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DIATION FORECASTING FOR CLINICAL APPLICATIONS WITH DEEP NEURAL

NETWORK) อ.ที่ปรึกษาวิทยานิพนธหลัก : ดร. เอกพล ชวงสุวนิช, อ.ที่ปรึกษาวิทยานิพนธรวม :

ดร. สิระ ศรีสวัสดิ์ 57 หนา.

การไดรับปริมาณรังสีอัลตราไวโอเลตอยางเหมาะสมใหผลดีอยางมากกับการรักษาสุขภาพและ
การรักษาทางการแพทยซึ่งรวมไปถึงการรักษาโรคสะเก็ดเงิน โดยปกติแลวตูอาบที่ใชในการรักษาดวย
แสงในโรงพยาบาลนั้นจะประกอบไปดวยหลอดไฟสำหรับฉายแสงเทียมซึ่งสามารถปลอยรังสีอัลตราไว
โอเลตบีในความยาวคลื่นแถบความถี่กวาง (ความยาวคลื่นหลักที่ปลอย 280-360 นาโนเมตร, สูงสุด
ที่ 320 นาโนเมตร) หรือแถบความถี่สั้น (ความยาวคลื่นหลักที่ปลอย 310-315 นาโนเมตร, สูงสุดที่
311 นาโนเมตร) แตสำหรับผูปวยที่ไมสามารถเขาถึงศูนยรักษาสำหรับการรักษาดวยแสง การรักษา
ดวยการอาบแดดหรือการรักษาดวยแสงอาทิตยเปนอีกหนึ่งวิธีการรักษาที่ปลอดภัยและมีประสิทธิภาพ
อยางไรก็ตามเนื่องจากแสงอาทิตยนั้นประกอบไปดวยรังสีอัลตราไวโอเลตทุกความยาวคลื่น (290-400

นาโนเมตร) การอาบแดดจึงตองทำอยางระมัดระวังและตองมีแพทยผิวหนังคอยใหคำปรึกษาโดยอิงจาก
การทำนายรังสีอัลตราไวโอเลตที่แมนยำเพื่อลดโอกาสที่จะเกิดผลขางเคียง ซึ่งในสวนของการทำนาย
นั้น เราไดใชขอมูลรังสีอัลตราไวโอเลต 10 ปที่เก็บรวบรวมจากนครปฐมในการสรางโมเดลทำนายรังสี
อัลตราไวโอเลตดวยการเรียนรูเชิงลึกที่มีความผิดพลาด 10% สำหรับการทำนายลวงหนา 24 ชั่วโมงและ
มีความผิดพลาดราว 13-16 % สำหรับการทำนายลวงหนา 7 วันถึง 4 สัปดาห ผลงานวิจัยนี้สามารถ
ขยายไปใชกับขอมูลรังสีอัลตราไวโอเลตจากภูมิภาคทางภูมิศาสตรที่แตกตางกันหรือมีความหลากหลาย
ทางสเปกตรัมกิริยาทางชีวภาพ ผลงานวิจัยนี้จะเปนหนึ่งในเครื่องมือสำคัญในการพัฒนาแผนการ
รักษาดวยแสงอาทิตยในประเทศไทย โมเดลของเราสามารถเขาถึงไดทาง github.com/cmb-chula/

SurfUVNVNet
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Exposure to appropriate doses of UV radiation provides enormously health and

medical treatment benefits including psoriasis. Typical hospital-based phototherapy

cabinets contain a bunch of artificial lamps, either broad-band (main emission spec-

trum 280-360 nm, maximum 320 nm), or narrow-band UV B irradiation (main emission

spectrum 310-315nm, maximum 311nm). For patients who cannot access phototherapy

centers, sun-bathing, or heliotherapy, can be a safe and effective treatment alterna-

tive. However, as sunlight contains the full range of UV radiation (290-400 nm), careful

sun-bathing supervised by photodermatologist based on accurate UV radiation forecast

is vital to minimize potential adverse effects. Here, using 10-year UV radiation data

collected at Nakhon Pathom, Thailand, we developed a deep learning model for UV

radiation prediction which achieves around 10% error for 24-hour forecast and 13-16%

error for 7-day up to 4-week forecast. Our approach can be extended to UV data from

different geographical regions as well as various biological action spectra. This will be-

come one of the key tools for developing national heliotherapy protocol in Thailand.

Our model has been made available at github.com/cmb-chula/SurfUVNet.
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Chapter I

INTRODUCTION

Phototherapy using artificial light sources is one of the standard treatments for

various skin conditions(Menter et al., 2010; Legat, 2018; Patrizi et al., 2017). With

established national guidelines and standard dosimetry protocols, hospital-based pho-

totherapy provides safe and effective treatment for a wide variety of patients. However,

many skin patients in Thailand still lack access to hospital-based phototherapy due to

the limited number of phototherapy centers as well as shortage of qualified phototherapy

practitioners across the country. Also, phototherapy for skin diseases such as psoriasis

is a long-time treatment, skin patients would have to bath in narrowband UVB (311–

313 nm) that was emitted from artificial UV light lamp and have to repeat this process

several times. This process is difficult for some patients to travel to hospitals that have

available tools or phototherapy centers. Heliotherapy can solve these problem by let

the patients sun-bathing in any area and come to hospital only for report and take a

guideline from physicians.

Heliotherapy, or phototherapy using natural sunlight, has been reported effec-

tive for treating diverse health issues(Metzger, 1926; Gardiner, 1915; Alpert, 2015) and

skin conditions(Linser and Harnack, 1962; Buchholz, 1969; Körbler, 1967) since 1890s.

Several clinical studies have also shown success outcomes of supervised heliotherapy in

mostly European countries, including the Canary Islands, Spain, Helsinki, Finland and

Davos, Switzerland(Hitomi et al., 2017; Snellman, 1992; Snellman et al., 1993b; Takada

et al., 1977; Snellman et al., 1992, 1993a). Despite clear benefits of heliotherapy, a key

issue that limits its effectiveness is the substantial variation in surface UV radiation

throughout the year and time of day. Therefore, accurate estimates of UV radiation, in

conjunction with treatment action spectrum and dosimetry, are essential for developing

a safe and effective heliotherapy protocol in long-term use for a particular geographical

region(Krzyścin et al., 2012, 2014; Moosa and Esterhuyse, 2010). To date, a few studies

have explored the prospect of quantitative heliotherapy planning based on UV radiation



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

forecast(Krzyścin et al., 2012, 2015).

Prediction of surface UV radiation can roughly be categorized into three groups:

physics-based modeling, a hybrid between the physics and empirical techniques, and

deep learning. Physics-based approaches calculate the amount of solar UV radiation

that arrives at a certain location on Earth at a certain time mainly based on the Earth-

Sun distance and the thickness of the Earth’s ozone layer(Krzyścin et al., 2015; Allaart

et al., 2006; Leccese et al., 2018). This is also known as the clear-sky UV radiation.

Then, to obtain the amount of radiation on the Earth’s surface, the clear-sky estimates

are multiplied by factors such as Cloud Modification Factor(Krzyścin et al., 2015; Sud-

hibrabha et al., 2006) to account for reflection and scattering of UV in the atmosphere.

