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ABSTRACT (THAI) 
 วิวรรธน์ ตุลาภรณ์พิพัฒน์ : การหยิบและวางอาหารด้วยแผ่นสุญญากาศและนิ้วจับแบบ

ยืดหยุ่นสำหรับแขนหุ่นยนต์อุตสาหกรรม. ( Picking-and-placing food with vacuum 
pad and soft gripper for industrial robot arm) อ.ที่ปรึกษาหลัก : รศ. ดร.
อลงกรณ์ พิมพ์พิณ, อ.ที่ปรึกษาร่วม : ศ. ดร.ฮายาชิ อิจิ 

  
มนุษย์มีความต้องการอาหารที่แตกต่างกันด้วยสาเหตุหลายอย่าง  เช่น โรคประจำตัว, 

ภูมิแพ้, อายุ, เพศโดยกำเนิด, เชื้อชาติหรือศาสนา เป็นต้น นอกจากนั้นในปัจจุบันผู้คนนิยมเลือก
รับประทานอาหารตามคุณค่าทางสารอาหารมากกว่าราคา ดังนั้นอาหารเฉพาะสภาวะบุคคล หรือ
อาหารที่มีการปรับเปลี่ยนวัตถุดิบให้เหมาะสม จะได้รับความสนใจภายในระยะเวลาอันใกล้นี้  ใน
แง่มุมที่กล่าวมานี้หุ่นยนต์อัตโนมัติสำหรับประกอบอาหารเป็นตัวเลือกที่ดีในการผลิตชุดอาหาร
กล่องจำนวนน้อย แต่มีความสามารถในการปรับเปลี่ยนวัตถุดิบได้สูง เพ่ือให้เข้ากับความต้องการที่
กำหนดได้ โดยระบบอัตโนมัติสามารถลดระยะเวลาและต้นทุนในการปรุงอาหาร รวมไปถึงลดการ
ปนเปื้อน แล้วยังมาพร้อมกับการตรวจสอบย้อนกลับที่ดีในเหตุการณ์ที่ผิดปกติได้  อย่างไรก็ตาม
หุ่นยนต์ที่สามารถทำงานได้ดังที่กล่าวมายังคงอยู่ในช่วงเริ่มต้นของการพัฒนา ประเด็นหนึ่งคือการ
ออกแบบส่วนประกอบมือจับของหุ่นยนต์ที่ใช้ในกระบวนการจับและวางอาหาร  ที่ควรจะมี
ความสามารถในการปรับเปลี่ยนได้อย่างรวดเร็วเพ่ือให้ใช้ได้กับอาหารประเภทต่างๆได้ดี   ใน
วิทยานิพนธ์นี้ได้มีการสร้างและประเมินระบบแขนหุ่นยนต์ประกอบอาหารชุดที่มีความยืดหยุ่นสูง 
หุ่นยนต์สามารถจดจำและกำหนดตำแหน่งของอาหารญี่ปุ่นและจับวางลงในกล่องได้  โดย
ส่วนประกอบที่ใช้จับอาหารได้ถูกออกแบบตามหลักโมดูลาร์เพ่ือติดตั้งมือจับแบบยืดหยุ่นและแผ่น
สุญญากาศร่วมกัน สมรรถนะของระบบได้รับการประเมินโดย  กระบวนการหยิบและวางใน
สถานการณ์ต่างๆ การทดลองได้ใช้ไก่ทอด ข้าวปั้น และโบโลน่า โดยการจับและวางใส่กล่องอาหาร 
ผลการทดลองสำหรับอาหารประเภทเดียว ระบบสามารถเลือกและวางอาหารลงในกล่องอาหารได้
สำเร็จร้อยละ 90  อย่างไรก็ตามอัตราความสำเร็จจะลดต่ำกว่าร้อยละ 50 เมื่อระบบทำการหยิบ
และวางอาหารหลายประเภทลงในกล่องอาหาร 

 สาขาวิชา ระบบกายภาพที่เชื่อมประสาน
ด้วยเครือข่ายไซเบอร์ 
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ABSTRACT (ENGLISH) 
# # 6270373021 : MAJOR CYBER-PHYSICAL SYSTEM 
KEYWORD: food automation, soft gripper 
 Wiwat Tulapornpipat : Picking-and-placing food with vacuum pad and soft 

gripper for industrial robot arm. Advisor: Assoc. Prof. ALONGKORN PIMPIN, 
Ph.D. Co-advisor: Prof. Hayashi Eiji, Ph.D. 

  
Human with different conditions such as disease, allergy, gender, ethnicity, 

or religion need different types of food. Nowadays, people prefer to choose diet 
based on nutrition value over price such as composition of food or the impact on 
body, so personalized or customized food could potentially be a big market in few 
years. With this aspect, the assembly robot becomes a good choice in the food 
industry to produce the small amount of packed meal with highly adjustable 
ingredients to match with the requirements. With the automation system, the 
cooking process is faster, cheaper and safer, yet coming with good traceability in 
unusual incidents. However, the robot that overall works practically is still in an 
early stage of development. One issue is a design of the end-effectors that should 
be interchangeable to match with different types of food. In this thesis, a highly 
flexible food assembling framework has been realized and evaluated. The robot 
with designed end-effector could recognize and localize objects to assemble 
Japanese lunch box. A modular end-effector using soft gripper and vacuum pad in 
the single unit was designed, prototyped, and installed. The performance has been 
evaluated by the pick-and-place process with various scenarios. For a single type 
of food, the system could successfully pick-and-place karaage, onigiri, and bologna 
into a meal box with a 90% success rate. However, when picking and placing 
multiple types of food, the success rate is reduced lower than 50%. 
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Chapter 1 

Introduction 

 Background and motivation 

Food industry 1.0 utilized human labor from harvest crops/meat to process the 

products. For example, farmers use sickle or scythe to reap rice from the field then 

use millstones to grinding it. In the food industry 2.0, electrical-powered appliances 

have been introduced to cope with people's demands by mass production. For 

example, a butcher uses an electric meat slicer instead of a butchering knife, or a 

baker uses an electric oven instead of a gas or firewood oven. Automation processes 

came in the food industry 3.0 to further accelerate mass production. For example, 

automated filling/canning, labeling, and palletizing process in various beverages, as 

shown in Figure  1. Since industry 1.0 to 3.0, humans have tried to make products by 

mass production faster and faster to fulfill people’s demands. Nevertheless, recently, 

the mass production trend is declining.  

