

REAL-TIME INSTANCE SEGMENTATION AND POINT

CLOUD EXTRACTION FOR JAPANESE FOOD USING

RGB-D CAMERA

Mr. Suthiwat Yarnchalothorn

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering in Cyber-Physical System

Department of Mechanical Engineering

FACULTY OF ENGINEERING

Chulalongkorn University

Academic Year 2020

Copyright of Chulalongkorn University

การตรวจจบัวตัถุในระดบัพิกเซลแบบทนัทีและการสกดัพิกดัสามมิติส าหรับอาหารญ่ีปุ่นโดยใช้
กลอ้ง RGB-D

นายสุทิวสั ญาณชโลทร

วทิยานิพนธ์น้ีเป็นส่วนหน่ึงของการศึกษาตามหลกัสูตรปริญญาวศิวกรรมศาสตรมหาบณัฑิต

สาขาวชิาระบบกายภาพท่ีเช่ือมประสานดว้ยเครือข่ายไซเบอร์ ภาควชิาวศิวกรรมเคร่ืองกล
คณะวศิวกรรมศาสตร์ จุฬาลงกรณ์มหาวทิยาลยั

ปีการศึกษา 2563

ลิขสิทธ์ิของจุฬาลงกรณ์มหาวทิยาลยั

Thesis Title REAL-TIME INSTANCE SEGMENTATION AND

POINT CLOUD EXTRACTION FOR JAPANESE

FOOD USING RGB-D CAMERA

By Mr. Suthiwat Yarnchalothorn

Field of Study Cyber-Physical System

Thesis Advisor NATTAPOL DAMRONGPLASIT, Ph.D.

Thesis Co Advisor Professor Hayashi Eiji, Ph.D.

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn University

in Partial Fulfillment of the Requirement for the Master of Engineering

Dean of the FACULTY OF

ENGINEERING

 (Professor SUPOT TEACHAVORASINSKUN)

THESIS COMMITTEE

Chairman

 (Professor PAIROD SINGHATANADGID, Ph.D.)

Thesis Advisor

 (NATTAPOL DAMRONGPLASIT, Ph.D.)

Thesis Co-Advisor

 (Professor Hayashi Eiji, Ph.D.)

Examiner

 (Associate Professor ALONGKORN PIMPIN, Ph.D.)

External Examiner

 (Assistant Professor Kakanand Srungboonmee, Ph.D.)

 iii

ABSTRACT (THAI)
 สุทิวสั ญาณชโลทร : การตรวจจบัวตัถุในระดบัพิกเซลแบบทนัทีและการสกดัพิกดัสามมิติส าหรับอาหารญ่ีปุ่ นโดย

ใชก้ลอ้ง RGB-D. (REAL-TIME INSTANCE SEGMENTATION AND

POINT CLOUD EXTRACTION FOR JAPANESE FOOD USING RGB-

D CAMERA) อ.ท่ีปรึกษาหลกั : ดร.ณฐัพล ด ารงคพ์ลาสิทธ์ิ, อ.ท่ีปรึกษาร่วม : ศ. ดร.ฮายาชิ อิจิ

ในปัจจุบนันวตักรรมส่งผลให้เกิดการพฒันาอุตสาหกรรมอาหาร สังเกตไดจ้ากความนิยมท่ีเพิ่มข้ึนของการวิจารณ์อาหารบน
อินเตอร์เน็ตและธุรกิจการจดัส่งอาหารแบบรวดเร็ว ในท านองเดียวกนักระบวนการผลิตและกระบวนการบรรจุอาหารใส่บรรจุภณัฑจ์ะ
เปล่ียนจากใชแ้รงงานคนเป็นอตัโนมติัโดยใชหุ่้นยนตเ์ขา้มาแทนท่ีอยา่งแพร่หลาย การเปล่ียนเปลงน้ีจะท าให้ผูผ้ลิตสามารถควบคุมคุณภาพ
อาหารและเพิ่มประสิทธิภาพในกระบวนการผลิตได ้อย่างไรก็ตามปัจจยัท่ีส าคญัอยา่งหน่ึงท่ีจะท าใหส่ิ้งน้ีเป็นไปไดคื้อความสามารถในการ
ตรวจจบัและแยกประเภทของอาหารจากภาพถ่ายอยา่งแม่นย าดว้ยความเร็วสูง

ในงานวิจยัน้ีเราจะศึกษาการตรวจจบัวตัถุอาหารแบบทนัทีโดยใชภ้าพจากกลอ้งวดัความลึก วิธีท่ีเลือกใชคื้อการตรวจจบัวตุัใน
ระดับพิกเซลโดยใช้การเรียนรู้แบบอตัโนมติัท่ีมีโครงข่ายประสาทหลายชั้นเพื่อตรวจจับช้ินอาหารญ่ีปุ่นในระดับพิกเซล ในท่ีน้ีจะใช้
แบบจ าลอง 2 แบบ คือ Cascade Mask R-CNN และ Hybrid Task Cascade โดยแบบจ าลองทั้งหมดจะเรียนรู้ดว้ยตวั
มนัเองบนทั้งหมดสองแพลตฟอร์ม คือ บนเคร่ืองคอมพิวเตอร์ และบนบริการคลาวด ์จากนั้นไดท้ าการศึกษาแบบจ าลองท่ีสร้างข้ึนในสภาวะ
ต่าง ๆ นอกจากน้ีจะน าขอ้มูลความลึกท่ีไดจ้ากกลอ้งมาประสานกบัขอ้มูลการตรวจจบัวตัถุท่ีไดจ้ากขั้นตอนแรกเพื่อสกดัขอ้มูลพิกดัสามมิติ
ของวตัถุอาหารซ่ึงจะสามารถน ามาใชป้ระโยชน์ในกระบวนการผลิตอาหารแบบอตัโนมติั เช่น การหยิบและวางช้ินอาหารซ่ึงมีรูปร่างและ
ขนาดท่ีหลากหลายไดอ้ยา่งแม่นย า

จากผลการทดลองพบวา่แบบจ าลอง HTC มีความแม่นย าสูงกวา่แบบจ าลอง Cascade Mask R-CNN บนทั้งสอง
แพลตฟอร์มท่ีใช้ในการเรียนรู้อตัโนมติั แต่ในทางกลบักนัแบบจ าลอง HTC จะมีความเร็วในการตรวจจับท่ีช้ากว่า จากนั้นยงัพบว่า
ความเร็วในการตรวจจบัวตัถุของทั้งสองแบบจ าลองมีแนวโนม้จะลดลงเม่ือจ านวนวตัถุในภาพเพิ่มข้ึนและเม่ือความละเอียดของภาพเพิ่มข้ึน

ยิ่งไปกวา่นั้นผลการทดลองแสดงให้เห็นวา่การเปล่ียนแปลงสภาพแวดลอ้ม ไดแ้ก่ การเปล่ียนสีพื้นหลงั การปรับลดความสวา่ง การวางวตัถุ
อาหารซอ้นทบั และการใชอ้าหารท่ีไม่สมบูรณ์ ส่งผลใหค้วามแม่นย าของแบบจ าลอง HTC ลดลง หลงัจากนั้นไดท้ าการสกดัพิกดัสามมิติ
ของวตัถุอาหารออกมาโดยมีความเร็วเฉล่ียอยูท่ี่ 6.71 เฟรมต่อวินาที

สาขาวิชา ระบบกายภาพท่ีเช่ือมประสานดว้ย
เครือข่ายไซเบอร์

ลายมือช่ือนิสิต ..

ปีการศึกษา 2563 ลายมือช่ือ อ.ท่ีปรึกษาหลกั
 ลายมือช่ือ อ.ท่ีปรึกษาร่วม

 iv

ABSTRACT (ENGLISH)

6270375221 : MAJOR CYBER-PHYSICAL SYSTEM

KEYWORD: Object detection, Instance segmentation, 3D point cloud, Food automation,

Artificial Intelligence, Depth camera

 Suthiwat Yarnchalothorn : REAL-TIME INSTANCE SEGMENTATION AND

POINT CLOUD EXTRACTION FOR JAPANESE FOOD USING RGB-D

CAMERA. Advisor: NATTAPOL DAMRONGPLASIT, Ph.D. Co-advisor: Prof.

Hayashi Eiji, Ph.D.

Innovation in technology is playing an important role in the development of food

industry, as is indicated by the growing number of food review and food delivery

applications. Similarly, it is expected that the process of producing and packaging food itself

will become increasingly automated using a robotic system. The shift towards food

automation would help ensure quality control of food products and improve production line

efficiency. One key enabler for such automated system is the ability to detect and classify

food object with great accuracy and speed.