Hybrid approaches rely on Physics knowledge to define UV-related factors, such as total

ozone column, zenith angle, and weather conditions, but incorporate numerical simu-

lations and regressions to estimate the contribution of these factors to the amount of

surface UV radiation in a data-driven manner(Sudhibrabha et al., 2006; Deo et al., 2017;

Feister et al., 2011; Foyo‐Moreno et al., 1999). In contrast, deep learning approaches

attempt to predict surface UV radiation data directly from past observations with little

to no constraint on how UV-related factors interact(Qing and Niu, 2018; Wang et al.,

2018; Elminir et al., 2008; Jacovides et al., 2015) Although deep learning is effective

for forecasting time series(Siami-Namini and Namin, 2018) because of its ability to

learn complex non-linear relationship between the input and output data, it requires

a large amount of data to train, lacks interpretability, and does not perform well on

new datasets with different distributions. It is expected that deep learning model for

UV forecasting needs to be retrained for each geographical region. Recent works in the

energy domain have successfully utilized recurrent neural network (RNN)(Elman, 1990)

architectures, such as Long Short-Term Memory (LSTM)(Hochreiter and Schmidhuber,

1997) and Gated Recurrent Unit (GRU)(Cho et al., 2014), to predict solar photovoltaic

power production(Qing and Niu, 2018; Wang et al., 2018; Husein and Chung, 2019;

Gensler et al., 2016; Huang et al., 2019).
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Study of surface UV radiation in Thailand(Janjai et al., 2010; Buntoung et al.,

2012) showed that this region has sufficient UV radiation year round, indicating that

heliotherapy is a promising treatment alternative for skin patients in the country. This

thesis studies and developed a deep learning model for surface UV radiation forecasting

which has acceptance error range of 10-25% indicated in broadband UVB phototherapy

guidelines worldwide(Menter et al., 2010; Nast et al., 2017). Our model is based on the

encoder-decoder architecture(Sutskever et al., 2014) and 10-year surface UV radiation

data collected at Nakhon Pathom, Thailand (13.82 N, 100.04 E) from 2009 to 2019, our

work serves as a key step toward the establishment of the national heliotherapy protocol

in Thailand.

1.1 Main contribution

The main contribution of this thesis can be summarized as follows:

• Developed a deep neural network for surface UV radiation forecasting. Our model

consistently achieves 10-25 MAPE, which is acceptable for clinical applications,

when applied to data from multiple geographic regions.

• Our model uses only UV data as input. This would make our model applicable to

regions where other climate data are unavailable.

• Our model also yields acceptance error range when making long-term forecast

(7-day to 4-week).

This thesis proposes a complete pipeline for our UV forecasting model, including

data preprocessing, model architecture, and parameter tuning.
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1.2 Thesis overview

This thesis is organized as follows:

• Chapter 2 describes the background knowledge for building a deep neural network

in time series prediction task.

• Chapter 3 reviews the work related to UV forecasting.

• Chapter 4 describes the model architecture and parameter setting for training the

model.

• Chapter 5 presents the result from our model and other benchmark models.

• Chapter 6 discusses the result.

• Chapter 7 summarizes the key concept of the thesis and provides directions for

future work.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter II

BACKGROUND

This section explains the fundamentals of deep learning and deep learning tech-

niques related to time series tasks. We also explain the encoder-decoder architecture

which inspires our model design.

2.1 Artificial Neural Network

Artificial neural network (ANN) is a model that consists of many connected com-

putation units called neurons that are arranged in various layers. Each artificial neuron

resembles a biological neuron in our body which operates by passing signal values to

neighboring neurons. Each connection between two neurons is specified with a weight

parameter that is multiplied to the signal value passing through that connection. The

input of an artificial neuron is the weighted sum of signal from other neurons plus a bias

term. The output of the neuron is then subjected to a non-linear activation function

to transform the signal. These processes repeat until the signal reaches the last layer,

which produces an answer to the task. During the training process, the output from the

last layer is compared to the ground truth target and the error is calculated by using a

cost function, or loss function. The gradient of the loss function is then back-propagated

(Rumelhart et al., 1986) through layers of the model to optimize the weight parameters

to reduce the amount of errors made by the model.

2.2 Activation functions

Activation function is useful not only to limit the range of a neuron’s output, such

as from 0 to 1, but also to introduce some non-linearity, such as sigmoid transformation,

that lets ANN solve complex problem. In this thesis, we explain the following activation

functions that are used in general tasks: ReLU, sigmoid, tanh, and softmax.
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2.2.1 Linear activation function

A linear activation function is a simple straight-line function as shown in Eq. 2.1

(Figure 2.1 a). An ANN with a linear activation function will behave like a simple linear

regression mode and typically cannot fit complex, real-world data.

F (x) = ax (2.1)

2.2.2 Sigmoid or Logistic activation function

Sigmoid is a popular activation function that is mostly used in last layer for

predicting probability value because the output of sigmoid function lies in the interval

(0, 1). The sigmoid function is shown in Eq. 2.2 (Figure 2.1 b).

σ(x) =
1

1 + e−x
(2.2)

2.2.3 Rectified linear unit (ReLU) activation function

ReLU is a piece-wise linear function that has been shown to perform well in many

networks. The output from ReLU is zero if the input is negative and equal to the identify

function otherwise, as shown in Eq. 2.3 (Figure 2.1 c). This allows some neurons to be

deactivated if they produce negative output values.

ReLU(x) = max(0, x) (2.3)

2.2.4 Tanh activation function

Tanh or hyperbolic tangent activation function is similar in shape to sigmoid but

its range is the interval (-1, 1) and it is zero-centered, as shown in Eq. 2.4 (Figure 2.1



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

d). The advantage of tanh function is that it supports negative output value.

Tanh(x) = 2σ(2x)− 1 (2.4)

Figure 2.1: Activation functions (a) Linear function multiples the input by a constant.
(b) Sigmoid function transforms the input into the range from 0 to 1. (c) ReLU function
returns zero when the input is negative and behaves as an identity function otherwise.
(d) Tanh function outputs values in the range from -1 and 1.

2.2.5 Softmax activation function

Softmax is used in multi-class classification task because it transforms the outputs

to make them sum to one. The behaviour lets us interpret the output of softmax as the

probability distribution among classes. The equation of softmax is shown in Eq. 2.5.

softmax(xi) =
exp(xi)∑
j exp(xj))

(2.5)
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2.3 Convolutional Neural Network

Convolutional Neural Network (CNN) (Lecun et al., 1998) is an artificial neural

network architecture specifically designed to capture spatial information and relationship

by mimicking the applications of convolution matrices, also called filters or kernels, in

image processing. However, instead of using a set of human-defined filters, a CNN is

able to learn optimal filters from the dataset on the fly. CNN is mostly used to analyze

image data because neighboring pixels are highly correlated and visual patterns are

generally translation invariant. These properties allow the model to apply the same

filters throughout the image, thereby reducing the number of parameters in the model.

Outputs extracted from these filters constitute a feature vector that contains useful

representation for the input image. However, as the feature vector from convolution can

be large, pooling by taking the maximum or average value is necessary for reducing the

vector size.

2.4 Recurrent Neural Network

Recurrent neural network (RNN) is an artificial neural network architecture specif-

ically designed to handle temporal correlations in time series tasks (Elman, 1990). RNN

consists of recurrent hidden states which allow it to memorize and utilize knowledge

from the past. RNN retains past information by autoregressively integrate the output

of previous state with new input during training. However, traditional RNNs still strug-

gle to learn dependencies from distant past in long sequences. To date, several solutions

for this limitation have been proposed, including Long Short Term Memory (LSTM)

and Gated Recurrent Unit (GRU).
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2.5 Long Short Term Memory

Long Short Term Memory (LSTM) was first proposed by Hochreiter and Schmid-

huber (Hochreiter and Schmidhuber, 1997). An LSTM has a chain structure like an

RNN. However, LSTM has a cell for storing information and gate mechanisms to con-

trol the cell state. An LSTM unit consists of three gates: forget gate, input gate and

output gate.