 

Figure  1 Evolution of food manufacturing through industry 1.0 to 4.0 [1] 
Industry 4.0 utilizes connectivity to enhance industry automation further and 

create the cyber-physical system, which is the system that both cyber and physical 

are closely intertwined together. Artificial Intelligence (AI) is undoubtedly one of the 
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most famous modules in industry 4.0 because it can make decisions based on big 

data in any form: images, point clouds, coordinate inputs, cost and retail price of 

products, the trend of demand-supply. Other famous modules are high-speed 

connectivity such as 5G or WiFi 6 because they bring monitoring capability and 

traceability closer to real-time. 

The food industry will be benefited from industry 4.0 right from the ingredients 

tracing[2] to market insight. For example, the identification platform in Figure  2reads 

and fills the origin of ingredients to the cloud database. Then, the system will 

measure each ingredient’s weight while the robot prepares them for cooking in the 

manufacturing process of Figure  2. Finally, the system generates a unique nutrition 

label for each packed meal from the measured values. Consumers can check the 

specific nutrition from the cloud database, such as the packed meal’s exact calories. 

Every purchase that occurs will be recorded to the cloud for further analysis by the 

marketing department to adjust the highly flexible production line in the 

manufacturing plant to minimize food waste and maximized the cost-price margin. 

Another benefit of the food automation process is reducing food contamination, 

which can cause foodborne illness, from humans. Even if someone got infected, we 

could trace it back through processes after processes back to the origin of ingredients 

because we already have big data about the food, such as where the patient bought 

that food and how the logistic process handled food containers.    

 

Figure  2 Traceability proposal of industry 4.0 (modified from [2])  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 
 

Thailand’s birth rate declined from 20.2 births per thousand of the population 

in 1988 to 10.2 in 2019[3], as shown in Figure  3. In addition to the declined birth 

rate, people over 60 years old will be 20% of Thailand’s population by 2021[4]. 

Furthermore, people over 60 years old will require personalized or reformulated 

food. For example, older people might need sodium reduction or sugar substitution. 

Both indicators (birth rate and elder to population ratio) show that Thailand will have 

less population of workable age.  

 

Figure  3 Estimates of the crude birth rate in Thailand [3]  
Thailand’s food industry should evolve from automated to highly flexible food 

production lines as soon as possible to produce a specialized or customized meal for 

people who need or want it with less labor force in the industry. The ideal of highly 

flexible food production should be the assembly station to complete the packed 

meal by only one station. It could be multiple robots with different end-effectors for 

various ingredients to complete the packed meal together or a standalone unit robot 

with interchangeable end-effectors to handle various ingredients. For example, an 

industrial robot arm equipped with a wrist camera and modular end-effectors could 

potentially be that standalone unit. The industrial robot arm is highly flexible for 
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object handling tasks. The wrist camera does not have a blind spot because it is fixed 

to a robot arm’s wrist. Moreover, carefully selected end-effectors can pick a broad 

range of objects.   

In this research, a modular end-effector for the food assembling process with 

an industrial robot arm has been prototyped and evaluated for pick and place 

performance in cycle time and success rate. Additionally, this research also 

experimented with Japanese food because Hayashi robotics laboratory in Kyushu 

Institute of Technology in Japan already set up a working environment. Furthermore, 

some of the Japanese food is almost identical to Thai food. 

 Image processing 

In the early day, image processing came into the industry as a barcode reader 

or product rejection system based on physical appearance. With the help of AI, 

image processing could do a lot more than those mentioned applications. 

Pick and place systems must have image processing for object localization, 

shape detection, or pose estimation. Some systems might have object tracking to 

enable object manipulation while the object moves along the conveyor.  

 Image classification with localization VS. object detection  

The most basic applications of image processing are image classification 

with localization. The image classifier can tell what the object is, and the image 

localizer will predict the bounding box around the object. Hence, image classification 

with localization assumes that there is only one object in the given image. The 

output would be a single vast bounding box that includes every instance if the image 

has multiple instances of an object, as illustrated in Figure  4(a). However, an image 

of a single object is hardly found in food manufacturing, so object detection is more 

suitable than image classification with localization. The object detection can 

determine each object’s bounding box and gives that segment in the bounding box 

to an image classifier, which labels each bounding box, as illustrated in Figure  4(b). 
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 Semantic VS. instance semantic segmentation 

It is good to know each object’s location in the given image, but we need 

to know each object’s shape if we want to grasp it optimally. 

Semantic segmentation can label every single pixel of a given image. So, 

the output from semantic segmentation could determine the shape of an object for 

optimally grasping pose. Like object classification and localization, semantic 

segmentation does not separate an object’s instances within the same class. For 

example, the semantic segmentation algorithm’s output will tell us which region of 

the image is sheep or grass. However, it does not separate each sheep’s region in the 

given image, as illustrated in Figure  4(c). Like object detection, instance 

segmentation can differentiate each object’s region as instances, so we can 

determine each object’s shape, as illustrated in Figure  4(d). 

In conclusion, we need the instance segmentation for image processing if we 

want to grasp the object optimally. The image classification with localization works 

on a single instance in the given image assumption. Object detection works with 

multiple instances but does not capable of shape determination. Semantic 

segmentation can determine the shape of objects. Similar to image classification with 

localization, it also works with a single instance in a given image assumption. 

 
Figure  4 Different applications of image processing [5] 

a) b) 

 

 

c) 

 

d) 
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 Cascade Mask R-CNN [6] 

Intersection over Union (IoU) is the threshold in range zero to one, which 

defines the quality of detection sub-network or detector. High IoU leads to a high-

quality detector that produces less noisy bounding boxes, as illustrated in Figure 5. 

However, detectors trained with high IoU have two problems, which are overfitting: 

high threshold detector ignores positive samples and quality mismatch between 

detectors and available hypotheses at inference test.  

Cascade Mask R-CNN is a multi-layer architecture composed of sequences 

of detectors, as illustrated in Figure 6. One layer consists of I: input image, conv: 

backbone convolution, B0: proposal, pool: region-wise feature extractor, H: region-of-

interest (ROI) detector, C: classification, S: mask prediction, and B: bounding box 

generator. Those detection heads are sequentially trained using the previous 

detector's output with gradually increasing IoU to mitigate those two problems.  