In this study, we explore real-time food object segmentation using RGB-D depth

camera. Instance segmentation based on 2D RGB data is used to classify Japanese food

objects at a pixel-level with Cascade Mask R-CNN and Hybrid Task Cascade deep learning

models. The model is trained on both local GPU and cloud service. The precision and recall

values for classifying food objects under different scenario conditions are investigated.

Furthermore, we construct 3D point cloud of food objects using depth information from the

camera, which will help facilitate food automation operation such as precision grasping of

food object with numerous shapes and sizes.

The result shows that the trained HTC model has better precision than Cascade

Mask R-CNN model, albeit at a lower detection speed. The inference speed of both models

monotonically decreases as the number of food objects and image resolution of the processed

image increase. In addition, it is found that that the accuracy of the HTC detection can be

quite sensitive to environmental factors such as background colors, low brightness, and

having an incomplete object. The 2D segmentation result is combined with 3D point cloud

extraction to realize real-time 3D segmentation of Japanese food objects with an average

framerate of 6.71 fps.

Field of Study: Cyber-Physical System Student's Signature

Academic Year: 2020 Advisor's Signature

 Co-advisor's Signature

 v

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

This thesis has been completed with a lot of assistance from many people.

I would first like to acknowledge the Department of Mechanical Engineering,

Chulalongkorn University for providing the financial support for my study and research.

I am grateful to Dr. Nattapol Damrongplasit, my advisor, who devoted his time

to guide me, gave me intellectual support and encouragement, and provided English

correction of my writings.

I would like to express my special thanks to Professor Hayashi Eiji who allowed

me to be a member of Hayashi Laboratory and funded me during my research in Japan.

I would also like to thank other professors in Cyber-Physical System program

for giving me advices for my research and future career.

Lastly, a thank you from the heart to all my friends in this program, members of

Hayashi Lab, and all people who always supported me throughout my study.

Suthiwat Yarnchalothorn

TABLE OF CONTENTS

 Page

ABSTRACT (THAI) ... iii

ABSTRACT (ENGLISH) ... iv

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS .. vi

LIST OF TABLES .. ix

LIST OF FIGURES ... x

CHAPTER 1 INTRODUCTION ... 1

1.1 Background .. 1

1.2 Objectives and Scope ... 2

1.2.1 Objectives ... 2

1.2.2 Scope .. 2

1.3 Timeline ... 3

1.4 Expected Outcome ... 3

CHAPTER 2 LITERATURE REVIEW .. 4

2.1 Object Detection and Instance Segmentation .. 4

2.1.1 Region-based CNNs ... 6

2.1.2 Cascade R-CNN ... 8

2.1.3 Hybrid Task Cascade .. 9

2.2 Components of Deep Neural Network .. 9

2.2.1 Region Proposal Networks (RPN) ... 9

2.2.2 Residual Network (ResNet) .. 10

2.2.3 Fully Convolutional Networks (FCN) .. 10

2.3 3D Computer Vision .. 11

2.3.1 Depth Camera Technologies .. 11

2.3.2 Depth Image vs 3D Point Cloud ... 14

 vii

2.3.3 Centroid of a 3D point cloud .. 15

2.4 Framework ... 16

2.4.1 Deep Learning Frameworks ... 16

2.4.2 MMDetection ... 18

2.4.3 Robot Operating System (ROS) ... 18

CHAPTER 3 METHODOLOGY .. 20

3.1 Hardware .. 20

3.2 Deep Learning Implementation ... 21

3.2.1 MMDetection Toolbox ... 22

3.2.2 Deep Learning Architectures .. 22

3.3 Model Training .. 23

3.4 Datasets .. 24

3.5 Point Cloud Extraction .. 26

3.5.1 Via Depth Topic ... 26

3.5.2 Via Point Cloud Topic .. 28

3.5.3 Centroid of Point Cloud ... 29

CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSION 30

4.1 2D Segmentation ... 30

4.1.1 Model Evaluation ... 30

4.1.2 Segmentation Results of the test dataset .. 32

4.1.3 Scenario Impacts on HTC model ... 34

4.1.3.1 Luminosity .. 37

4.1.3.2 Background Colors ... 41

4.1.3.3 Addition of Non-Food Objects ... 46

4.1.3.4 Placement ... 47

4.1.3.5 Incomplete objects .. 49

4.1.3.6 Image Resolution .. 52

4.1.4 Inference Speed Analysis ... 54

4.1.4.1 Number of objects .. 54

 viii

4.1.4.2 Image Resolution .. 55

4.2 3D Point cloud extraction .. 57

4.2.1 Point Cloud Extraction Results .. 57

4.2.2 Extraction Method Comparison ... 59

CHAPTER 5 CONCLUSION.. 60

REFERENCES .. 63

VITA .. 67

LIST OF TABLES

 Page

Table 1: Thesis plan for 2020 ... 3

Table 2 : Comparison of popular deep learning frameworks 17

Table 3: Specifications of the desktop computer used in the robot system 21

Table 4: Training parameters .. 24

Table 5: Dataset detail .. 25

Table 6: Model Evaluation.. 31

Table 7: Class predictions with IoU scores for 3 levels of brightness of potato chip set

.. 38

Table 8: Class predictions with IoU scores for 3 levels of brightness of the sushi set

.. 38

Table 9: Evaluation of the HTC model for 3 levels of brightness 39

Table 10: Class predictions with IoU scores for 6 different background colors of

potato chip set .. 43

Table 11: Class prediction with IoU scores for 6 different background colors of sushi

set ... 43

Table 12: Evaluation of the HTC model for different background colors 44

Table 13: Evaluation of the HTC model for addition of non-food objects scenario .. 46

Table 14: Class predictions with IoU scores for different placements of potato chip

set ... 48

Table 15: Class predictions with IoU scores for different placements of sushi set 48

Table 16: Evaluation of the HTC model for different placements 49

Table 17: Evaluation of the HTC model for incomplete objects scenario 51

Table 18: Evaluation of the HTC model for different image resolutions 53

LIST OF FIGURES

 Page

Fig. 1 Object Detection and its related methods .. 4

Fig. 2 Anchor boxes example .. 5

Fig. 3 IoU examples. Here the red bounding box represents ground-truth while the

green bounding box represents prediction by the model. .. 5

Fig. 4 Binary mask example .. 6

Fig. 5 R-CNN model .. 6

Fig. 6 Fast R-CNN model .. 7

Fig. 7 Faster R-CNN model ... 7

Fig. 8 Mask R-CNN model .. 8

Fig. 9 The architecture of Cascade R-CNN comparing with Faster R-CNN 8

Fig. 10 The evolution from Cascade Mask R-CNN to Hybrid Task Cascade 9

Fig. 11 A block of residual learning .. 10

Fig. 12 Fully convolutional networks .. 11

Fig. 13 Demonstration of structured light and coded light depth cameras. Note how

the patterned light is deformed when 3D object is presence in a scene 12

Fig. 14 Demonstration of stereo depth cameras. Images gather from sensor 1 and

sensor 2 are used to calculate depth information ... 13

Fig. 15 Demonstration of time of flight cameras ... 14

Fig. 16 Visualization of a Depth map and a 3D point cloud .. 15

Fig. 17 Example of TensorBoard ... 16

Fig. 18 Demonstration of ROS nodes communication .. 19

Fig. 19 Data flow example of image processing part in a robot system 21

Fig. 20 Manipulator and the camera used for computer vision: (a) Motoman SIA5F

Manipulator, (b) Depth camera mounted at the end-effector, (c) Intel RealSense

D435i Depth camera .. 21

Fig. 21 Examples of annotated images .. 25

Fig. 22 The demonstration of applying mask to a depth frame 26

 xi

Fig. 23 Point cloud extraction in ROS via Depth Topic .. 28

Fig. 24 Second method for point cloud extraction in ROS via Point Cloud topic 28

Fig. 25 Training loss comparison... 30

Fig. 26 Model evaluation for each epoch for Colab training 31

Fig. 27 Examples of segmentation results of Cascade Mask R-CNN (Left) and HTC

(Right) .. 33

Fig. 28 Examples of segmentation results of Cascade Mask R-CNN (Left) and HTC

(Right) .. 34

Fig. 29 Experimental framework for scenario impacts on the HTC model 35

Fig. 30 Experiments of food objects on the test framework with white background

color ... 35

Fig. 31 Precision and Recall explanation ... 36

Fig. 32 Examples of potato chips detection results for 3 levels of brightness setting . 37

