 0.7398±0.0228 0.6489±0.0264 0.6908±0.0116
5 FC layers 0.7012±0.0059 0.7469±0.0236 0.6415±0.0254 0.6895±0.0082
6 FC layers 0.7023±0.009 0.7517±0.0239 0.6363±0.0163 0.6887±0.0033

LR solver = lbfgs 0.6768±0.0052 0.7066±0.0092 0.6422±0.0045 0.6729±0.0062
solver = newton-cg 0.6762±0.0059 0.7064±0.0097 0.641±0.0045 0.6721±0.0068

solver = sag 0.6763±0.0059 0.7064±0.0096 0.641±0.0044 0.6721±0.0066
solver = saga 0.6762±0.0059 0.706±0.0096 0.6416±0.005 0.6722±0.007

SVM kernel = linear 0.6782±0.0048 0.7196±0.011 0.6202±0.0039 0.6662±0.0049
kernel = poly 0.7011±0.0041 0.7669±0.0083 0.607±0.0109 0.6776±0.009
kernel = rbf 0.6998±0.0055 0.7403±0.0087 0.6468±0.0097 0.6904±0.0091

kernel = sigmoid 0.5691±0.006 0.5839±0.011 0.5825±0.0074 0.5832±0.0079
NB Gaussian NB 0.4984±0.0109 0.7445±0.0258 0.0471±0.0108 0.0883±0.019

Multinomial NB 0.6598±0.0036 0.7114±0.0082 0.5768±0.007 0.6371±0.0067
kNN k = 3 0.6716±0.0037 0.6996±0.009 0.6409±0.0125 0.6689±0.0069

k = 5 0.678±0.0061 0.7123±0.0097 0.6341±0.0133 0.6709±0.0098
k = 7 0.6867±0.0079 0.7294±0.0121 0.6271±0.0138 0.6744±0.0121
k = 9 0.689±0.0072 0.7375±0.0115 0.6195±0.0155 0.6733±0.0126

RF trees = 16 0.69±0.0053 0.7171±0.0103 0.6625±0.0063 0.6887±0.0056
trees = 32 0.69±0.0044 0.7146±0.0081 0.6679±0.0049 0.6904±0.0034
trees = 64 0.6999±0.0023 0.7232±0.0072 0.681±0.0083 0.7014±0.0043

trees = 128 0.7008±0.0028 0.7218±0.0103 0.6867±0.0055 0.7038±0.0047
trees = 256 0.7022±0.0033 0.7244±0.0067 0.6855±0.0065 0.7043±0.0043
trees = 512 0.7027±0.004 0.7244±0.0097 0.6871±0.0061 0.7052±0.0047
trees = 1024 0.7027±0.0041 0.7249±0.0081 0.6859±0.0065 0.7048±0.0049

Table B.1 depicts the performance of all 6 algorithms trained using different

hyperparameters. We use the full set of features from both S1 and S2. The table

shows the performance metrics of each model in the form of the average value and

the standard deviation of the five models that were created during training using

5-fold cross-validation. Higher average value for each metric means better perfor-

mance for the model. And, lower standard deviation for each metric indicates more
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stable prediction performance for the model. As an example, consider the the first

row for the NN (Neural Network) model that uses 3 full connected layers. This

model has 0.7011 average accuracy and 0.0071 standard deviation. We explore

various hyperparameters available for each algorithm.

With the exception of the Random Forest model, the hyperparameter that gives

a model its best F1 score is chosen to use in experiments. We use 128 trees in Ran-

dom Forest because there is no significant difference in F1 scores between models

with 128, 256, 512, and 1,024 trees. Because increasing the number of trees also

increases the training time, using 128 trees in the model is a good performance trade

off with a reasonable training time [43].
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