 
Figure 5 Comparison between low and 
high IoU [6] 

 
Figure 6 Architecture of Cascade Mask 
R-CNN [6] 

 End-effectors of robot 

Robots with proper end-effector can grasp and orientate products up to six 

degrees of freedom[7]. However, the food industry’s equipment must meet hygienic 

design (ANSI DIN EN 1672-2) for food contacted equipment, ingress protection (IP) at 

least 65, and corrosion resistance for thorough cleaning. 
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Air-based and contact-based are two conventional object manipulation 

techniques. The air-based technique is further separate into vacuum and pressure.  

Contact-based also separates into gripper and multi-body mechanism. 

 Air-based techniques 

Vacuum pads or suction cups transmit force to the product with negative 

pressure difference, so the product should have as low porosity as possible. Suction 

cups developed for food handling have few features in common: increased contact 

area with the inner surface pattern or ribs, prevent clocked airway, distribute suction 

force on the product, and decreased suction mark.  

Positive-pressure pneumatic grippers work by Bernoulli’s principle, which 

utilizes a high flow rate of gas between the surface of the gripper and flat, light, and 

rigid objects to generate lift force with zero contact. In 2010, Petterson et al.[8] and 

Sam and Nefti[9] researched Bernoulli gripper for a 3D shape such as grapes, cherries, 

tomatoes, strawberries. 

 Contact-based techniques 

 Gripper........... 

• There are three types of grippers in the food automation 
industry: jaw gripper, a robot hand, and granular vacuum jamming gripper.  

• Jaw grippers use a pneumatic or electric actuator to actuate rigid 
fingers. Jaws could be simple as parallel jaws or customized to match the 
shape of an object. The speed of actuation or gripping force of a jaw 
gripper could be adjusted with the right actuator. However, the rigid 
gripper cannot adapt to the non-rigid shape of food.  

• The robot hand has more DoFs than the jaw gripper to simulate 
the human hand, so they can adapt to the non-geometric shape of food, 
as shown in Figure  7 (right). However, it is too expensive to deploy on a 
factory scale.  
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Figure  7 Parallel jaw gripper (left)[10], specialized jaw gripper (middle)[11], and 
robot hand (right)[12] 

• Brown et al. developed a granular jamming gripper, which uses 
friction, suction, and interlocking mechanisms to build the gripping force 
for the object’s various shapes, as illustrated in Figure  8 [13]. Experiment 
with different objects’ shapes shows a success rate at 100% in 10 trials of 
any objects, which can sufficiently wrap the side. However, it cannot grip 
objects without proper geometric conditions, such as thin objects, as 
illustrated in Figure  9(left). The holding force also drops drastically from 
40 N to 4 N because of poor surface conditions (non-porous surface 
powdered with cornstarch), as illustrated in Figure  9(right). 

 

Figure  8 Grasping principles of granular jamming gripper [13] 
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Figure  9 Holding force of granular jamming gripper variance with geometry (left) and 
variation of holding force with the different surface condition (right) [13] 

 Multi-body mechanism 

With the expansion of automation, especially in sorting and bin packaging 

for delivery, many newly developed grippers can handle various objects. The multi-

body mechanism has more output DoFs than the number of actuators to reduce the 

end-effector’s cost while maintaining the universality of object handling. Hence, the 

generic name of this gripper is an underactuated mechanism. On the contrary, an 

underactuated mechanism is challenging to control trajectory if they are too flexible. 

The significance of soft robotics for industrial is soft grippers, 
manipulators, and sensors because automation processes and robotics applications 
grow toward unstructured tasks with not well-defined environments [14]. Continuum 
body manipulators made from soft materials have large deformation, which means 
they have high DoFs, but the precise control for real-world application is challenging. 
As DoFs increased, soft grippers/manipulators can grasp objects with more 
universality. However, high DoFs decreased the ease of manipulator control in 
actuator control or behavior simulation, if not both. 

Jiawei Meng et al. researched a hybrid tendon-driven, pneumatically 

actuated soft robotic gripper[15] with a wide range of geometric motion. This finger 

exploits the stiffness difference between silicone’s inner and outer layers, as shown 

in Figure  10. 
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Figure  10 Range of geometric motion of Hybrid soft robotic gripper [15] 
Chih-Hsing Liu et al. used the topology optimization method to 

synthesize the monolithic compliant finger with a high mechanical and geometric 

advantage (MA and GA, respectively) [16] to develop a soft gripper to solve the issue 

with fragile and irregular object automation processes. Their experiments show a high 

MA characteristic with no damage to the surface of fruits and a high GA characteristic 

with two-dimensional output motion from linear input, as shown in Figure  11.  

Yeunhee Kim and Youngsu Cha developed a soft pneumatic gripper 

made from silicone with a pneumatic chamber and soft air compressor made from 

“Kresling” origami-patterned polypropylene film[17]. This soft gripper exploits 

geometric differences from unequal material extension between the finger's flat and 

wavy side to create two-dimensional finger motion, as illustrated in Figure  12.  

   

Figure  11 Unactuated (left) and actuated (right) of monolithic compliant finger [16] 
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Figure  12 Operation process of soft pneumatic grippers with origami pump[17] 
To summarize, the granular jamming gripper is the gripper with the most 

universality. Supposed that we use this gripper with food, it could contaminate the 

food. Because the bag of granular material must be air permeable, so the liquid from 

food such as oil or seasoning may get trap in the fabric of the bag or the granular 

material itself. Tentacle-like hybrid gripper would be too difficult to simulate 

gripper’s behavior when actuated because it is actuated by both tendon and 

pneumatic pressure, not to mention that the material is heterogeneous. Monolithic 

compliant finger looks promising, but flexure joints from topology optimization prone 

to suffer from fatigue.  The soft pneumatic gripper is the all-around performer in 

terms of good geometric advantage and ease of both behavior simulation and 

actuator control.   

 Using multiple end-effectors on a single industrial robot arm 

In order to realized a standalone food assembly unit, the industrial robot arm 

should be able to use multiple end-effectors. There are several practical approaches 

to enable a single industrial robot arm to use multiple end-effectors. Most of those 

approaches are tool swapping techniques inspired by CNC machines. Another 

approach installed two end-effectors on a single unit, as shown in Figure  13[18]. 