2.5.1 Forget gate

The forget gate is useful for deciding how much information to retain inside the

cell state. The decision is made through a sigmoid layer (Eq. 2.6) based on the input

data Xt and the previous hidden state ht−1. The output from this sigmoid layer is

interpreted as the fraction of previous state to remember, with 0 denotes forgetting and

1 denotes remembering, and is element-wise multiplied to the previous cell state Ct−1.

ft = σ(Wf ∗ [Xt, ht−1] + bf ) (2.6)

2.5.2 Input gate

The input gate decides when to update the cell state and what the new cell state

would be. The input gate consists of a sigmoid layer and a tanh layer. The first layer

decides which values will be updated (Eq. 2.7) whereas the second layer generates the

new candidate cell state C̃t (Eq. 2.8). Both layers receive the input data Xt and the

previous hidden state ht−1.

it = σ(Wi ∗ [Xt, ht−1] + bi) (2.7)

C̃t = tanh(W ∗ [Xt, ht−1] + b) (2.8)
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Then, the outputs from the two layers are element-wise multiplied to create a

candidate update vector for the cell state. The sum of this candidate cell state and the

product of the previous cell state, Ct−1, and the sigmoid output from the forget gate is

set as the new cell state, as shown in Eq. 2.9.

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.9)

2.5.3 Output gate

The output gate decides how much of the cell state Ct would be transmitted as the

output. First, the input data Xt and the previous hidden state ht−1 is passed through

a sigmoid layer to produce the weight vector ot (Eq. 2.10). Then, this weight vector is

multiplied to the tanh activation of the cell state Ct to generate the output (Eq. 2.11).

ot = σ(Wo ∗ [Xt, ht−1] + bo) (2.10)

ht = ot ∗ tanh(Ct) (2.11)

These gate mechanisms help mitigate the problem faced by traditional RNNs

because they allow the model to learn to discard unimportant information and retain

useful information.

2.6 Gated Recurrent Unit

Gated recurrent unit (GRU) is a more recent RNN architecture (Cho et al., 2014).

GRU uses gate mechanisms like those of LSTM but slightly differs in the design. There

are two gates in GRU: reset gate and update gate.
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2.6.1 Reset gate

This gate works like the forget gate in LSTM. The reset gate decides how much

information to retain from previous hidden state ht−1 via a sigmoid layer (Eq. 2.12).

rt = σ(Wr ∗ [Xt, ht−1] + br) (2.12)

2.6.2 Update gate

The update gate decides which past information will be passed to the next state.

First, the previous hidden state ht−1 and input data Xt are subjected to another sigmoid

layer (Eq. 2.13).

zt = σ(Wz ∗ [Xt, ht−1] + bz) (2.13)

To generate the new candidate state, GRU performs an element-wise multiplica-

tion between rt and ht−1 and passes the result to a tanh layer (Eq. 2.14).

h̃t = tanh(W ∗ [Xt, rt ∗ ht−1] + b) (2.14)

Finally, the new candidate state h̃t and the previous hidden state ht−1 are weighted

averaged according to the weights 1− zt and zt produced by the update gate, as shown

in Eq. 2.15, to derive the new hidden state.

ht = zt ∗ ht−1 + (1− zt) ∗ h̃t (2.15)

2.7 Encoder-Decoder Sequence to Sequence (Seq2Seq) model

Encoder-decoder model (Figure 2.2) has been used in various fields such as image

captioning (Vinyals et al., 2014) and machine translation. Sutskever et al. (Sutskever
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et al., 2014) presented an encoder-decoder model, also called Seq2Seq, for sequence-to-

sequence learning in machine translation tasks. Both the encoder and decoder consist

of multilayered LSTMs. As the name implies, LSTM in the encoder is used for encoding

information from the input sequence and passing the last hidden state vector to the

decoder as its initial state. Then, LSTM in the decoder begins to generate the output

sequence. While training the Seq2Seq model, Sutskever et al. (Sutskever et al., 2014)

fed the input sequence to the encoder in the reverse order. For example, instead of

training the model to map a, b, c to A, B, C, the model has to map c, b, a to A, B,

C. This technique improves the training of LSTMs because the input information from

a is now close to the corresponding output A, thus helping stochastic gradient descent

(SGD) create a tighter connection between the input and the output.

Figure 2.2: Encoder-Decoder sequence-to-sequence (Seq2Seq) model architec-
ture Seq2Seq model consists of an encoder and a decoder. The role of the encoder is
to embed information from the input A1, A2, A3 and use it as the initial weight for the
decoder. The role of the decoder is to generate the output sequence Y1, Y2, Y3 given
the initial weight and another input sequence B1, B2, B3.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter III

RELATED WORKS

UV forecasting has been actively researched because of its usefulness in atmo-

spheric study, heliotherapy, and solar energy production. Most methods rely on similar

sets of weather data, including UV, cloud coverage, aerosol, and ozone. The key dif-

ference between these methods lie in the computational technique used, which can be

categorized into three groups: modeling based on the physics of UV radiation, a hy-

brid between physics-based modeling and empirical techniques, and deep learning. In

this chapter, we explore representative works from these three groups and compare the

advantages of each approach.

3.1 Modeling based on the physics of UV radiation

These works use physics knowledge to calculate the theoretical amount of UV

radiation that travels from the Sun to Earth. The theoretical amount of UV that reaches

the Earth’s outer atmosphere is called extraterrestrial UV. The theoretical amount of

UV that gets through the ozone layer is called clear-sky UV. Factors included in these

calculations are the Earth-Sun distance, solar zenith angle, and the thickness of ozone

layer (Krzyścin et al., 2015; Allaart et al., 2006; Leccese et al., 2018).

However, the amount of UV radiation that actually reaches the Earth’s surface

may be heavily reduced by the Earth’s atmosphere and pollution. To account for this

discrepancy, some works proposed the Cloud Modification Factor (Krzyścin et al., 2015;

Sudhibrabha et al., 2006) which approximates the reduction in UV radiation due to the

cloud coverage. The final predicted UV in this case would be the product between the

theoretical clear-sky UV and the Cloud Modification Factor. One work by Zavodka and

Reichrt (Zavodska and Reichrt, 1985) bypassed the need to estimate modification factor

by directly learning a formula for calculating UV radiation from solar total irradiance.

Their equation is a simple linear model 3.1 fitted to the observed UV and solar total
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irradiance in Bratislava, Slovakia.

IUV = 0.054 ∗ I + 0.052 (3.1)

An advantage of physics-based modeling is that the resulting daily UV prediction

naturally follows a perfect bell-shaped pattern, allowing this approach to perform well

on Sunny days even in regions that do not collect any UV data. Nonetheless, as this ap-

proach does not take the seasonal weather effect into account, it will produce systematic

errors depending on the season.

3.2 Hybrid between physics-based modeling and empirical techniques

The main difference between a hybrid method and a physics-based modeling is

how model coefficients are determined. While physics-based modeling derives coeffi-

cient values using theoretical knowledge and physical constants, the hybrid method uses

regression technique to estimate the coefficients from past observations(Sudhibrabha

et al., 2006; Deo et al., 2017; Feister et al., 2011; Foyo‐Moreno et al., 1999; Allaart et al.,

2006). This lets the hybrid model learn seasonal weather effects and be more accurate

in regions that have collected sufficient data. However, regression techniques can be

susceptible to noises and may overfit the observed data distribution.

In Thailand, Sudhibrabha (Sudhibrabha et al., 2006) uses two linear regression

models for UV forecasting. The first model forecasts the amount of ozone. The second

model incorporates the predicted ozone and other physical features, such as the Earth-

Sun distance and the solar zenith angle, to forecast the amount of UV. Finally, the

predicted UV is multiplied to a Cloud Modification Factor that is derived from weather

forecast.