Fig. 33 Examples of sushi detection results for 3 levels of brightness setting 38

Fig. 34 Evaluation of the HTC model for 3 levels of brightness setting 40

Fig. 35 Examples of potato chips detection results for different background colors:

white (Left), blue (Middle), and green (Right) .. 41

Fig. 36 Examples of potato chips detection results for different background colors:

orange (Left), red (Middle), and yellow (Right) .. 42

Fig. 37 Examples of sushi detection results for different background colors: white

(Left), blue (Middle), and green (Right) .. 42

Fig. 38 Examples of sushi detection results for different background colors: orange

(Left), red (Middle), and yellow (Right) .. 43

Fig. 39 Evaluation of the HTC model for different background colors....................... 44

Fig. 40 Examples of results with addition of non-food objects scenario: potato chip set

(Left) and sushi set (Right) .. 46

Fig. 41 Examples of potato chips detection results for different placements: normally

spaced (Left), adjacent (Middle), and overlapping (Right) ... 47

Fig. 42 Examples of sushi detection results for different placements: normally spaced

(Left), and adjacent (Right).. 48

Fig. 43 Evaluation of the HTC model for different placements 49

 xii

Fig. 44 Examples of incomplete potato chip detection: normal image (Left), and

detection (Right) .. 50

Fig. 45 Examples of incomplete sushi detection: ebi (Left), salmon (Middle), and

tamago (Right) ... 50

Fig. 46 Evaluation of the HTC model for incomplete objects scenario....................... 51

Fig. 47 Examples of the potato chip set detections in different image resolutions:

320x180 (Left), 848x480 (Middle), and 1920x1080 (Right) 52

Fig. 48 Examples of the sushi set detections in different image resolutions: 320x180

(Left), 848x480 (Middle), and 1920x1080 (Right) .. 53

Fig. 49 Inference speed comparison between Cascade Mask R-CNN model and HTC

model on different numbers of potato chips in an image... 55

Fig. 50 Inference speed comparison between Cascade Mask R-CNN model and HTC

model on 16:9 image resolutions ... 56

Fig. 51 Inference speed comparison between Cascade Mask R-CNN model and HTC

model on 4:3 image resolutions ... 56

Fig. 52 RGB frame of the depth camera (Left) and extracted point cloud visualization

(Right) .. 58

Fig. 53 Japanese rice ball point cloud visualization .. 58

Fig. 54 Comparison of processing time between two methods of point cloud

extraction.. 59

CHAPTER 1 INTRODUCTION

1.1 Background

Food industry is an important part of the economy for many countries. It

represents a large portion of the country’s GDP, and it is made up of various business

sectors that provide food supply to the population, including agriculture,

manufacturing, food processing, and food services, just to name a few. By incorporating

innovative technologies to these existing sectors, the overall efficiency can be

improved, while the operating cost can be reduced. One such example is the use of

automation in the food production process. Automating food production can help to

improve consistency in the appearance and quality of the food being produced, as well

as to minimize unnecessary waste by using minimum amount of ingredients. Although

the benefit of automation in food production is clear, there has not been a wide-scale

adoption of such technology in the food industry, as one might observe in other

industries like car or industrial manufacturing. One reason has to do with the ability to

manipulate the components of the object being produced. Unlike other industries where

the components are usually uniform in size and weight, the ingredients that go into food

production are often of diverse size, shape, weight, and texture, making it difficult to

develop a line automation using traditional methods [1].

Computer vision may help solve these challenging problems, however. The

technology mimics how human sees and perceives things. One important aspect of

computer vision is image recognition, which involves different processes such as object

detection, classification, and segmentation. A particular technique, called instance

segmentation, has been used to detect distinct objects in an image in real-time and the

classification is done at a pixel-level using deep learning model. Previous studies have

shown this approach to be effective and reliable in detecting food objects [2-4].

In addition to the output RGB data from a camera sensor, depth camera

technology can also provide 3D depth information which can be advantageous for

analyzing 3D objects in a surrounding environment. By combining segmented RGB

data and 3D depth information together, automatic detection and classification of food

object can be done more accurately, allowing for better estimation of its shape, weight,

size and, even calories.

 2

In this study, we use the data from a single stereo depth camera mounted on a

robot end-effector which is used for performing tasks involving food automation. The

camera outputs are RGB color data and depth information. We perform instance

segmentation on RGB data by using Cascade Mask R-CNN and HTC (without semantic

segmentation) which are deep learning architectures based on mmdetection [5]

benchmark results. The Cascade Mask R-CNN method is a combination of Cascade R-

CNN [2] and Mask R-CNN [3], which allows classification of RGB data at a pixel level.

Then, we combine the processed data with depth information to achieve 3D object

segmentation. All of the output information from our proposed process is published on

a robot system network that can later be used in path planning or grasping posture

estimation. Moreover, the resulting output can be generalized to other systems as well,

such as warehouse inventory tracking or human activity monitoring, not just limited to

a robotic system.

1.2 Objectives and Scope

1.2.1 Objectives

1) Develop and apply instance segmentation model to detect Japanese food

objects at a pixel-level.

2) Develop a point cloud extraction method of food objects in real-time

using RGB-D camera

1.2.2 Scope

The experiment is performed using only one stereo depth camera

mounted on a manipulator’s end-effector or a stationary frame. The camera is

connected to a PC equipped with a local GPU, or has access to Google Colab,

to perform image processing tasks.

The Japanese food dataset will be curated and labeled by-hand in

COCO-style. It will contain images taken from the web and those captured by

the researcher.

Detection model for Japanese food will be developed to detect, classify,

and segment food objects in real-time using RGB information. The refinement

of the models will be accomplished through modifying and tuning of different

 3

parameters such as datasets, training batch size, deep learning architectures, and

activation functions. Different scenario condition that could impact the accuracy

and robustness of the model will also be explored.

The RGB segmentation result will be fused with depth information from

depth camera to extract point cloud of food objects in real-time. Inference speed

will be evaluated for different extraction methods.

1.3 Timeline

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Task assigned

Learn and Practice

object detection

Create datasets

Train instance

segmentation

models

Point cloud

extraction

Experiments

Improve datasets

Thesis paper

Conference paper

Proposal Exam

SICE 2020

1.4 Expected Outcome

• Gain a comprehensive understanding in regards to object detection and related

methods in the field of computer vision.

• Establish an object detection framework that can detect Japanese food objects.

• Establish a module that can extract point cloud of food objects in real-time.

• Able to evaluate and compare accuracies between models, as well as to assess

how different environmental conditions might impact those models.

Table 1: Thesis plan for 2020

CHAPTER 2 LITERATURE REVIEW

2.1 Object Detection and Instance Segmentation

Object Detection, Semantic Segmentation, and Instance Segmentation are some

of the most popular and important fields in Computer Vision [6, 7]. Object Detection

is a method of classifying and localizing all the objects in an image. It locates the exact

positions of objects and labels them into classes. The position of an object is usually

located by a bounding box, which is represented by a rectangular enclosing region.

Semantic Segmentation is the process of identifying every single pixel in an image into

a class, including objects and background such as sky and grass. Unlike object

detection, this process only identifies pixels in an image. It does not consider a cluster

of pixels as an object. Instance Segmentation, on the other hand, can be viewed as a

combination of Object Detection and Semantic Segmentation. It assigns a class to each

pixel and treats them as an object. Instance Segmentation also treats multiple objects of

the same class as individual objects that have separate entities.

There are many essential concepts associated with Object Detection such as

Bounding Box, Anchor Boxes, Intersection over Union (IoU). They will be explained

in this section.

First, Bounding Box is a rectangular-shaped box that can be described by 4

parameters; bx, by, bw, and bh where (bx, by) is the center position of the box and bw

and bh are the width and the height of the bounding box, respectively.

Fig. 1 Object Detection and its related methods

 5

Next, Anchor Boxes are a set of predefined bounding boxes. They are defined

to detect the aspect ratio of specific objects based on object sizes in the training dataset.

The anchor boxes are moved across the entire image and then the neural network

predicts the probability such as IoU to filter only potential boxes.

Intersection over Union (IoU) is a metric used to evaluate the accuracy of the

predicted bounding box. It is a ratio of area of intersection to area of union between the

prediction and ground-truth bounding boxes. The IoU value of more than 0.5 is

considered a good prediction.