However, this approach chooses end-effectors with the industrial robot arm’s degree 

of freedom, so each tool's axis is not aligned with the industrial robot arm's axis. 
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Misalignment of each tool leads to difficulty in computing both trajectory and 

object’s weight. 

 

Figure  13 SetupRobotics quickchange dual toolbase 

 Objectives of research 

This research aims to prototype and evaluate modular end-effector for non-

rigid food. This modular end-effector solves a misalignment problem by maintaining 

each of both end-effectors’ axis as if it is installed directly to the robot arm. 

 Scopes of research 

The following topics are included in this thesis. 

• A prototype of modular end-effector made from additive manufacturing. 

• An instance segmentation model for karaage, onigiri, bologna, and meal 
box. 

• Experiment to evaluate modular end-effector in these criteria 
o The success rate of pick and place process. 
o Actuation duration of the soft gripper’s grasping and releasing 
o Actuation duration of end-effector switching 

The following topic is excluded from this thesis. 

• Modification of instance segmentation algorithm 

 Expected benefit gain 

An operational pick and place system for non-rigid food with low cycle time is 

expected from this research.  
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Chapter 2  

Methodology of research  

There are several types of grippers for the food industry, such as vacuum pads, 
which are good at pick flat and light objects, and soft grippers that are good at 
picking non-geometric objects. However, the highly flexible food production cannot 
rely only on either end-effector because it will expose the food too long. Therefore, 
a modular end-effector with both a vacuum pad and soft gripper in a single unit was 
proposed to open a possibility for highly flexible food manufacturing. A vacuum pad 
could pick the thin and light object, such as leaves vegetable, meal box and lid, 
sliced meat, and a bag of seasoning. Soft gripper could grasp a solid object, such as 
fried food, fruits, a chunk of meat, et cetera. Furthermore, a 6-axis force-torque 
sensor, IMU, and RGB-D camera are added, as illustrated in Figure  14, to add weight 
measurement and instance segmentation capabilities to the system.  
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Figure  14 Conceptual of components in the system 
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 Hardware Design 

There are many shapes of vacuum pads: standard for flat objects, deep for 

round shape, sponge, and multi-bellow for uneven surface objects. Nevertheless, 

multi-bellow also capable of handling fragile objects, which is suitable for bologna 

and meal boxes. We used a multi bellow vacuum pad with ten millimeters diameter, 

four millimeters bellows stroke, and eight Newton of theoretical suction force at -100 

kPa vacuum[19], as shown in Figure  15. 

  
Figure  15 Theoretical suction force [19] 

There are several types of soft grippers, such as contact-driven compliant 

fingers[16], tendon-driven[15], fluidic elastomer actuators[17]. Soft Robotics mGrip[20] 

was chosen because it is a commercial fluidic elastomer soft gripper system, as 

shown in Figure 16. The mGrip’s maximum pressure of compressed air is 14psi, 

controlled by an electronic pressure controller, so users can vary the control loop 

response to match their applications. There are eight on-the-fly selectable profiles, 

which can pre-defined pressure and opening width for different objects’ weight and 

dimensions.  

 
Figure 16 Difference opening width of Soft Robotics finger  
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The branching point in hardware design is how to install both vacuum pad 

and soft gripper in a single unit. The first approach attaches both end-effector to a 

rigid structure and uses the industrial robot arm's degrees of freedom to select the 

end-effector[18], as illustrated in Figure  17 (top). This approach has the advantage of 

low manufacturing and maintenance costs because it does not require actuators. On 

the contrary, this approach leads to complications in motion planning because it 

needs to specify additional goals as to which end-effector will be used to pick 

objects. Moreover, suppose we need to measure the weight of objects with a force-

torque sensor installed at the wrist just before the end effector. In that case, it will 

be challenging to vectorize gravity to calculate the actual weight, as shown in Figure  

17 (bottom). The second approach, which is our design, uses another actuator to 

select the end-effector by rotation about the auxiliary axis, axis 2, which is inclined 

45 degrees but in-plane with axis 1 in Figure 18(left). This approach eliminates every 

previously mentioned complication because both grippers’ axis was maintained as if 

it directly attached to the industrial robot arm.  
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Figure  17 Pose of the robot when using a different tool (top) [21] and vector 
diagram for weight measurement of both approaches (bottom) 
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Dynamixel MX-106R servomotor was chosen because of twenty Newton of 

allowable axial load in a compact size and weighs only 153 grams[22]. Additionally, 

this servomotor’s angular position could be commanded at a 12-bit resolution and 

visualized with ROS and RViz via a 12V RS485-USB converter.  

This thesis’s modular end-effector has been designed with a modular principle 

for ease of manufacturing and maintenance. Both grippers are attached to individual 

tool plate, assembled to side plates and tool base, then attached to the servo 

motor, as illustrated in Figure 18(right). This design also allows for a fast tool change, 

which is crucial for industrial. 

        

Figure 18 Proposed design (left), and Components of the tool base (right) 
Since this research cooperates with Yaskawa Japan, Motoman SIA5F 7-axis 

industrial robot arm has been used because its best-in-class wrist performance 
delivered freedom of reachable space with repeatability ±0.05mm[23]. 

Robotiq FT300 6-axis force-torque sensor was installed for an object’s weight 
measurement. This sensor has little signal noise compared to a full-scale value of 
three hundred Newton resultant force in three axes and the minimum threshold for 
the static state (the smallest variation that sensor can detect reliably) as shown in 
Table 1. Additionally, this sensor also provides a ROS package to communicate via a 
24V RS485-USB converter up to 100 Hz. The stiffness of this sensor is high enough to 
allow the attached tool to perform precision tasks, as shown in Table 2[24]. 
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Table 1 Characteristics of Robotiq FT300 
 
Table 2 Stiffness of Robotiq FT300 

 Signal 
noise 

Minimum 
threshold 

 Axis X, Y Axis Z 

Force in X, Y, Z 
[N] 

0.1 1 Force 
[N/m] 

3.2 x 106  3.9 x 106  

Moment in X, Y 
[Nm] 

0.005 0.02 Moment 
[Nm/rad] 

4.7 x 103  4.6 x 103  

Moment in Z 
[Nm] 

0.003 0.01    

9-axis IMU (LPMS-B2) with Bluetooth Low Energy (BLE) 4.1 from LP-Research 
was used to calibrate the force-torque sensor. This sensor can transmit data up to 
400 Hz in quaternion format (ROS native format). It could be powered by connected 
to a 5V DC source or an internal battery which lasts six hours, with a power 
consumption of 132mW at 3.3 V[25]. 