3.3 Deep learning

Recent works in the energy domain have successfully utilized recurrent neural

network (RNN)(Elman, 1990) architectures, such as Long Short-Term Memory (LSTM)
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(Hochreiter and Schmidhuber, 1997) and Gated Recurrent Unit (GRU)(Cho et al., 2014),

to predict solar photovoltaic power production(Qing and Niu, 2018; Wang et al., 2018;

Husein and Chung, 2019; Gensler et al., 2016; Huang et al., 2019). Unlike the afore-

mentioned approaches, deep learning model relies solely on past observations of UV

or other UV-related features (Qing and Niu, 2018; Wang et al., 2018; Elminir et al.,

2008; Jacovides et al., 2015). Although deep learning can yield an effective forecast-

ing model(Siami-Namini and Namin, 2018), it suffers from overfitting to the training

data and struggles to perform well in different geographical regions like other regression

approaches. Nonetheless, with enough data, deep learning model can be trained to han-

dle complex non-linear relationships under various weather conditions. In Wang’s work

(Wang et al., 2018), the data were split into four groups depending on the weather type

and a deep learning model was developed for each group.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter IV

METHOD

This chapter explains the datasets, data preprocessing, and our proposed model

architecture. This chapter was taken from our manuscript which has been published

(Raksasat et al., 2021).

4.1 Surface UV and weather data acquisition

Surface UV radiation, total ozone column, cloud coverage, and aerosol optical

depth at 500nm (AOD500), were collected at the Faculty of Science, Silpakorn Univer-

sity, Nakhon Pathom, Thailand (13.82°N, 100.04°E) from January 2009 to May 2019.

UV intensity was measured every 10 minutes from 5 AM to 7 PM at 1-nm wavelength

interval from 280 nm to 400 nm in mW/m2 unit using a DMc150 double monochro-

mator (Bentham Instruments, Berkshire, UK). Ozone, cloud coverage, and AOD500

data were collected from 6 AM to 6 PM from January 2011 to December 2018. To-

tal ozone column data were measured daily in Dobson unit (DU) via an OMI/Aura

satellite (NASA, Washington, DC, USA). Hourly AOD500 data were measured by a

ground-based CE318 sunphotometre (Cimel Electronique, Paris, France) and calibrated

by the Aerosol Robotic Network (NASA, Washington, DC, USA). Cloud coverage data

were estimated on a 0-10 scale from recorded images of the sky every hour through a

PSV-100 Skyview instrument (Prede Company, Tokyo, Japan). The distributions of

UV radiation, cloud, ozone, and AOD500 in Nakhon Pathom throughout the year are

shown in Figure 4.1 a-d, respectively.

Hourly downward surface UV radiation in J/m2, total ozone column in kg/m2,

and mid cloud coverage were also downloaded from ERA5(Hersbach et al., 2018) for

London, England (51.5°N, 0°E) and Tokyo, Japan (35.75°N, 139.75°E) from 5 AM to 7

PM from January 2011 to December 2019. It should be noted that ERA5 datasets were

generated from a combination of actual observation (every 3-hour) and computational
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reanalysis. ERA5 downward UV radiation data cover the 200-440 nm wavelength range.
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Figure 4.1: Characteristics of UV and weather conditions at Nakhon Pathom,
Thailand. Daily maximums are shown for UV irradiance, total ozone column, and
AOD500. Daily averages are shown for cloud coverage. Dark lines indicate the average
across 2009–2017. Shaded areas indicate the±1 standard deviation range. (a) Annual
surface UV irradiance. (b) Annual cloud coverage. (c) Annual total ozone column. (d)
Annual AOD500. (e) The distribution of cloud coverage in the validation set (UV data
from the year 2018). Both Silpakorn University’s observations and ERA5 data were
shown. (f) The distribution of cloud coverage in test set (UV data from the year 2019).
Information from Silpakorn University is unavailable.

4.2 Data cleaning and preprocessing

Surface UV radiation exhibits an annual seasonal pattern. We used this pattern

as a justification for using UV data of the same dates from adjacent years to impute

each missing data point. This is crucial because missing UV data often arise from

sensor malfunction which typically spans multiple days. Also, because the artificial

neural network model cannot handle missing values, imputation increases the number



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18

of data points that can be used to train and test the model. Specifically, we impute

each missing data point with the average UV radiation from adjacent 10-minute time

steps, the same time steps from adjacent days, and the same dates from adjacent years.

The ranges of adjacent time steps, days, and years that were used for imputation are 2,

5, and 2, respectively. Imputed data were visually inspected to ensure that the overall

UV intensity follows the expected bell-shaped pattern with a peak at around noon. In

Thailand, this bell-shaped pattern is often observed from October to January where

there are few rainy and cloudy days. The Nakhon Pathom UV data from 2014 were

excluded from further considerations as there is a technical problem with the instrument.

Nakhon Pathom UV data were split into a training set (2009-2017), for optimizing

the parameters of artificial neural network models, a validation set (2018), for determin-

ing when to stop the optimization process, and a test set (2019), for evaluating the

performance of the final models. We found that using the whole training set, i.e., using

UV data from all dates and times, to train the models yielded the best performance.

For the validation and test sets, we further exclude data from days with anomalous

UV intensity profiles to prevent them from influencing the evaluation of the models.

Specifically, we removed data from days whose UV profiles are highly skewed (absolute

skewness greater than 0.3), disproportional (ratio between maximal and minimal irradi-

ances greater than 15), or out of expected range (maximal irradiance above 400 or below

150 mW/m2). The distributions of cloud coverage in the validation and test datasets

are shown in Figure 1e and 1f, respectively. Finally, the antipsoriatic irradiance at each

time point was calculated from 280-400 nm UV data based on published psoriasis clear-

ance action spectrum formula(Krzyścin et al., 2012; Parrish and Jaenicke, 1981; Fischer

et al., 1984).

For evaluating the impact of incorporating ozone and AOD500 information as

input into SurfUVNet, because these data were available only up to 2018, we re-split

the dataset by setting data from 2009-2016 as the training set, data from 2017 as the

validation set, and data from 2018 as the test set. The same quality filter for excluding

data from days with poor UV profiles defined above was also applied to these validation
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and test sets. SurfUVNet model variants with and without ozone and AOD500 as

input were then trained and evaluated together on this data split. We also test the

relationship between ozone and AOD500 to UV. With training SurfUVNet to predict

ozone and AOD500 by receives UV as inputs.

4.3 SurfUVNet model architecture

Encoder-decoder-based model is a kind of deep learning model that has been

successfully applied to various applications such as image captioning(Vinyals et al.,

2014) and machine translation(Sutskever et al., 2014). In the context of UV forecasting,

an encoder-decoder model can be used to translate a sequence of past observed UV

radiations into a sequence of future UV radiations. The model consists of two parts:

encoder and decoder as shown in Figure 4.2. Both parts consist of multilayered LSTMs.

As the names implied, the LSTMs in the encoder is used for encoding information from

the input sequence while the LSTMs in the decoder decoded that information to generate

the output sequence.

As the input to our model, we use a sequence of antipsoriatic data from the previ-

ous day, denoted as [A1,A2,...,At] and a sequence of antipsoriatic data from the previous

year, denoted as [B1,B2,...,Bt]. For the model variant which also accepts AOD500 and

ozone, the inputs Ai’s and Bi’s will include these data of the same time-of-day from

previous days and previous year as well. To handle differences in data resolution for

various features (10-minute for UV irradiance, hourly for AOD500, and daily for ozone),

the values of features with lower resolutions were duplicated to match the highest reso-

lution.