Binary mask is a 2D array which has the same shape as the image. Each data

point is either 1 or 0 (True or False) to define whether it belongs to the predicted

instance.

Fig. 2 Anchor boxes example

Fig. 3 IoU examples. Here the red bounding box represents

ground-truth while the green bounding box represents

prediction by the model.

 6

Lastly, Mean Average Precision, or mAP is an evaluation metric used to

measure the accuracy of an object detector. The precision value equals to the number

of true positives divided by the number of all positives. mAP is the average precision

value over IoU of 0.5 to 0.95 with a step size of 0.05 and it is expressed as a percentage

value.

2.1.1 Region-based CNNs

Region-based convolutional neural networks or regions with CNN features (R-

CNNs) are pioneering approaches that apply deep learning models to object detection.

Fast R-CNN, Faster R-CNN [4], and Mask R-CNN are some of the models that are

developed as part of the improvement to the original R-CNN model [6].

R-CNNs

First, this model selects multiple proposed regions from an input image and then

label their categories and bounding boxes. After that, it performs CNN forward

computation to extract features from each proposed region and then predicts their

categories and bounding boxes. The architecture of R-CNN is shown in Fig. 5.

Fig. 4 Binary mask example

Fig. 5 R-CNN model

 7

This model effectively uses pre-trained CNNs to extract image features, but its

main drawback is the slow speed because the number of forward computations depend

on the number of proposed regions.

Fast R-CNN

Fast R-CNN only performs CNN forward computation on a whole image once,

solving the performance issue associated with the original R-CNN model. It introduces

regions of interests pooling (RoI pooling) to extract features of the same shapes and a

fully connected layer is needed to transform the output to a specific shape.

Faster R-CNN

The selective search in Fast R-CNN generally generates many proposed

regions. Faster R-CNN replaces selective search with a region proposal network to

reduce the number of proposed regions generated and ensure accurate object detection

at the same time. The other parts of the model are unchanged.

Fig. 6 Fast R-CNN model

Fig. 7 Faster R-CNN model

 8

Mask R-CNN

Mask R-CNN replaces RoI pooling layer in Faster R-CNN with RoI alignment

layer to retain spatial information on feature map. This makes Mask R-CNN more

suitable for pixel-level predictions. Then, it uses an additional fully convolutional

network to predict pixel-level positions of objects.

2.1.2 Cascade R-CNN

Cascade R-CNN [2] is a multi-state object detection architecture developed

from Faster R-CNN which is explained in the previous section. This model is proposed

to solve 2 main problems: overfitting in training and inference-time mismatch between

the IoUs for which the detector is optimal and those of the input hypotheses. These two

main factors largely contribute to a performance degradation during detection.

This model decomposes difficult bounding box regression task into a sequence

of simpler processes. The architectures are shown in Fig. 9.

Fig. 8 Mask R-CNN model

 (a) Faster R-CNN (b) Cascade R-CNN

Fig. 9 The architecture of Cascade R-CNN comparing with Faster R-CNN

 9

“I” is input image, “conv” is backbone convolutions, “pool” is region-wise feature

extraction, “H” is network head, “B” is bounding box, and “C” is classification. “B0”

is proposal in all architectures.

2.1.3 Hybrid Task Cascade

One of the most successful instance segmentation models, Cascade Mask R-

CNN is the combination of the previous explained models: Cascade R-CNN and Mask

R-CNN. It exploits the advantages of cascade architectures and to achieve better result.

Hybrid Task Cascade (HTC) [8] improves on this Cascade Mask R-CNN by fully

leveraging the reciprocal relationship between detection and segmentation. It

interweaves these two branches to form a multi-state processing instead of performing

them separately. Moreover, it creates a direct path to reinforce the information flow

between mask branches and adds an additional semantic segmentation branch, which

can ensure better background distinguishing abilities. The development of HTC from

Cascade Mask R-CNN is shown in Fig. 10.

 2.2 Components of Deep Neural Network

2.2.1 Region Proposal Networks (RPN)

The RPN consists of a fully convolution network that shares convolutional

features with the detection network. An image of any size is taken as an input of a

Region Proposal Network (RPN). The outputs from this network are a set of bounding

boxes with a score of objectness for each box. The network is trained end-to-end to

generate many different region proposals with high accuracy.

(c) Mask information flow (d) Hybrid Task Cascade

(a) Cascade Mask R-CNN (b) Interleaved execution

Fig. 10 The evolution from Cascade Mask R-CNN to Hybrid Task Cascade

 10

The selective search in Fast R-CNN is replaced by this network and the results

show that it can reduce computational costs, while still keeping the same effectiveness

in terms of accuracy. The Faster R-CNN architecture explained in previous section is

developed by merging the Fast R-CNN with RPN.

2.2.2 Residual Network (ResNet)

In deep convolutional neural networks, multiple levels of extracted features can

be satisfied by adding more layers to the networks. As the number of layers in a deep

neural network increases, the difficulty in training also increases due to higher training

error.

One way to solve this problem is to implement residual functions with reference

to the input layers. A residual learning framework is proposed to enable deeper neural

network training. Previous studies [9] have shown that neural network depth can be as

deep as 152 layers in ImageNet [10], or 8 times deeper than VGG nets [11]. Other

analysis on CIFAR-10 dataset also shows network depth with 100 and 1000 layers [12].

2.2.3 Fully Convolutional Networks (FCN)

In image classification, an image goes through convolutional layers followed

by fully connected layers. During that process, the image is downsized and is output as

one predicted label. On the other hand, in semantic segmentation, the fully connected

layers before the end of the CNN must be adjusted to convolutional layers. Therefore,

it is called Fully Convolutional Networks (FCN) [13, 14]. After the convolutional

layers, the output must be upsampling via deconvolution because the output size is

scaled down in CNN. Then, the features extracted from different levels in CNN are

combined to create a semantic segmentation result.

Fig. 11 A block of residual learning

 11

2.3 3D Computer Vision

2.3.1 Depth Camera Technologies

Standard digital cameras provide us with output that is represented by a 2D grid

of pixels, where each pixel contains several numeral values. For a common RGB color

space, each pixel will have information pertaining to Red, Green, and Blue channel

separately. Usually, an 8-bit integer is used to represent data for each channel, and

hence, the integer value can vary from 0-255 in an (R, G, B) format. As an example,

for a completely white pixel, the values must be (255, 255, 255), or a fully bright green

pixel must be (0, 255, 0). The mixing between the different values of each color channel

will give rise to the different colors that we can observe in photographs. In contrast, a

depth camera has pixel which contains information representing the spatial distance (or

“depth”) of that pixel to the camera itself. In some depth cameras, a pixel may contain

both the RGB and depth information - these are often referred to as RGB-D cameras,

where each pixel contains 4 values which are Red, Green, Blue, and Depth values.

When it comes to calculating depth, there are several technologies being used

by today’s depth camera such as structured light and coded light, stereo depth, and time-

of-flight and LiDAR, just to name a few. The working principle for each technology

will be discussed below, as well as their advantages and shortcomings.

Fig. 12 Fully convolutional networks

 12

Structured Light and Coded Light

Structured light and coded light depth cameras rely on projecting a specific

pattern of light, such as a series of stripes or dots, in an infrared range [15] onto a scene.

If the scene contains some sort of a topology or a three-dimensional shaped surface,

pattern light that was projected will appear to have a deformed pattern. The distance

from the camera to the scene can be calculated based on the discrepancy between the

actual image and the expected image of the patterned light. Unfortunately, these types

of camera are sensitive to noises in the environment due to inference from other cameras

or devices that also emit infrared light. Therefore, they tend to work best indoors and

over a short range. Such technology is often used in gesture recognition and background

segmentation. Some of the new cellphone camera relies on this technique to

authenticate user when unlocking the phone using facial recognition [16].

Stereo Depth

Stereo depth cameras rely on two sensors and a small space between them.

Given the known distance between the two sensors, the two images gathered from each

sensor can be compared to estimate the distance of the target object from the camera.

Interestingly, this technique is similar to how human eyes perceive depth from our two

eyes, or how astronomers measure the distance of a star. Since the stereo technique does

not rely on projecting a patterned light, this kind of camera can work well in most

lightning conditions, including indoor and outdoor usage. Moreover, there are no

Fig. 13 Demonstration of structured light and coded light depth cameras. Note

how the patterned light is deformed when 3D object is presence in a scene

 13

interference with other cameras, which opens up the possibility of using multiple

cameras at same time.