A three-way vacuum ejector (CKD VSXP-T666) was chosen because it 
significantly reduces the vacuum release time. Two-way valves use only vacuum 
break air to equalized from vacuum to atmospheric pressure, but three-way valve 
also let atmospheric pressure from another airway into the vacuum volume to 
equalized the vacuum pressure[26]. It also has an in-line vacuum filter and an analog 
pressure sensor for feedback, as shown in Figure 19. 

 

Figure 19 Components of CKD VSXP-T666 [26] 
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RGB-D cameras, which is Intel Realsense D435i, was installed on the modular 
end-effector as a wrist camera, as shown in Figure 20. Intel Realsense D435i has IMU, 
active IR stereo depth sensor, and RGB sensor[27]. RGB-D stream will be sent to the 
“ROS_image” node, as illustrated in Figure 21, for instance segmentation and image 
processing to determine each instance of the object’s centroid. 
 Computer-Aided-Design of the modular end effector with pneumatic manifold 
(the leftmost component in teal-colored), which internal pneumatic hoses came off 
the wrist of the industrial robot arm, 6 DoFs force-torque sensor (the second left 
component in black-colored) and RGB-D camera (greyish component on the top) is 
shown in Figure 20.  

A six-liter oil-less air compressor capable of 0.7 MPa with an automatic pressure 

switch at 0.49 MPa was chosen to supply soft gripper and vacuum break air. A two-

stage oil-less vacuum pump capable of -100 kPa vacuum without reservoir was 

chosen for a vacuum pad[28, 29]. 

Arduino UNO was used as a microcontroller between ROS and both Soft 
Robotics’s control unit for soft gripper and vacuum ejector for vacuum pad, as 
illustrated in Figure 21. Arduino subscribes to ROS topic for actuation message of 
end-effector. When actuation message came into ROS topic, the microcontroller can 
actuate the vacuum pump and vacuum ejector (both vacuum ejector and break 
valve) or actuate the soft gripper through NPN transistors.  Furthermore, Arduino also 
selects profiles of the soft gripper with three digital bits signal.  

 
Figure 20 Computer-Aided Design of the modular end effector  
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Figure 21 Hardware diagram of the modular end effector 

 Software Design  

Most of the software in this research is open-source software such as Robot 

Operating System (ROS), MoveIt! and RViz for communication with robot controller 

and servomotor, mmdetection, and OpenCV for image processing. However, 

proprietary instance segmentation for Japanese food was created in this research. 

 Robot Operating System (ROS) [30] 

ROS is an open-source robot operating system which piggybacks onto 

various host operating system such as ROS officially supported: Ubuntu and 

experimental: Raspbian, Debian, OS X, and Windows. ROS only provides a structured 

communication layer between heterogeneous computation cluster. ROS has three 
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other philosophical goals since the beginning: peer-to-peer communication topology, 

multi-programming-lingual, tool-based, and thin. 

Peer-to-peer communication topology enables task allocation according 

to the computation effort requirement, but this requires a process matching 

mechanism called “rosmaster”.  

ROS reuses open-source projects for each major problem, such as 

OpenRAVE[31] for planning algorithms, OpenCV [32] for computer vision. However, 

ROS only exposes configuration and provides data routes between each software. 

 MoveIt! [33, 34] 

MoveIt! is the open-source robot manipulation platform in ROS capable 

of 3D perception, manipulation, inverse kinematics, motion planning, collision 

checking, and joint control. Additionally, MoveIt! is a standard tool for the industrial 

robot arm. MoveIt! uses OctoMap [35] to convert 3D occupancy map from depth 

sensor and point clouds to numerous specific resolution cubic for ease of collision 

checking and memory efficiency, as illustrated in Figure 22. 

 

Figure 22 Simulation environment in Gazebo and OctoMap visualization in RViz. [36] 

Manipulation of MoveIt! can analyze and interact with the environment, 

whether it is a representative environment created from 3D perception or the 

defined environment from the config file. Furthermore, manipulation of MoveIt! can 

generate grasp solutions for simple objects such as boxes or cylinders. Inverse 

kinematics (IK) will solve for joint positions from a given specific pose of any link. 

Typically, the pose of the end-effector is given to IK, and joint positions solution from 

IK is further given to motion planning as current and goal pose. 
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There are four motion planning libraries in MoveIt! but there is only one 

fully supported library, which is OMPL (Open Motion Planning Library)[37]. OMPL 

collects many state-of-the-art sampling-based motion planners such as RRT* 

(Optimal Rapidly-exploring Random Trees)[38]. Moreover, OMPL does not specify a 

collision checker because this makes OMPL easier to integrate other systems. 

MoveIt! also provided collision checking from geometric primitives (box, 

cylinder, sphere, and cone), meshes, or point clouds for OMPL as additional required 

components. Lastly, MoveIt! executes joint trajectories with respect to time by 

communicating with low-level hardware controllers of the robot. 

 Rviz [39] 

Conventional real domain data visualizer uses the dataflow model. The 

dataflow model accepts only specific data structures and visualizes algorithms at the 

invention time of those data visualizer. In the dataflow model, data are kept in 

specific data structures, converted to transformed data with filter, and send to the 

renderer as shown in the left of Figure  23. On the contrary, RViz utilizes modular 

design to separate interfaces from implementations to accelerate the process for 

researchers who want to use their data structures and algorithms. In the interface 

model, data implementation of the simple interface such as vector field and 

decorator implicitly handled the dataflow network, as shown in the right of Figure  

23. RViz becomes the main data visualizer in ROS because of the interface model.  

 

Figure  23 Comparison between dataflow and interface model 
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 Instance semantic segmentation for Japanese food 

Firstly, the system must know where objects and goals are. Therefore, 
cascade mask R-CNN was chosen as an instance segmentation algorithm. R-50-FPN 
backbone with PyTorch style and learning rate of 1x was used to train the model 
with MMDtection[40]. R-50-FPN has less performance in terms of the mask prediction 
and bounding box average precision. However, it uses memory more efficiently (the 
model uses less memory but has faster inference time) than X-101-64x4d-FPN, as 
shown in Table 3[41]. Model for Japanese food such as piles of karaage, onigiri, box, 
and bologna was trained for 5,000 epochs with various sizes of images, area of 
segments, and the number of objects per image as shown in Table 4 with additional 
42 images of workspace. 