Since the antipsoriatic values are seasonal in nature, we also include day-of-year

information as the input by encoding the day-of-year on a circular index defined as:

CircularIndexDate = [sin 2π(
day
365

), cos 2π(day
365

)] (4.1)
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The circular date feature helps the model to learn the seasonal pattern. The model

predicts future antipsoriatic values, [ȳ1,ȳ2,...,ȳt].

4.3.1 Encoder

The encoder takes the previous day sequence [A1,A2,...,At] and the circular date

feature as input. We use a bi-directional(Schuster and Paliwal, 1997) LSTM as the first

layer to help the model learn the temporal effect in both directions. The latter layers

are uni-directional LSTM that will capture the information and pass the information to

the decoder via the final cell state, St.

4.3.2 Decoder

The decoder takes [B1,B2,...,Bt] as input and uses it to future predict antipsoriatic

values. The first layer of the decoder is an LSTM layer that uses St from the decoder as

the initial value of the cell state. We also add two fully connected layers with sigmoid

activation function with the dropout(Srivastava et al., 2014) rate of 0.2 after the LSTM

layer for the final output.

Before feeding the input data to the model, we denoised the input antipsoriatic

data with the Savitzky–Golay filter(Savitzky and Golay, 1964). Applying the filter,

smooth out the input data, removing any possible noise spikes in the data. However, we

do not apply this processing to the target output data. If we train the model to predict

the denoised data, the model is learning to predict the unrealistic data and will not be

able to handle noises in the UV intensities. Then, we normalized the antipsoriatic data

into a range of [0,1]. We trained the model using quantile loss(Koenker and Hallock,

2001) defined as:

LQUANTILE =
1

N

N∑
i=1

max (q(ȳi − yi), (q − 1)(ȳi − yi)) (4.2)

where yi is the actual value and ȳi is the predicted value, q is a quantile value

that balances the penalties of overestimates and underestimates. If q is more than 0.5,
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the quantile loss gives more penalty to overestimated predictions and vice versa. In

our work, we set q to 0.33 to favor overestimation rather than underestimation because

underestimated results can cause sunburn to patients due to a prescribed sunbathing

time that is too long.

4.4 Model training

We used Adaptive Moment Estimation (ADAM)(Kingma and Ba, 2014) as the

optimizer. The learning rate was initially set to 0.0005 and iteratively reduced linearly

by 1e-7 per epoch. Models were trained for 2,000 epochs with a batch size of 256. We

measure the model performance with mean absolute percentage error metric (MAPE)

as shown in Eq. 4.3.

MAPE =
1

N

N∑
i=1

| ȳi − yi
yi

| (4.3)
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Figure 4.2: Schematic of SurfUVNet. (a) The underlying encoder-decoder neural
network architecture showing the flow of data from the encoder to the decoder via the
central connection denoted by St. LSTM and Dense indicate the Long Short-Term
Memory and fully connected neural network layers, respectively. UV data from days
prior to the forecast date are fed into the encoder part while UV data from the same
date of the previous year are fed into the decoder part. The model forecasts next-day
UV radiation at 10-minute resolution. (b) The auto-recursive mode for long-term UV
forecasting. To forecast UV radiation for the next N days, SurfUVNet first forecasts
next-day’s UV radiation profile and then uses the prediction as input to forecast UV
radiation profile for the day after. This process is repeated until the forecasts for the
next N days are generated.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter V

RESULT

In this chapter, we present the results from the experiments with datasets de-

scribed in previous chapter. We tested our model with different input range to find the

input that give us a best result and use different input to find the impact on model per-

formance. we also tested and compared our model when using in next-day and long-term

prediction with other benchmark models. This chapter was taken from our manuscript

which has been published (Raksasat et al., 2021).

5.1 SurfUVNet model architecture

The task of forecasting in general can be formulated as a problem of finding the

best approximation for the relationship between past and future observations. For sur-

face UV radiation, which exhibits an annual seasonal pattern, the profile of next-day

UV radiation can be modeled using not only data from previous days but also data

from previous years. Here, we adapted an encoder-decoder architecture, which can

effectively capture relationship between sequence data, to develop an artificial neural

network model for forecasting next-day surface UV radiation. Our model, named Sur-

fUVNet, takes in UV radiation profiles of the past 7, 14, or 21 days through the encoder

and passes the encoded information to the decoder. The decoder then takes in the UV

radiation profile of the same date as the next day but from last year, combines it with

information from the encoder, and then generates the next-day forecast (Figure 4.2 a).

Intuitively, because UV radiation exhibits annual seasonal pattern, our approach models

the next-day UV radiation profile as a transformed version of last year’s data and uses

recently observed UV pattern to learn the appropriate transformation.
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Finally, to forecast UV radiation profile further into the future, our approach

essentially performs next-day forecast repeatedly via an auto-regressive approach. For

example, if we define today as the day N, to predict the UV radiation profile for next

week, or day N +7, our model first uses data from days N–6, N–5, …, N to forecast UV

for the day N + 1, and then uses the data from days N–5, N–4, …, N , and the forecast

for the day N + 1 to forecast UV for the day N + 2, and so on (Figure 4.2 b).

5.2 Benchmark procedure

We evaluated the performance of SurfUVNet (also called Seq2Seq-14 here) against

four alternative models: a simple model that uses the previous day UV radiation pattern

as the prediction, an empirical approach that combined physics knowledge to define the

interactions between UV-related factors with regression technique to learn coefficient

values, which is currently in used by the Thai Meteorological Department(Sudhibrabha

et al., 2006), a CNN-LSTM neural network model developed for solar power forecast-

ing(Wang et al., 2018), and an implementation of bidirectional GRU neural network

model which is often used in time series forecasting applications. As prior study has

shown that the CNN-LSTM model benefits from additional smoothing of UV data from

rainy days(Wang et al., 2018), we considered two CNN-LSTM model implementations:

one without smoothing and one with Savitzky–Golay filter(Savitzky and Golay, 1964)

(denoted by CNN-LSTM and CNN-LSTM-SG in Figure 5.1 a and Table 5.1). To fairly

compare model performance, the validation and test datasets were subjected to quality

filtering to remove days with highly skewed and out-of-range UV irradiance values (see

Methods) where all models are expected to perform poorly on. However, it should be

noted that this does not mean that our validation and test sets consist of only clear-sky

data. The distribution of cloud coverage shows that both datasets contain many days

with cloud coverage above 0.2 and up to 0.4 or more (Figure 4.1 e and 4.1 f).
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5.3 Next-day antipsoriatic irradiance forecast for Nakhon Pathom dataset

All artificial neural network models were trained using the same UV data from

2011 to 2017 and evaluated on the same UV data from 2018 and 2019 while the regression

model based on Earth-Sun distance and total ozone column was fit to UV and ozone data

of the same year. All models were trained to forecast next-day antipsoriatic irradiance

at 10-minutes resolution. Furthermore, as past UV radiation profile is a critical input

data for artificial neural network models, we tried inputting data from 7, 14, or 21 days

prior to the forecast date to explore whether the models benefit from seeing data from

more distant past.