Time-of-Flight (ToF) and LiDAR (Light Detecting And Ranging)

A typical ToF or LiDAR emits a light of a certain wavelength onto a scene.

Then, it detects how long does it take for that light to bounce off the different objects

and be reflected to the sensor. Since the speed of light is known, the sensor can calculate

distance traveled between the camera and the object. LiDAR offers some of the best

resolution for measuring depth, with accuracy of up to millimeter in some cases [17].

It has become one of the main sensors used for 3D environment mapping and ADAS

(Advanced driver-assistance systems) [18]. Like coded light and structured light

cameras, time of flight cameras are vulnerable to noises in the surroundings. For

examples, the sensors might be affected by the light traveling from another camera or

sunlight.

Fig. 14 Demonstration of stereo depth cameras. Images gather from

sensor 1 and sensor 2 are used to calculate depth information

 14

2.3.2 Depth Image vs 3D Point Cloud

Depth image and 3D point cloud can be obtained from a depth sensor or a depth

camera. These two data representations contain the same information but are not

identical. In a depth image, each (x, y) pixel represents a distance measured from an

object in the scene to the camera. This measurement is often referred to as the depth

value (z), which has a unit of length, whereas the x and y values are in pixel unit. On

the other hand, a 3D point cloud is a set of (x, y, z) points in space, where the X, Y, Z

coordinates all represent unit of length that measure the distance from those individual

points to the camera.

Depth image can be visualized in a 2D image by using a heatmap with false

color, or an 8-bit greyscale, corresponding to a particular depth value, as it represents a

certain viewpoint of a 3D scene. The visualization for a 3D point cloud is different,

however. The 3D point cloud can be visualized as a depth map in three-dimensional

space that represents the external surface of the scene. In addition, the point cloud can

display the true color value of a particular point in a scene, while the depth image

cannot. It is worth noting that a depth image can also store color values, but it is not

able to represent both the color data and depth data at the same time in a 2D image. Fig.

16 shows the visualization of these two types of data representation of the same scene.

Fig. 15 Demonstration of time of flight cameras

 15

2.3.3 Centroid of a 3D point cloud

There are several different ways to compute the center of a centroid of a 3D

point cloud cluster. The most common techniques are central feature, mean center, and

median center. The central feature selects the center point to be the point which has the

shortest accumulative distance to all the other points belonging to the point cloud. This

can be found by iterating through all the points in the cluster and calculating the sum

of distances of each point to all the other points and selecting the point with the least

sum. The mean center technique is quite simple - it can be found simply by calculating

average values of each x, y, and z components belonging to the cluster. The median

center technique is similar to the mean center, but it finds the median of each coordinate

components instead of finding the average values. The mean and median center

techniques are different from the central feature in that the calculated centroid of these

two techniques may or may not correspond to an actual point in the point cloud cluster.

For a 3D point cloud which only has texture data of an external surface of an object or

a hollow object, the centroid should be calculated using the latter two techniques since

the calculation using the first method would yield an actual point on the surface, which

is obviously not the correct centroid for these types of object.

(a) Depth map

(b) 3D Point cloud

Fig. 16 Visualization of a Depth map and a 3D point cloud

 16

2.4 Framework

 2.4.1 Deep Learning Frameworks

At this time, there are many existing deep learning frameworks such as

TensorFlow, PyTorch, Keras, MXNet, Microsoft CNTK, Deeplearning4j, and Caffe.

Most of them are open-source. Each framework has its own specific applications,

advantages, and disadvantages. In this section, we will give a brief overview of some

of the most popular and widely used deep learning frameworks. The comparison

between them is summarized in Table 2.

TensorFlow

TensorFlow is the most famous deep learning library written in Python and C++

developed by Google. It uses dataflow graphs, which are structures that define how data

flow through a series of processing nodes. Each node represents a mathematical

operation, and the connection between nodes is a multi-dimensional array called

Tensor. Moreover, it offers TensorBoard [19] for data monitoring and visualization.

This can be used to track the loss and accuracy of the model being considered. Many

companies - like Uber, Airbnb, and Twitter - have employed TensorFlow in their

platforms [20].

Fig. 17 Example of TensorBoard

 17

PyTorch

PyTorch is a machine learning framework based on Torch which is an open-

source package, but Python language is used instead of Lua [21, 22]. The data structure

is also a tensor, which is very similar to NumPy arrays, yet it can be accelerated with

GPU. In addition, this framework allows us to define our graph dynamically unlike

other packages. PyTorch is flexible and fast, so it is suitable for deep learning research.

It is developed and used by the social media giant, Facebook. Moreover, this framework

is used in research by Oxford and IBM, and it can also work effectively with cloud

platform like Amazon Web Services (AWS).

Microsoft CNTK

 Microsoft CNTK, or Microsoft Cognitive Toolkit, is developed by Microsoft. It

is used in popular Microsoft products such as Xbox, Cortana, Skype, and Windows

Operating System. The CNTK provides neural networks in the form of directed graphs

by using a series of computational steps. It also supports various programming

languages such as C#, C++, Python, and Java.

 TensorFlow PyTorch CNTK

Developer Google Facebook Microsoft

Supported

languages

C++, Python, Java,

JavaScript, Go, Swift

C++, Python C++, Python, C#,

Java, .NET

Main advantages It offers Tensorboard

for data monitoring

and visualization and

it has large

community support.

It has various pre-

trained models,

powerful debugger

tools, and a user-

friendly design. It

also supports

distributed training.

It is easy to

integrate in most

enterprises and has

reliable

performance.

Main drawbacks It is relatively slow

comparing to other

frameworks and also

difficult to debug.

It has less

community support

and does not have

visualization tools.

It has less

community support.

Table 2 : Comparison of popular deep learning frameworks

 18

2.4.2 MMDetection

 Open MMLab Detection or MMDetection [5] is an open-source object detection

toolbox and benchmark based on PyTorch [21]. It is developed by Multimedia

Laboratory, CUHK. This framework has modular design and up to date, so it can be

effectively used in object detection researches. A great number of architectures are

implemented in this framework including the state-of-the-art models. Moreover, it has

been approved to be highly efficient comparing to other popular frameworks.

2.4.3 Robot Operating System (ROS)

In a robot system, a lot of software tools are needed to control, drive, and

perform computer vision tasks. A Robot Operating System, or ROS, attempts to gather

all these tools together into a unified framework. The main goal of ROS is to support

code reuse in robotics research and development [23]. The processes or computations

in ROS are executed individually in each node. A node represents a set of runtime

processes performing computation. These nodes can be combined to form a package,

which is the main unit for organizing software in ROS. It is proven to be a very suitable

tool in many robotic researches.

ROS has three levels of concepts: [24] Filesystem level, Computation Graph

level, and Community level. These three levels are briefly explained below.

First, a Filesystem level concept involves ROS materials we meet on disk

including packages which are the main unit for managing software in ROS. ROS

runtime processes, ROS-dependent library, datasets, or anything else may be contained

in a package hence they can be effectively managed together. Other than the packages,

Message types (which define data structure of messages) and Service types (which

define the request and respond data structures) are also parts of a Filesystem level

concept.

Next, the Computation Graph level covers the peer-to-peer network in ROS

processes which transfer data between one another. The basic computation graph

concepts are ROS nodes, master, messages, services, topics, bags, and anything else

that provides data to the network. Each ROS node can be viewed as a process that is

tasked with performing a specific type of function. For examples, one node might

control the motors of a robot, and another node might localize the robot, while another

 19

node might perform path planning. ROS master enables the communication of nodes in

a computation graph by providing name registration. It also contains the parameter

server which allows data to be stored by key in a central location. ROS topic acts like

a strongly typed message bus, allowing nodes to send or receive certain types of ROS

messages through publishing and subscribing to the topic. A single topic allows

multiple publishers or subscribers to access concurrently. ROS nodes connect to the

other nodes directly while the ROS master only gives lookup information (similar to

DNS server). The subscribers will request connections to the publishers and connection

will be initiated over an agreed protocol. The most common protocol used in ROS is

TCPROS, which uses standard TCP/IP sockets. Another important concept in this level

is ROS bags. These are mechanism for saving and playing back ROS message data such

as those outputted from a sensor, which can be retrieved and visualized at a later time.

Finally, the ROS Community level concept is ROS materials that allow users

and developers to exchange software and knowledge. These concepts include

distributions, repositories, the ROS wiki, etc.