Table 3 Instance segmentation on COCO test-dev 

Backbone 
Memory 

(GB) 
Inference time 
(frame per sec) 

Mask prediction  
AP 

Bounding box 
AP 

R-50-FPN 6.0 11.2 35.9 41.2 

X-101-64x4d-FPN 12.2 6.7 39.2 45.3 

Table 4 Area of images and annotation in the dataset 

 Quantity 
Area [pixel2] 

Median Standard Deviation Average 
Total image 267 330,000 705,578 611,606 

An
no

ta
tio

n 

Karaage 531 4,587 18,840 11,063 

Onigiri 350 10,191 114,722 38,777 
Meal box 105 37,983 31,584 41,957 

Bologna 213 11,214 116,519 42,774 

 Image processing to determine the centroid of an object 

3D centroid from each instance segment must be extracted to represent 
the object’s coordinates in ROS, as illustrated in Figure 24. Start with feeding a raw 
RGB image (as shown in Figure 24(a)) to an instance segmentation model to 
determine the region of each instance called segments(as shown in Figure 24(b)). 
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After that, OpenCV was used to extract 2D centroids from segments (illustrated in 
Figure 24(c)), and deprojection calculation (Equation (1)) was used to deproject pixel 
coordinates of 2D centroids (shown in Figure 24(d)) to 3D distance coordinates with 
respect to RGB-D camera. Then, 3D coordinates were sorted by depth and distance. 
We represent 3D coordinates with ROS markers, as shown in the rightmost picture of 
Figure 24(e). 

𝑥 = (𝑈 − 𝑝𝑝𝑥)/𝑓𝑥 ∗ 𝐷 ∗ 𝑑𝑒𝑝𝑡ℎ_𝑠𝑐𝑎𝑙𝑒,
𝑦 = (𝑉 − 𝑝𝑝𝑦)/𝑓𝑦 ∗ 𝐷 ∗ 𝑑𝑒𝑝𝑡ℎ_𝑠𝑐𝑎𝑙𝑒,            (1)

𝑧 = 𝐷 ∗ 𝑑𝑒𝑝𝑡ℎ_𝑠𝑐𝑎𝑙𝑒

 

Where U, V, and D are horizontal, vertical and depth pixel values, ppx 
and ppy are the pixel value of the center of projection, fx and fy are the focal 
lengths of the image depth_scale is distance per depth pixel value. 

    

 

a)RGB image b)Superimposed 
masks prediction 

c) Binary  
image of onigiri 

d)Superimposed
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Figure 24 3D centroid extraction process 
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Figure  25 Dataflow model from RGB-D image to ROS markers 
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Graph search algorithms assume the deterministic system, so most graph 

search found an optimal path because of exhaustive search, which is considerably 

computational expensive. On the contrary, sampling-based rapidly-exploring random 

trees (RRT*) was used to generate the pick-and-place motion from object to the goal 

location with no prior knowledge about the environment. 

 To summarize, this chapter shows this research’s methodology from two 
different aspects: hardware and software. The hardware ranges from end-effector 
selection to computer-aided design model and complete hardware diagram, 
including electronics, pneumatic and vacuum schematic, and network diagram of 
ROS nodes. The software ranges from the robot operating system to image 
processing with a concluded dataflow model. 
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Chapter 3 

Experiments and results 

 Explanation of pick and place motion 

The motion started with an industrial robot arm in a “ready to pick” pose, 

where the wrist camera sees as much area of the workspace from the top as 

possible), as shown in Figure  26 (left). Food (karaage, onigiri, or bologna), an object 

to be picked, is located in the elliptical area. A meal box, which is a goal, locates in 

the rectangular area, as shown in Figure  26(right). First, Intel Realsense D435i (wrist 

camera installed on the robot, as shown in Figure  27) feeds RGB-D stream of images 

to ROS_image node for 3D centroid extraction process. ROS_Image node is PC with 

Intel i9-9900k, Nvidia Geforce RTX 2080Ti, and 32GB of DDR4 RAM. Second, 

ROS_master reads 3D centroids coordinates from the ROS network, solves the 

trajectory from object’s to target’s location, and executes the pick and place (P&P) 

motion. ROS_master is Dell’s Inspiron 7590 laptop. All of the experiments were 

recorded by an observation camera (GoPro Hero 8), located in front of the industrial 

robot arm, as illustrated in Figure  27. 

                          

Figure  26 Ready to pick pose (left) and a workspace of experiments (right)  
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Figure  27 Camera setup in every experiment 
There is no region of interest that the robot will be looking for a particular 

object. The robot will look at the whole working space from the top view in the 

“ready to pick” pose. The instance segmentation model will then recognize any 

object located anywhere in the working space as long as the wrist camera sees it. 

For trajectory planner (RRT*) to works, robot pose could begin from any pose 

and end at any pose. For consistency reasons, every experiment begins in a “ready 

to pick” pose. 

The sequence of which object to be pick and place and which end-effector to 

be used is hard code in python script. 
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Modular end-effector has been evaluated by several scenarios as listed down 

below and illustrated in Figure 28. 

• The robot’s workspace is 490mm in width by 660mm in length, as shown in 
Figure 28 (a). 

• Pick and place (P&P) of singular object experiments: there is one object in 
working space, and the robot will pick that object and place it in a designated 
area. 

• Assembly of singular object experiment: A single object from different classes 
and robots will repeatedly pick and place them one by one. 

• Assembly of multiple object experiment: there are multiple objects from 
different classes, and the robot will repeatedly pick one object per class and 
place it. 

Target

Object Object

Object Object

Object

Object 
3

Object 
3

a) P&P of singular object experiments b) Assembly of singular object experiments

c) Assembly of multiple object experiments

Target
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Figure 28 Graphical representation of experiments scenarios  
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 Pick and place of a singular object  

 Experiment conditions 

 Karaage........... 

There are five karaage for all experiments. The robot will pick 

each of them six times to sum up for 30 experiments of pick and place 

single karaage to evaluate soft gripper capability against non-rigid food.  