Overall, SurfUVNet achieves the best next-day forecasting performance with mean

absolute percentage errors (MAPE) of 10.41 and 10.51 on the validation and test sets,

respectively (Seq2Seq models in Figure 5.1 a and Table 5.1). It should be noted that

while the CNN-LSTM-SG model can also reach similar levels of performance (MAPE

of 11.39 and 11.84), it is highly sensitive to the length of input UV data. Changing the

length of input UV data from 7 days to 14 or 21 days significantly raises the MAPE of

CNN-LSTM-SG models to 13.87-17.74. In contrast, the performance of SurfUVNet is

stable with respect to the length of the input. Furthermore, SurfUVNet achieves consis-

tent forecasting accuracy throughout the day while the CNN-LSTM-SG model produce

significantly higher forecast error during the morning and afternoon hours (8AM-9AM

and 2PM-4PM) compared to the middle of the day (Figure 5.1 b and 5.1 c). Lastly,

comparison of ground truth antipsoriatic irradiance and SurfUVNet’s forecast confirmed

that SurfUVNet’s prediction closely mimics the expected bell-shaped pattern of daily

UV radiation in both validation and test sets (Figure 5.1 d and 5.1 e).

5.4 Next-day downward solar UV irradiance forecast for Tokyo and London

datasets

All models were further evaluated on hourly downward solar UV irradiance data

obtained from ERA5 for Tokyo, Japan and London, England, which represent different

weather regimes from Thailand’s. In contrast to the seasonal cloud coverage pattern at



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26

Figure 5.1: Results on Nakhon Pathom dataset were shown. (a) Comparison of the mean
absolute percentage errors (MAPE) for the next-day antipsoriatic irradiance forecast
between SurfUVNet (Seq2Seq-14) and four benchmark models (see Methods). Previous
day model simply predicts next-day’s UV radiation to be the same as today’s. Regression
model refers to the regression model based on Earth-Sun distance and total ozone column
currently in used by the Thai Meteorological Department (Sudhibrabha et al., 2006).
BiGRU is an artificial neural network architecture that is often utilized for time series
forecasting. CNN-LSTM, and CNN-LSTM-SG are artificial neural network models that
were recently applied to UV forecasting in the energy domain (Wang et al., 2018). The
tags -7, -14, and -21 designate the length of UV data, in days prior to the forecast date,
that were input into each model. (b) Distribution of MAPE for the validation set (UV
data from 2018) throughout the times of the day. Results for the best performing models,
namely CNN-LSTM-SG-7 and SurfUVNet (Seq2Seq-14), are shown. (c) A similar plot
showing distribution of MAPE for the test set (UV data from 2019). (d) Comparison
of ground truth UV data and forecasts made by SurfUVNet for the validation set (UV
data from 2018). Error bars indicate one-standard deviation ranges. (e) A similar plot
for the test set (UV data from 2019)
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Nakhon Pathom (Figure 1b), cloud coverage for Tokyo and London fluctuates around

0.2-0.4 year-round (Figure 5.2). Furthermore, day-to-day variation in UV radiation

profiles are much higher in Tokyo and London compared to Nakhon Pathom, as indicated

by much higher MAPE between today’s and the next day’s UV profiles (Table 5.1 and

Table 5.2, 21.78-35.50 for Tokyo, 18.14-43.57 for London, and 13.93-14.58 for Nakhon

Pathom). Overall, SurfUVNet performs competitively, achieving MAPE of 12.72 and

17.74 for the next-day forecast for Tokyo and London datasets, respectively (Table 5.2).

The regression model based on Earth-Sun distance and total ozone column performs

much better on these datasets than on Nakhon Pathom’s (Table 5.1 and Table 5.2,

MAPE of 16.52-19.17 on ERA5 compared to 25.52-25.57 on Nakhon Pathom) and only

slightly worse than the artificial neural network approaches. Again, it should be noted

that the validation and test sets contain many days with considerable cloud coverage

(Figure 5.3).

Model Validation MAPE
(2018, 8AM-4PM)

Test MAPE
(2019, 8AM-4PM)

Previous day model 13.93 14.58
Regression model based on

Earth-Sun distance
and total ozone column

((Sudhibrabha et al., 2006))

25.57 25.32

BiGRU-7 13.00± 0.16b 22.12± 0.33

BiGRU-14 12.66± 0.62 21.15± 1.20

BiGRU-21 13.07± 0.63 20.33± 0.47

CNN-LSTM-7
(Wang et al. (2018)) 16.82± 0.73 17.67± 0.91

CNN-LSTM-14
(Wang et al. (2018)) 17.21± 1.15 17.40± 0.44

CNN-LSTM-21
(Wang et al. (2018)) 17.02± 0.20 17.87± 0.24

CNN-LSTM-SG-7 11.39± 0.57 11.84± 0.63

CNN-LSTM-SG-14 17.14± 1.01 17.74± 0.70

CNN-LSTM-SG-21 13.87± 2.59 14.48± 1.96

Seq2Seq-7 10.18± 0.53 10.60± 0.34

Seq2Seq-14 (SurfUVNet) 10.41± 0.43 10.51± 0.41

Seq2Seq-21 11.35± 1.64 11.19± 0.33

Table 5.1: Mean absolute percentage errors (MAPE) of the next-day antipsoriatic
irradiance forecasting produced by SurfUVNet and benchmark models.
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Figure 5.2: Characteristics of UV and weather conditions at Tokyo. Japan
and London, England. Daily maximums from ERA5 datasets are shown. Dark lines
indicate the average across 2009-2017. Shaded areas indicate the ±1 standard deviation
range. (a) Annual downward surface UV irradiance at Tokyo. (b) Annual downward
surface UV irradiance at London. (c) Annual total ozone column at Tokyo. (d) Annual
total ozone column at London. (e) Annual cloud coverage at Tokyo. (f) Annual cloud
coverage at London.

5.5 Adding weather information does not improve forecasting

As atmospheric conditions can reflect and scatter UV radiation before it reaches

the Earth’s surface, we tried incorporating total ozone column, atmospheric aerosol

(AOD500), and cloud coverage data into SurfUVNet. However, cloud coverage data

contain many missing values that could not be imputed due to the irregularity of the

data and had to be excluded from model development. Instead, we used cloud coverage

data to evaluate whether SurfUVNet overestimates the amount of UV radiation when

the weather is cloudy. This reveals that SurfUVNet’s forecasting errors weakly correlate
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Figure 5.3: The distribution of cloud coverage in ERA5 validation and test
sets. Mid cloud coverage data are shown. (a) Cloud coverage distribution for validation
set (UV data from year 2018) for Tokyo. (b) Test sets (UV data from year 2019) for
Tokyo. (c) Validation set (UV data from year 2018) for London. (d) Test sets (UV data
from year 2019) for London.

Model Tokyo London
Validation

MAPE
(2018,

8AM-4PM)

Test
MAPE
(2019,

8AM-4PM)

Validation
MAPE
(2018,

8AM-4PM)

Test
MAPE
(2019,

8AM-4PM)
Previous day model 21.78 35.50 18.14 43.57

Regression model based on
Earth-Sun distance

and total ozone column
(Sudhibrabha et al. (2006))

16.68 16.52 18.68 19.17

CNN-LSTM-SG-7 14.75± 0.41 15.77± 0.33 13.14± 0.35 16.27± 0.54

CNN-LSTM-SG-14 13.18± 0.28 14.99± 0.51 12.19± 0.19 17.78± 0.19

Seq2Seq-14 (SurfUVNet) 11.83± 0.44 12.72± 0.67 11.54± 0.50 17.74± 0.19

Table 5.2: Mean absolute percentage errors (MAPE) of the next-day antipsoriatic
irradiance forecasting produced by SurfUVNet and other models on the ERA5 Tokyo
and London datasets.
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with cloud condition (Figure 5.4 , spearman rank correlation = 0.16776, -0.04546, and