In addition to the three levels of concept, ROS also states 2 types of names,

which are Graph Resource Name and Package Resource Name. The first type of names

provides hierarchical naming structures, which is used in the ROS Computation Graph

including nodes, topics, services, and parameters. This kind of naming structure is

useful, especially when ROS system grows larger and becomes more complicated. The

other type of names, Package Resource Name, is used in the ROS Filesystem level for

referring to files and data types on a disk with an abbreviated notation. It can simply be

constructed by listing the name of a package, followed by a name of a resource that you

want to access. For examples, a package resource name of “std_msgs/PointCloud2” is

a shorthand version for “absolute/path/to/std_msgs/PointCloud2.msg”.

Fig. 18 Demonstration of ROS nodes communication

CHAPTER 3 METHODOLOGY

3.1 Hardware

The robot system used in this experiment is a 7-Axis articulated arm robot

system from Yaskawa Electric Corporation, Japan, with a model name Motoman SIA5F

[25]. It supports many applications such as assembling, machine tending, material

handling, part transferring, and picking-and-placing with a payload of up to 5.0 kg. It

has a horizontal reach of 559 mm and a vertical reach of 1007 mm. The controller model

is FS100. The robotic arm is connected to and controlled by several computers used for

performing different tasks such as path planning and gripper controlling. The entire

robot system is operated and communicated on Robot Operating System (ROS)

network [23]. Several depth cameras are set up in the system to perform workspace

calibration and computer vision. One of the cameras fixed near the end-effector is a

stereo depth camera. It is used for computer vision to enhance object manipulation task

like pick-and-place with a robotic arm. The model of the depth camera used is Intel

RealSense D435i [26]. It is connected via a USB to a desktop computer running high

performance GPU, Nvidia GeForce RTX 2080Ti [27], which is suited for performing

high computation tasks like deep learning. The data flow for the image processing of

our system is shown in Fig.19. Computer A directly receives the raw data from the

depth camera which include RGB and depth data. The RGB data are used for instance

segmentation and then combined with depth data to create 3D point cloud information.

The processed data are sent to other computers in the network to be used in other

processes like path planning and grasp posture optimization.

This work focuses on the data flow starting from the acquisition of RGB and

depth data via depth camera to the processed data generated by Computer A, as depicted

in Fig. 19.

 21

CPU Intel Core i9-9900K

RAM DDR4 32 GB

GPU Nvidia GeForce RTX 2080Ti

3.2 Deep Learning Implementation

In order to achieve a detector which is able to classify and localize food objects,

we use deep learning as a method to develop instance segmentation model. The model

starts with the initial weights and goes through the training and evaluation to obtain

Table 3: Specifications of the desktop computer used in the robot system

Fig. 19 Data flow example of image processing part in a robot system

Fig. 20 Manipulator and the camera used for computer vision: (a) Motoman

SIA5F Manipulator, (b) Depth camera mounted at the end-effector, (c) Intel

RealSense D435i Depth camera

(a)

(b)

(c)

 22

better weights according to the training dataset. Finally, we will be able to classify

different food objects from images, which is one of our main objectives.

3.2.1 MMDetection Toolbox

In this experiment, we use OpenMMLab Detection Toolbox and Benchmark, or

mmdetection [5] as a framework for performing deep learning and instance

segmentation. This framework provides tools and python APIs for model training,

evaluating, and testing and is open-source. Moreover, it offers a lot of competitive

models to use including backbones, methods, and the state-of-the-art models.

MMDetection uses distributed training which splits the training workload and shares

them among multiple processors.

This toolbox implements a contemporary and popular deep learning framework,

PyTorch [21] as its backend which provides various deep learning APIs and also offers

a lot of pre-trained models and powerful debugger tools.

This framework can be run either locally on a desktop computer with a GPU, or

on a cloud-based service such as Google Colaboratory (Colab) [28]. In this study, we

perform all operations of this framework using both local computer and Google Colab

platform. For the local computer use case, we need to install all the necessary

dependencies needed for MMDetection such as Torch, Mmcv, and Numpy on the disk.

All of the APIs and tools are ready to be used once you have installed the framework

correctly. For Google Colab use, a python notebook needed to be created in order to

use the framework’s functionalities. The Colab provides basic dependencies for deep

learning such as Torch and Matplotlib, so we do not need to install them, but

MMDetection is still needed to be setup every time before using the notebook.

3.2.2 Deep Learning Architectures

We select two deep learning architectures designed for instance segmentation

tasks to train detector models in this study, namely, Cascade Mask R-CNN and Hybrid

Task Cascade [8] since both of them are in the top-ranking for instance segmentation

on COCO test-dev benchmark [29]. These two models are quite similar because they

are based on cascade architectures. The second model, HTC, was developed based off

Cascade Mask R-CNN, which is the combination of Cascade R-CNN [2] and Mask R-

CNN [3]. The development of HTC from Cascade Mask R-CNN is shown in Fig. 10.

Evaluating using COCO average precision, the HTC achieves the box AP of 43.2% and

 23

the mask AP of 38.0%, which exceeds that of Cascade Mask R-CNN having the box

AP and the mask AP of 42.5% and 36.5%, respectively.

Cascade R-CNN has multiple stages of bounding box regressions where the

output bounding boxes from a previous stage are taken as new region proposals and

inputs of a current stage. However, the 3-stage Cascade R-CNN is commonly used

because researchers found that increasing more than 3 stages does not further enhance

the effectiveness. Cascade Mask R-CNN is developed from Cascade R-CNN by adding

segmentation branches in parallel to the bounding box regression and classification

[30]. In this case, the mask branches in each cascade stage do not affect one another as

shown in Fig. 10a.

HTC, on the other hand, improves Cascade Mask R-CNN by eliminating this

problem. It uses interleaved execution for bounding box branches and mask branches,

then adds a direct mask information flow to connect between mask branches. Finally,

it includes semantic segmentation branch to the model. This last step differentiates HTC

from Cascade Mask R-CNN because this now requires extra training due to the

supplement. In this study, we use the HTC architecture without the semantic

segmentation branch, so we do not need to acquire extra training data.

3.3 Model Training

In the MMDetection toolbox, a config file contains a structure of an architecture

and also other values such as location of the dataset, number of training epochs, and

many important parameters. We select the methods or the architectures for training by

specifying a path of a config file. Before training, we need to make sure that we have

specified all the desired parameters. Once the dataset is prepared, we can perform

training using the train script provided in the toolbox.

In this experiment, we perform model training with the same dataset for both

Cascade Mask R-CNN and HTC architectures on both local PC and Colab. The selected

training parameters are the same values as shown in Table 4.

 24

Training Parameter Value

Backbone ResNet-50

Style PyTorch

Learning Rate Scheduler 1x

For the local training, a single high-performance GPU, Nvidia GeForce RTX

2080Ti is used and the models are trained for 1000 epochs. For Colab training, the GPU

used is Nvidia Tesla T4 provided by Google Colab and is trained for 300 epochs for

each architecture.

3.4 Datasets

The deep learning is conducted on our own images dataset which is annotated

in the same style as COCO dataset [31]. The dataset consists of 807 images, of which

765 images are annotated, while the rest are images of the laboratory environment.

There are 13 categories in the dataset: Japanese lunch box (Bento Box), bologna

sausage, potato chip, Japanese fried chicken (Karaage), Japanese rice ball (Onigiri), and

8 different kinds of sushi which are shrimp (Ebi), squid (Ika), red caviar (Ikura),

salmon, Japanese omelette (Tamago), tuna, eel (Unagi), and sea urchin roe (Uni). These

categories are chosen based on food commonly found in Japanese supermarkets.

The annotations are done via a software called COCO-Annotator [32] where all

the images are annotated by hand. First, we input sets of images to a certain directory

and then the application locates and displays all the images in that directory on the GUI

of the software. The categories must be defined in the program before we can label

using a polygon tool image by image. After that, the COCO annotation file can be

exported in JSON format.

We split this dataset into train set and validation set, consisting of 720 images

and 87 images, respectively. The average width and height of the images are 695 pixels

by 527 pixels. The detail of the dataset is summarized in Table 5. Examples of annotated

images of the food objects belonging to the different categories are shown in Fig. 21.