A layout grid and straight edge ruler has been used to determine 

the dimension of karaage because of the complex shape. First, a straight 

edge ruler was used to set karaage flush with the layout grid ruler’s outer 

edge, as shown in Figure  29 (left). Second, measure the width and length 

of karage by keep a straight edge ruler parallel to measurement marks of 

the layout grid ruler while touching the karaage, as shown in Figure  29 

(middle, right). Last, set layout grid ruler to be perpendicular with the 

tabletop and measure the height of karaage by keep straight edge ruler 

parallel to tabletop while touching the karaage. The uncertainty of 

measurement in dimensions is ±0.5 mm. MS-2000 electronic scale with 

0.1g resolution and ±0.5g accuracy, measured in 0-500 grams range, was 

used to measure any object’s weight in this thesis. 

   

Figure  29 Measurement of karaage dimensions  
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Table 5 Dimension and weight of karaages  

  NO. Width [mm] Length [mm] Depth [mm] Weight [grams] 

  1 4.5 4.5 4 24 

  2 4 5 4 24.4 
  3 4 5.5 3.5 28.4 

  4 4.2 5 2.8 24.4 

  5 3.8 5.3 2.7 22.8 
  Average 4.1 5.06 3.4 24.8 

  Standard deviation 0.24 0.34 0.56 1.89 

 Onigiri........... 

There are three onigiris for all experiments. The robot will pick 

each of three different orientations, as illustrated in Figure 30, of onigiri 

for ten times to sum up for 30 experiments to evaluate the object’s 

shape adaptation of modular end-effector. Uncertainty of measurements) 

of dimensions and weight in Table  6 is ±0.5 mm and ±0.5g, respectively. 

       

Figure 30 Different orientation of onigiri 
Table  6 Dimensions and weight of onigiri 

NO. Width [mm] Length [mm] Depth [mm] Weight [grams] 
1 48.3 38.6 19.8 117 

2 50.2 37.4 17.6 122 
3 49.6 39.7 18.5 124 

a) Grasp by parallel side  b) Grasp by corner from top      c) Grasp by slope side    
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 Bologna........... 

There are two bolognas for all experiments, and the robot will 

pick any of them 30 times to evaluate the capabilities of the vacuum pad 

against thin and fragile food. The uncertainty of measurements of 

dimensions and weight in Table  6 is ±0.5 mm and ±0.5g, respectively. 

Table  7 Dimensions and weight of bologna 

NO. Diameter [mm] Thickness [mm] Weight [grams] 
1 75.2 2 19.3 

2 74.9 2 18.7 

 Lunchbox 

There is only one meal box, and the robot will pick and place it 

to evaluate the vacuum pad’s capabilities against a solid object. The 

meal box is 100mm in width, 165mm in length, 45mm in depth, and 

15.6g in weight. The uncertainty of measurements of dimensions and 

weight is ±0.5 mm and ±0.5g, respectively. 

 Experiment results 

 Karaage........... 

As listed in Table 5, soft gripper could grasp non-rigid food, 

karaage, or fried chicken in this experiment, with a 100% success rate of 

any listed karaage dimensions in Table 8. 

Table 8 Summary of pick and place of single karaage 
Configure Trials Failed Success rate 

1 6 0 100% 

2 6 0 100% 
3 6 0 100% 

4 6 0 100% 

5 6 0 100% 
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 Onigiri...........  

From a total of 30 experiments, as listed in Table  9, soft gripper 

could grasp onigiri in any orientation, whether it is oriented to be grasped 

by parallel sides, corner, or slope sides. However, it failed twice to 

grasped onigiri by corners. Because the corner that too close to the 

gripper’s edge went out of grasp while the gripper was deforming, as 

illustrated in Figure 31.  

Table  9 Summary of pick and place of single onigiri in three different orientations 

Objects Configure Trials Failed Success rate 

Onigiri 
Parallel 10 0 100% 
Corner 10 2 80% 

Slope 10 0 100%  

 

Figure 31 3D reconstructed from failed trials of picking onigiri by the corner 

 Bologna........... 

From a total of 30 experiments as planned, soft gripper could 

grasp any bologna with a 100% success rate because bologna is thin 

circular meat with 75 mm in diameter and 2mm thick.  

 Lunchbox 

From a total of 30 experiments, only one trial considerably 

failed to pick the lunchbox because trajectory planners cannot find 

trajectory in cartesian, which resulted in overwhelming trajectory, as 

shown in Figure  32.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

33 

    

    

Figure  32 Trajectory of failure of pick and place single lunchbox  

 Assembly of a singular object 

 Experiment conditions 

The robot picks and place each object one by one from object 1 

(karaage), object 2 (onigiri), and object 3 (bologna). The location of each object 

and goal (meal box) will be slightly randomized within the colored boundary 

around each object, as illustrated in Figure  33. The duration of the soft gripper 

when grasping and releasing objects were evaluated in this experiment.  
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Figure  33 Conditions for assembly of a singular object assembly 
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 Experiment results 

This experiment is 100% successful, which meant that the robot could 

pick and place objects without failure during grasping, moving, and releasing motion. 

Grasping motion of soft gripper starts with the last frame of video that soft gripper is 

fully open, as shown in Figure  34(a), and ends with the last frame of video that soft 

gripper is fully inflated or fully grasp the object, as shown in Figure  34(b). Then, the 

duration of grasping motion is calculated by dividing the amount of frame within 

grasping motion by 30 frames per second. Calculated durations of grasping motion 

are listed in row “G” of Table  10. Releasing motion of soft gripper starts with the last 

frame of video that soft gripper is fully inflated, as shown in Figure  34(c), and ends 

with the last frame of video that soft gripper is fully open, as shown in Figure  34(d). 