0.20229 for Nakhon Pathom, Tokyo, and London 2019 datasets). For Nakhon Pathom

dataset, SurfUVNet’s forecast error stays roughly the same before shifting upward when

cloud coverage goes above 0.7 (Figure 5.4 a). For Tokyo dataset, SurfUVNet’s error is

not correlated with cloud coverage at all (Figure 5.4 b). SurfUVNet’s error shows the

clearest correlation with cloud coverage in London dataset (Figure 5.4 c). Addition of

ozone and AOD500 data into SurfUVNet does not improve the performance of the base

model that utilizes only UV data (Figure 5.5). The model with ozone and AOD500 data

achieves MAPE of 15.33 on the validation set (data from 2017) and MAPE of 13.91 on

the test set (data from 2018), while the base model achieves MAPE of 14.32 and 13.60,

respectively. This may be because ozone and AOD500 data were collected at lower

frequency (hourly versus every ten minutes) and at a shorter time period during the day

(6AM-6PM versus 5AM-7PM) than UV data. Although data from the early morning

and late evening hours where the amount of UV radiation is almost nonexistence should

not contribute much to the forecasting of UV radiation during daylight hours, we found

that withholding UV data from 6-8AM and 4-6PM from the model slightly raises error

from 10.51 to 11.78 MAPE (Wilcoxon signed rank test result is not significant with p-

value = 0.5567). We also trained SurfUVNet to predict ozone and AOD500 using only

UV data as input for finding the model ability in mapping the correlation between UV

and pollution features. The error of ozone and AOD500 prediction is 3.07 and 57.77

MAPE in validation set and 2.33 and 34.76 MAPE in test set. This result proves that

the model can learn the relationship between UV and ozone while terrible at learning the

AOD500 and UV relationship. Lastly, to evaluate the impact of uncertainty of next-day

ozone and AOD500 on the forecast performance, a variant of SurfUVNet was trained

with the actual values of next-day ozone and AOD500. This does not reduce the forecast

error (MAPE of 15.70 and 15.50 on the validation and test sets, respectively), indicating

that the limitation lies elsewhere.
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Figure 5.4: SurfUVNet’s forecast error weakly correlates with cloud coverage.
Violin plots showing the distribution of SurfUVNet’s forecast error in 1-hour interval
with various cloud coverage. Errors on the test sets (UV data from year 2019) are shown.
(a) Nakhon Pathom dataset. (b) Tokyo dataset. (c) London dataset. (d) Heliotherapy
sunbathing sessions planned by photodermatologist at King Chulalongkorn Memorial
Hospital. Each data point that constitutes the violin plots correspond to the error
between predicted and actual antipsoriatic irradiances that a patient would be exposed
to if he or she were to sunbath according to dermatologist’s planning.
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Figure 5.5: Comparison of SurfUVNet performance with and without ozone
and AOD500 as input. It should be noted that as AOD500 data at Nakhon Pathom
for the year 2019 were not available, UV data from year 2017 were set as the validation
set and UV data from year 2018 were set as the test set here. (a) Distribution of MAPE
for the validation set (UV data from 2017) throughout the times of the day. (b) A similar
plot showing distribution of MAPE for the test set (UV data from 2018). (c) Comparison
of ground truth UV data and forecasts made by SurfUVNet for the validation set (UV
data from 2017). Error bars indicate one-standard deviation ranges. (d) A similar plot
for the test set (UV data from 2018).

5.6 Long-term antipsoriatic irradiance forecasting

Long-term UV forecasting is essential for heliotherapy applications as it allows

clinicians and patients to plan sun-bathing schedule in advance and make necessary

adjustments to the schedule to achieve the desire UV radiation dosage. We explored

two approaches for forecasting antipsoriatic irradiance for up to a month into the future

(Figure 5.6 a). The first approach is to train a collection of artificial neural network

models, each making the forecast for a specific date that is a certain number of days into

the future. In other words, we trained one model for making the next-day forecast, one

model for making the forecast for the day after that, and so on. The second approach is

to train a single model for making the next-day forecast and then autoregressively use

the next-day forecast as in input to make the forecast for the day after that. Evaluation

on Nakhon Pathom 2018-2019 UV datasets showed that the performance of the autore-

gressive approach is quite stable with average MAPE of 13.70-15.79 for forecasting up
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to 28 days into the future (Table 5.3 and Figure 5.6 b). On the other hand, developing

specific models for specific days performs well on the 2019 dataset but poorly on the 2018

dataset (MAPE of 11.46 vs 18.38 for forecasting up to 28 days into the future). We also

additionally explored the possibility of training a model that can forecast UV profiles

of multiple days at once, but the performances were much worse than the two methods

described above (MAPE of 29.49 and 49.69 for forecasting the next 7 days at once on

the 2018 and 2019 datasets, respectively). Hence, we decided to choose the autoregres-

sive approach for SurfUVNet. It should be noted that the regression approach based on

Earth-Sun distance and ozone information performed poorly on Nakhon Pathom’s UV

data even for next-day forecast (Table 5.1, MAPE of 25.32-25.57).

Figure 5.6: Long-term antipsoriatic irradiance forecasting. Results on Nakhon
Pathom dataset were shown. (a) Diagram of two approaches for making long-term
forecast: developing specific artificial neural network model for making forecast for a
specific day that is a certain number of days into the future (left) and autoregressively
using the next-day forecast as input for making forecast for the day after that (right).
(b) Long-term antipsoriatic irradiance forecasting performance for up to 28 days into
the future on the validation set (UV data from 2018) and the test set (UV data from
2019). Performance for SurfUVNet, the regression model based on Earth-Sun distance
and total ozone column, and the best CNN-LSTM models were shown.
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Model Target Day
Validation

MAPE
(2018, 8AM-4PM)

Test
MAPE

(2019, 8AM-4PM)
Regression model based on

Earth-Sun distance
and total ozone column

(Sudhibrabha et al. (2006))

7 25.57 25.07
14 26.10 25.11
21 26.53 25.45
28 26.37 25.53

CNN-LSTM-SG-7
Forecast Specific Date

7 16.18± 0.42 16.68± 0.59
14 16.09± 1.70 16.60± 1.77
21 14.91± 1.08 15.24± 0.29
28 14.76± 1.39 15.09± 1.56

CNN-LSTM-SG-7
Auto-Regressive

7 18.56± 2.65 17.41± 2.70
14 20.60± 2.31 19.49± 2.92
21 22.51± 1.97 21.37± 1.83
28 24.45± 1.60 22.62± 0.98

CNN-LSTM-SG-14
Forecast Specific Date

7 16.69± 0.92 16.73± 1.16
14 14.82± 0.63 15.49± 1.43
21 15.96± 0.99 16.18± 0.46
28 15.46± 0.71 15.55± 1.14

CNN-LSTM-SG-14
Auto-Regressive

7 17.31± 0.45 17.77± 0.55
14 17.20± 0.47 19.16± 0.65
21 17.13± 0.50 20.71± 0.57
28 17.00± 0.50 20.83± 0.97

Seq2Seq-14 (SurfUVNet)
Forecast Specific Date

7 12.21± 0.65 12.68± 0.53
14 16.42± 1.40 12.80± 1.64
21 16.61± 1.29 11.97± 0.88
28 18.28± 1.57 11.46± 0.38

Seq2Seq-14 (SurfUVNet)
Auto-Regressive

7 13.13± 0.41 13.86± 0.91
14 14.03± 0.62 14.09± 1.49
21 14.22± 0.74 13.83± 2.20
28 15.79± 1.90 13.70± 2.65

Table 5.3: Mean absolute percentage errors (MAPE) for long-term antipsoriatic irradi-
ance forecasting for up to 28 days into the future on Nakhon Pathom dataset.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter VI

DISCUSSION

This chapter was taken from our manuscript which has been published (Raksasat

et al., 2021).