Table 4: Training parameters

 25

Category Images Annotations

Train Val Train Val

Bento box 142 17 142 17

Bologna 27 3 195 23

Potato chip 55 9 82 11

Ebi nigiri 105 11 139 17

Ika nigiri 101 10 138 13

Ikura nigiri 49 6 84 9

Karaage 104 16 474 59

Onigiri 96 10 325 27

Salmon nigiri 103 13 197 21

Tamago nigiri 98 10 159 19

Tuna nigiri 53 4 117 7

Unagi nigiri 49 5 118 11

Uni nigiri 49 6 104 12

Surroundings 38 4 - -

Table 5: Dataset detail

Fig. 21 Examples of annotated images

 26

3.5 Point Cloud Extraction

3.5.1 Via Depth Topic

The depth camera streams data which consist of RGB and depth frames that can

be used to generate point cloud ROS message. We use realsense2_camera package to

access data from the camera. The package’s node, called /camera/realsense2_camera,

publishes raw camera data which are RGB, depth, and camera information to different

ROS topics. The /pointcloud_masking node subscribes to these topics and accepts the

data as inputs which will then be transformed into point cloud information of food

objects. The subscriptions are done via callback functions. The RGB data are used to

perform inference with the trained model, providing detection and segmentation

information (mask) of the food objects being detected. These masks are binary masks

in an array structure with the same dimension as the original RGB image, but the values

in the array are stored in Boolean format as true or false instead. The true value indicates

that the pixel is in a segmented object, and vice versa. This binary mask is then applied

to the depth data from the subscribed depth topic. The depth data is an array consisting

of depth value for each pixel and it has the same dimension as the binary mask array.

This processing step is demonstrated with a 6x8 size image as shown in Fig.22, where

Fig.22a represents an RGB frame, Fig.22b represents a mask array, Fig.22c represents

a depth frame, and Fig.22d represents the resulting depth frame after applying the mask

array.

(c) 6x8 depth frame (d) The depth frame after applying mask

F F F F F F F F

F F F T T F F F

F F T T T T F F

F F T F T T F F

F F F F F F F F

F F F F F F F F

P11 P12 P13 P14 P15 P16 P17 P18

P21 P22 P23 P24 P25 P26 P27 P28

P31 P32 P33 P34 P35 P36 P37 P38

P41 P42 P43 P44 P45 P46 P47 P48

P51 P52 P53 P54 P55 P56 P57 P58

P61 P62 P63 P64 P65 P66 P67 P68

(a) 6x8 RGB frame (b) 6x8 mask array

Z11 Z12 Z13 Z14 Z15 Z16 Z17 Z18

Z21 Z22 Z23 Z24 Z25 Z26 Z27 Z28

Z31 Z32 Z33 Z34 Z35 Z36 Z37 Z38

Z41 Z42 Z43 Z44 Z45 Z46 Z47 Z48

Z51 Z52 Z53 Z54 Z55 Z56 Z57 Z58

Z61 Z62 Z63 Z64 Z65 Z66 Z67 Z68

0 0 0 0 0 0 0 0

0 0 0 Z24 Z25 0 0 0

0 0 Z33 Z34 Z35 Z36 0 0

0 0 Z43 0 Z45 Z46 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Fig. 22 The demonstration of applying mask to a depth frame

 27

The depth values in the array are in millimeters and its actual dimensions are H

x W x 1, where H and W are height and width of the image, respectively. After applying

the mask to the depth frame, the values at the pixels which are not in the segmentation

window will become zero. At this point, we have retained only the depth information

of the desired area. The resulting depth frame is then transformed from a pixel

coordinate into a metric coordinate in order to create 3D point cloud. To accomplish

this, we need the camera intrinsic parameters which are used to map camera coordinates

into image plane (world points). The camera intrinsic parameters are obtained from

/camera/color/camera_info ROS topic via a callback function. The metric coordinate

can be calculated according to Eq. (1).

𝑧 = 𝑑𝑒𝑝𝑡ℎ 1000⁄

𝑥 = 𝑧(𝑢 − 𝐾13) 𝐾11⁄ (1)

𝑦 = 𝑧(𝑣 − 𝐾22) 𝐾21⁄

, where x, y, z are the metric coordinates of a point, u and v are the horizontal

and vertical pixel coordinates of a point, and K is the camera intrinsic matrix,

respectively. Once we have obtained a set of 3D points in metric coordinates, we are

able to create sensor_msgs/PointCloud2 to publish the information in the ROS system.

In this case, the point cloud information of each category is published on different

topics. For examples, /pointcloud_1 is a point cloud topic for category one, and

/pointcloud_2 is a point cloud topic for category two. Furthermore, we can colorize the

point cloud for each category to enhance visualization by adding a floating RGB value

to each point in the set of 3D points, so that each point will now contain x, y, z, and an

RGB value. The ROS diagram for this node is shown in Fig.23.

 28

3.5.2 Via Point Cloud Topic

We explained a method to obtain food object’s point cloud information and

publish that information in a ROS environment. There is also an alternative method that

can be used to extract point cloud as outlined in Fig.24.

This second method differs from the first method in the way that it subscribes

to the point cloud topic instead of the depth topic. One advantage of using this second

method is that it simplifies the calculation in the /pointcloud_masking node. If the point

cloud topic provides the depth registered point cloud message, we can easily obtain the

Fig. 23 Point cloud extraction in ROS via Depth Topic

Fig. 24 Second method for point cloud extraction in ROS via Point Cloud topic

 29

point cloud of the desired objects by applying the mask array to the point cloud array

directly. The depth registered point cloud is an array with a dimension of H x W x 4.

The number 4 implies each point has 4 attributes, which are x, y, z, and RGB values of

a point. With this kind of point cloud information, we can apply a mask to it in a similar

manner as previously shown in Fig.22. However, if the point cloud is not depth

registered, we will need to perform an additional calculation. For example, after the

inference step, we find all the possible contours (in a closed form) in the mask image

and pick out the largest contour. Next, we generate a polygon of this contour, consisting

of a set of vertices of the contour boundary. Then, we filter the desired points by

determining only the points in the points array that reside in the polygon. Each point in

the point cloud has its original RGB color from the camera’s RGB data, hence we can

see the object color as we see in a 2D RGB frame instead of a mono color as was seen

when using the first method for point cloud extraction.

3.5.3 Centroid of Point Cloud

In the previous section, we discussed how individual point clouds are extracted

from a depth camera data. Using the extracted point cloud data, we can calculate the

centroid position of a point cloud by simply taking the average values of each

coordinates x, y, and z values belonging to the segmented object. Then, we publish the

centroid position of the segmented object in a ROS topic using

/visualization_msgs/Marker ROS message. This information is especially useful for

food automation involving pick-and-place operation.

CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSION

In this experiment, we separate the results into 2 main parts, namely, 2D

segmentation and 3D point cloud extraction. For 2D segmentation part, we evaluate

and compare between the trained Cascade Mask R-CNN and HTC models. We then

test the trained HTC model under different scenario conditions to assess the accuracy

and robustness of the model. For 3D point cloud extraction part, we show the point

cloud extraction result in 3D visualization and compare the two methods used in the

extraction process.

 4.1 2D Segmentation

4.1.1 Model Evaluation

After training the models with 2 different instance segmentation architectures

which are Cascade Mask R-CNN and HTC on both local pc and Google Colab cloud

service, we plot the training loss curves comparing these 2 models as shown in Fig. 25.

As you can see in Fig.25a and Fig.25b, the loss curves for HTC using local

training and Google Colab, are slightly lower than that of Cascade Mask R-CNN after

200 epochs. Notice that the loss curve that was run on Google Colab only contains 300

epochs as compared to 1000 epochs when running on a local computer.

Next, we test the models using the test script provided by the toolbox. These

models are evaluated using COCO average precision metric (mAP) that evaluate over

IoU (Intersection over Union) of 0.5 to 0.95 with a step size of 0.05 and it is expressed

(a) Local training (b) Colab training

 Fig. 25 Training loss comparison

 31

as a percentage value. The bounding box APs and the mask APs of each model are

summarized in Table 6.

Model Local Training (1000 epochs) Colab Training (300 epochs)

Box mAP (%) Mask mAP (%) Box mAP (%) Mask mAP (%)

Cascade Mask R-CNN 66.9 68.7 67.8 68.5

HTC without semantic 67.4 73.8 69.6 73.0

The results show that the HTC models always have higher mean average

precisions than the Cascade Mask R-CNN models in both bounding box and mask

branches, and the results reveal the same characteristics for both local training and

Colab training. Even though we train the models with a smaller number of epochs on

Colab, the bounding box mAPs for both architectures are higher than those of local

training. However, the mask mAPs for both architectures on local training are still

higher. In this case, we might not have to train with such a large number of epochs

because the performance of the models does not improve that much further. This will

allow additional saving of computation power and time. The relationship between

model evaluation and epochs for Colab training is shown in Fig.26.