Then, the duration of releasing motion is calculated the same way as the grasping 

duration. Calculated durations of releasing motion are listed in row “R” of Table  10. 

    
a) Fully open b) Fully grasp c) Fully grasp d) Fully open 

Figure  34 Grasping and releasing motion of soft gripper 
Table  10 Duration of grasping (row “G”) and releasing (row “R”) of soft gripper  

G[sec] 1.73 1.7 1.63 1.93 2.07 1.87 1.67 1.73 1.6 1.83 2.1 2 2.03 1.67 1.83 

R[sec] 0.6 0.63 0.57 0.77 0.63 0.63 0.68 0.63 0.6 0.67 0.63 0.6 0.63 0.67 0.63 

Soft robotics’s mGrip has actuation time for grasping is averagely 1.83 

seconds (variation between 1.60-2.10 sec.) with a standard deviation of 0.16 second 

from 15 entries in row G of Table  10. From 15 entries in row R of Table  10, the 

actuation time for releasing is averagely 0.55 seconds (variation between 0.57-0.77 

seconds) with 0.22 seconds standard deviation.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

35 

 Assembly of multiple objects 

 Experiment conditions 

There are five karaage (object 1), three onigiris (object 2), and two 

bolognas (object 3) in working space, as shown in Figure  35. The location of objects 

and goal (meal box) will be slightly randomized within the colored boundary around 

each object. The duration of tool switching was evaluated in this experiment.  
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Figure  35 Conditions for assembly of multiple object assembly 

 Experiment results 

From a total of 15 trials, the success rate of complete pick and place of 

every object is 47%. Three trials failed in karaage grasping because the soft gripper 

was open too wide, so it caught two karaage simultaneously. Three trials failed in 

onigiri grasping, while onigiri was oriented to be grasped by sloped sides once and by 

the corner twice. Two trials failed in bologna picking because of load in the ROS 

network. It took an average of 2.88±0.5 seconds to change from vacuum pad to soft 

gripper, and it took an average of 2.93±0.2 seconds to change from soft gripper to 

vacuum pad.  
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To be a summary, the evaluation conditions, process, and results are explained 

in this chapter. The performance of the vacuum pad and fluidic elastomer soft 

gripper has been evaluated with two objects per end-effector. Karaage and onigiri are 

objects for the evaluation of fluidic elastomer soft gripper. Meal box and bologna are 

objects for evaluation of multi-bellow vacuum pad. For object picking and placing 

one by one, as in “Pick and place of a singular object” and “Assembly of a singular 

object” experiments, the overall success rate is 97% (3 failed in a total of 135 trials). 

However, the overall success rate drastically drops to 46% in the “Assembly of 

multiple objects” experiment  (7 succeed in a total of 15 trials), in which the robot 

assembled the meal box from one of the multiple instances of objects. Many failed 

trials are because of unrealistic object orientation, such as grasping the onigiri by the 

corner. A few failed trials are due to technical issues like a heavy load in the 

network. These experiments proved that the pick and place process could be done 

using centroid as object representation. 
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Chapter 4 

Conclusion and discussion 

 Conclusion 

There are two objectives of this research. The first objective is to prototype a 

modular end-effector for assembling non-rigid food into a meal box. The second 

objective is to evaluate the performance of this prototype in three scenarios.  

The vacuum pad and soft gripper have been chosen to be end-effectors in this 

thesis because they can adapt to non-rigid food. The multi-bellow vacuum pad has 

been used in this thesis for fragile objects (bologna) and lightweight objects (meal 

boxes) because it has enough flexibility. The mGrip from Soft Robotics, which is 

categorized as a fluidic elastomer soft gripper, has ease of actuator control and 

sufficient geometric advantage to pick non-rigid food (karaage and onigiri).  

There are several approaches to change the end-effectors of the industrial 

robot arm. However, both the vacuum pad and soft gripper in this thesis have been 

installed on a single modular end-effector. The modular end-effector utilized the 

concept of changing the end-effector by 180 degrees rotation in the auxiliary axis. 

The prototype has been fabricated with ABS filament by the fused deposition 

modeling (FDM) method. Furthermore, the end-effector in this thesis is a modular 

design. It is not limited to being equipped with only a vacuum pad or soft gripper. 

Users can customize the essential tool for their application. Users can even design an 

attachment for the soft gripper to function like spaghetti tongs or rice ladles.  

Apart from a soft gripper and vacuum pad, the modular end-effector is also 

equipped with an RGB-D camera and instance segmentation model (based on 

Cascade mask R-CNN) for recognition and localization of karaage, onigiri, bologna, and 

meal box.  
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The modular end-effector was evaluated in three scenarios: pick and place of a 

singular object, assembly of a singular object, and assembly of multiple objects. 

There are eleven failures from a total of 150 experiments. One grasping cycle is 

about five seconds from changing the tool to completely grasp the object with either 

a soft gripper or a vacuum pad. The object’s dimension does not affect the soft 

gripper’s performance because it can grasp karaage with an average size of 4.5cm at 

a 100% success rate and onigiri with an average length of 2cm (if pick by parallel or 

sloped sides) at a 93% success rate. However, the Object’s orientation affects the 

success rate of grasping. For example, there are five failures when a soft gripper picks 

onigiri by corners in “Pick and place of a singular object” and “Assembly of multiple 

objects” experiments. Another factor that affects the success rate is space between 

instances of an object because it causes three failures out of fifteen trials in the 

“Assembly of multiple objects” experiment. These remarkable performances were 

achieved by using only the object’s centroid. 

The cost of changeover from automated food manufacturing to highly flexible 

food manufacturing should be lower than ever before because the job can be done 

with only one robot with a modular end-effector. The highly flexible food 

manufacturing is the solution for an aging society, such as Thailand, Japan, or any 

country, because it can make personalized food to match people’s exact 

requirements. 

 Discussion 

It does not matter how high is the success rate in experiments of this 

research is because failed experiments lead to improvement. First, the system 

should be integrated with a grasping pose estimator (GPE) because it can propose the 

optimal robot arm pose to grasp the object with a two-finger gripper[42], as shown in 

Figure 36(left). For example, it will not be different for the robot to grasp onigiri in an 

upright orientation, as illustrated in Figure  36(right). Because GPE always proposed 

the robot pose to grasp onigiri by slope or parallel side as specified by the user.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

39 

The multi-bellow vacuum pad has been proved to be an excellent choice for 

intended purposes. Unlike a soft gripper that has electronic pressure control, this 

thesis’s vacuum system has only mechanical vacuum pressure control with an 

adjustable knob and vacuum pressure gauge. The disadvantage of not having the 

electronic pressure control is that the system can not adjust vacuum pressure even if 

it has an algorithm. 

      

Figure  36 Viable grasping pose proposals from GPE[42] (left) and 3D model of 

onigiri in the upright orientation (right)  

Apart from failure in grasping some object, placing motion also has some 

concern. Each object in this thesis’s experiments was stacked on top of another 

object because the system was programmed to place every object at the same 

coordinate. That coordinate could be the centroid of the meal box or a relative 

coordinate to the robot arm. Placing the object at the same coordinate does not 

make a packed meal look delightful. The system should be able to shift the placing 

location parallel to the axes of the meal box.  
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