We have developed SurfUVNet, an artificial neural network model for predicting

surface UV radiation that achieves around 10% error for next-day forecast and 13−16%

error for 7-day up to 4-week forecast. This affirms that quantitative UV forecast is

appropriate for heliotherapy applications, which tolerate up to 10 − 25% error level.

SurfUVNet’s performance is competitive on UV data from multiple regions, Thailand,

Japan, and England, and on both antipsoriatic and downward irradiance. Hence, Sur-

fUVNet can be adapted for forecasting other useful UV action spectra such as vitamin

D production and erythemal UV index as well. In fact, our model can even be trained to

forecast antipsoriatic irradiance from input erythemally-weighted UV data from a UV

Biometer instrument with a small performance reduction (data now shown). This capa-

bility is necessary for establishing a national heliotherapy network in Thailand because

there is only one full-spectrum UV sensor located in the central region of the country

while the rest of the country is covered by a network of UV Biometers.

A key limitation of the artificial neural network is that it tends to overfit to

the training dataset and does not generalize well to other datasets that come from

different distributions. In the context of UV forecasting, this dictates that the model

must be retrained with data from particular weather station in order to be usable for

that geographic region. Indeed, the accuracy of each model varies by 5 − 6% across

the three geographical regions, Thailand, Japan, and England and even across 2018

and 2019 in the case of London dataset (Table 5.1 and Table 5.2). For the case of

London dataset, comparison of UV profiles between consecutive days in 2019 showed

an extremely high average variation of 43.57%. The discrepancy in performance of the

regression model based on Earth-Sun distance and total ozone column developed by the



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36

Thai Meteorological Department22 between Nakhon Pathom and ERA5 datasets (25%

error on Nakhon Pathom and 16− 19% error on ERA541 datasets) could be attributed

to the fact that ERA5 data, which contain more detailed ozone measurements (hourly

compared to daily) and were computationally interpolated, are likely to be more easily

fitted by regression.

The fact that SurfUVNet’s forecast error only weakly correlates with cloud cover-

age (Figure 5.4) is unexpected but may be explained by the fact that cloud coverage in

Nakhon Pathom exhibits clear seasonal pattern (Figure 4.1b) and that the UV radiation

profiles are stable over consecutive days (Table 5.1, MAPE of 13.94-14.58 for previous

day model). On a geographical region with highly variable weather condition, such as

London in 2019, artificial neural network models’ performance drop significantly (Table

5.2) and the error of SurfUVNet exhibits higher correlation with cloud coverage (Fig-

ure 5.4c). Hence, artificial neural network models seem to be able to exploit seasonal

weather pattern and day-to-day variation to achieve good performance without relying

on explicit cloud coverage information. Also, in ozone and AOD500 forecasting experi-

ment, SurfUVNet achieve low error in ozone (ozone MAPE around 3.00) and high error

in AOD500 (AOD500 MAPE around 30.00-60.00). The ozone forecasting result is not

surprise due to the fact that the model just has to predict one value in all time range.

However, SurfUVNet seems to have problem in AOD500 forecasting. It is possible that

model can not learn the relationship between AOD500 and UV pattern. This capability

of the model to extract seasonal patterns may also explain why addition of ozone and

AOD500 information did not improve the performance of SurfUVNet (Figure 5.5), par-

ticularly as AOD500 level at Nakhon Pathom closely follows the same seasonal pattern

as cloud coverage (Figure 4.1d).

We explored two approaches for forecasting long-term UV radiation. Initially,

we expected that developing a specific model for making the forecast for a specific

date a certain number of days into the future would yield better performance than an

autoregressive approach which use the next-day forecast as input for making the forecast

for the day after because forecasting errors would aggregate through autoregressive steps.
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However, the models for specific date seem to overfit the training data, performing well

on the 2019 dataset but poorly on the 2018 dataset (Table 5.3, 11.46% versus 18.28%

error for forecasting up to 28 days into the future). In contrast, the autoregressive

approach performs consistently well on both datasets (13.70% and 15.79% error). An

explanation for the overfitting of the model trained for specific date maybe because

the relationship between today’s and next week’s UV radiation profiles is so weak that

the models learn mostly patterns that are specific to the training dataset. The poor

performance of models for multi-day forecast (29.49−49.69% error for 7-day forecast) is

likely due to the sheer number of outputs that the models must optimize. To make a 7-

day forecast at 10-minute resolution, the model has to contain 595 outputs. From these

results, we recommend the autoregressive approach for making long-term UV forecast

with SurfUVNet.

To prospectively examine whether SurfUVNet’s performance is sufficient for he-

liotherapy applications, we asked photodermatologist at King Chulalongkorn Memorial

Hospital to plan a 3-month sunbathing course based on SurfUVNet’s output and then

compared their schedule with the ground truth antipsoriatic irradiances of the same

time interval. This reveals that the error in antipsoriatic dose that the patient would re-

ceive by following the clinician’s sunbathing protocol remains well within the acceptable

10 − 25% up to 0.3 cloud coverage (Figure 5.4d, MAPE of 11.23). A possible solution

for accounting for weather effects on UV radiation that we are exploring is to have each

patient carry a portable UV sensor or a smartphone equipped with light sensor and use

that data to adjust SurfUVNet’s forecast in real-time.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter VII

CONCLUSION

7.1 Summary

In this thesis, we explored and improved UV forecasting model for use in clinical

applications. This research is motivated by the low performance of existing UV fore-

casting models and the fact that many tools require additional weather data such as

ozone, AOD, cloud coverage, or humidity. This data requirement limits the usability of

the model when applied to different geographical regions. Therefore, we proposed Sur-

fUVNet, a sequence-to-sequence deep learning model that requires only past UV data

and has an acceptable error (10-25% MAPE) according to expert photodermatologists.

Like other sequence-to-sequence models, SurfUVNet consists of an encoder and a

decoder. SurfUVNet was trained using only UV data and we found that adding more

weather data, such as AOD500 or ozone, actually reduced model performance. Unlike

previous approaches which trained models using short-term (less than 1-year) data,

SurfUVNet is able to learn the annual seasonal pattern of UV and predict future UV

profile using information from the same time period of previous year. Our design makes

the model aware of annual cycle by encoding date information with a circular index.

Overall, SurfUVNet achieves good performance of 10% error for 24-hour forecast and

13-16% error for 7-day up to 4-week forecast in the Nakhon Pathom dataset. SurfUVNet

also achieves around 12-13% and 12-18% errors when applying to data from Tokyo,

Japan, and London, England, respectively.

7.2 Future work

7.2.1 Adding attention mechanism to the model

In recent works on time series tasks, attention mechanism has proven to be a

significant factor that enhances the performance of sequence model (Vaswani et al.,

2017). Hence, it is likely that adding an attention mechanism or adapting the encoder
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part of a Transformer architecture (Vaswani et al., 2017) will further improve SurfUVNet

performance. However, as there are many possible attention mechanisms for sequence-

to-sequence model architecture, it may take a long time to find a suitable option and

fine-tune the model.

7.2.2 Improving prediction for days with irregular UV profiles

Our experiments have shown that SurfUVNet performs very well when the target

day’s UV profile resembles the bell-curve pattern, such as days during the Jan-Mar and

Oct-Dec periods in Thailand. We reasoned that because the patients are unlikely to sun-

bath when it is raining or very cloudy, it is acceptable for the model to perform well on

days with relatively good weather conditions. However, for general UV forecasting ap-

plication, the model would be expected to provide decent performance regardless of the

weather condition. This limitation may be addressed by either changing model architec-

ture, training separate models to handle different weather conditions, or incorporating

real-time weather data such as satellite images to let the model adjust its predictions.
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