Fig.26a and Fig.26b show that mAP for both box and mask branches are

saturated after approximately 50 epochs of training for both architectures. The box

mAPs of these two architectures are approximately the same, but the box mAP of

Cascade Mask R-CNN tends to slightly decrease as the number of epochs increases.

Table 6: Model Evaluation

(a) BBox mAP (b) Mask mAP

 Fig. 26 Model evaluation for each epoch for Colab training

 32

The results of mask mAP show that the HTC has better mask mAP than the Cascade

Mask R-CNN. These results suggest that the number of training epochs for these two

architectures on this dataset do not have to be as many as 300 or 1000 since the

precisions of the models do not improve after 50 epochs. In this case, we could train

the models for 100 epochs or less instead.

4.1.2 Segmentation Results of the test dataset

Examples of segmentation results are shown in the following figures. These

results were obtained by testing images in the test set of the dataset using the test script.

Both models are trained locally. The results show that the Cascade Mask R-CNN model

has more overlapping bounding boxes and more false positive detections than the HTC

model as shown in Fig. 27 where the yellow arrows show the occurrences of false

positives. This is because the precision of the HTC is higher than the Cascade Mask R-

CNN as we stated in 4.1.1. However, these two models show similar results in some

segmentation images (Fig. 28).

 33

HTC Cascade Mask R-CNN

Fig. 27 Examples of segmentation results of Cascade Mask R-CNN (Left)

and HTC (Right)

 34

4.1.3 Scenario Impacts on HTC model

As part of the model evaluation, we also perform experiments to test how

different scenario conditions might impact the result when using the HTC model. For

this experiment, we construct a stationary frame for attaching Intel RealSense d435i

camera to obtain a fixed field of view (FOV) throughout our test. We position the

camera to be facing down from the top fixture to create a top-down view of the test

condition. The base of the frame is made out of a thin wood plate that serves as a

background for the scene. This background color can be changed simply by clamping

different color papers to it. A brightness-adjustable LED light is also attached to the top

fixture next to the camera, which allows for brightness adjustment in the experiment.

The constructed stationary frame, camera attachment, and LED lighting are displayed

in Fig. 29.

 The food objects in our test are divided into 2 sets. The first set consists of 3

different types of sushi: salmon sushi, egg sushi, and boiled shrimp sushi – all of which

are different in colors and each have its own detection classes. The second set consists

of multiple pieces of potato chips, which have similar color and are belonged to the

HTC Cascade Mask R-CNN

Fig. 28 Examples of segmentation results of Cascade Mask R-CNN (Left)

and HTC (Right)

 35

same detection class. Examples of the experimental setup with two sets of food objects

placed under test are shown in Fig.30.

The experiment consists of six scenarios to test the detection of HTC model under

various conditions, including luminosity, background colors, addition of non-food

objects, placements and positioning, incomplete food objects, and image resolutions.

We capture multiple images of each scenario using both sets of food objects with the

camera attached on the test setup. The image resolution used is 640 pixels by 480 pixels,

(a) Framework (b) RGB-D camera and LED light attachment

Fig. 29 Experimental framework for scenario impacts on the HTC model

(a) Sushi (b) Potato chips

Fig. 30 Experiments of food objects on the test framework with white

background color

 36

which is same resolution that we use to perform video streaming. The captured images

are tested with the HTC model which is trained on Google Colab for 300 epochs. We

perform inference on Colab with Nvidia Tesla T4 GPU using the developed scripts to

automatically test the model, save output images, and log the prediction details of each

image with score threshold is set to 0.5. Finally, the results are analyzed based on

Precision and Recall values, which are briefly explained below.

I. Precision

A precision value is a ratio of true positives (TP) to the total number of predicted

positives. It measures the accuracy of the model predictions and expresses how many

percent of the prediction are correct. The precision is calculated according to Eq. (2).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

II. Recall

A recall value or a true positive rate (TPR) is a ratio of true positives to the total

number of ground truth positives. It measures the ability to find all of the ground truth

positives of the model. It can be calculated as shown in Eq. (3).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3)

, where TP is the number of true positives or number of predictions that are

correct, FP is the number of false positives of number of predictions that are incorrect,

and FN is the number of false negatives of number of ground truth objects that are not

predicted [33]. These concepts can also be visualized as shown in Fig. 31.

Fig. 31 Precision and Recall explanation

 37

Having established the definition for the proposed metrics, we will use these

metrics to evaluate the performance of our model under the different scenario

conditions.

4.1.3.1 Luminosity

 We postulate that the brightness of a scene captured by a camera may affect the

performance of the prediction. Using the brightness-adjustable LED light attached on

top of the framework, three different levels of brightness are defined:

1) Minimum level : LED turned off

2) Medium level : LED at half brightness

3) Maximum level : LED at full brightness

We perform this experiment on white background color and adjust the

brightness using these 3 levels settings. 10 photos of 10 different scenes for each

brightness level and each set of objects are performed. For the potato chips set, we

randomly place 10 identical potato chips with random spacing between each one in a

scene. Therefore, there are a total of 100 potato chips that are used in this experiment.

For the sushi set, we use 3 different sushi of different types in a scene (total of 30 sushi).

Some example images, along with their prediction results, are shown in Fig.32-33,

Table 7, and Table 8 below.

(a) Maximum (b) Medium (c) Minimum

 Fig. 32 Examples of potato chips detection results for 3 levels of brightness setting

 38

Maximum Medium Minimum

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

onigiri,0.5004

chip,0.9995

chip,0.9990

chip,0.9982

chip,0.9981

chip,0.9917

chip,0.9890

chip,0.9873

chip,0.9795

chip,0.9094

chip,0.7818

Maximum Medium Minimum

ebi,0.9335

salmon,0.9997

tamago,0.9996

salmon,0.9978

tamago,0.9980

bentobox,0.5471

karaage,0.8931

 With this example set of images, the results from the potato chip show that

object detections using maximum level (Fig.32a) and medium level (Fig.32b) of

brightness show completely correct result. The minimum level of brightness also

Table 7: Class predictions with IoU scores for 3 levels of

brightness of potato chip set

Table 8: Class predictions with IoU scores for 3 levels of brightness of the sushi set

(a) Maximum (b) Medium (c) Minimum

 Fig. 33 Examples of sushi detection results for 3 levels of brightness setting

 39

detects all of the ground truth positives but there is a false positive in which the model

predicts an onigiri class (Japanese rice ball).

 For the sushi set, the detection using maximum brightness level still gives 100%

correct result. At a medium brightness level, there are three positives, with one of them

being a false positive (bento box was detected), while the other two classifications are

correct. The model fails to predict a positive result on ebi (shrimp) sushi, hence there is

one false negative in the medium brightness level. Lastly, the results with minimum

brightness level only produces one positive, which also turns out to be a false positive.

 Based on these observations, the overall precisions and recalls are calculated by

counting TP, FP, and FN of every images in the experiment. The results are tabulated

and presented in Table 9 and Fig.34.

Set Brightness

level

Total

objects

TP FP Total

positives

FN Precision

(%)

Recall

(%)

Chip Max 100 100 0 100 0 100.00 100.00

Med 100 0 100 0 100.00 100.00

Min 100 3 103 0 97.09 100.00

Sushi Max 30 26 7 33 0 78.79 100.00

Med 28 7 35 1 80.00 96.55

Min 14 7 21 15 66.67 48.28

Table 9: Evaluation of the HTC model for 3 levels of brightness

 40

As indicated by the result shown in Fig.34, luminosity only has a slight impact

on the detection of the potato chip set. For the sushi set, maximum and medium level

of brightness also give comparable results in precision and recall. However, when

minimum level of brightness is used for a sushi set, there is a noticeable drop in both

precision and, even more so, in the recall value. We can conclude that the lack of proper

luminosity can affect the performance of this detection model, especially for objects

similar to sushi, which come in different colors, shapes, and sizes.

Fig. 34 Evaluation of the HTC model for 3 levels of brightness setting

 41

4.1.3.2 Background Colors

Most of the images in the training set of our dataset contain white backgrounds.

In this scenario, 6 different background colors are provided, including white, blue,

green, orange, red, and yellow to see the effects that these background colors may have.

Different color paper is attached to the wood plate base of the testing setup to perform

this part of the experiment. For each background color, 10 photos are captured for the

potato chip and sushi sets. The number of potato chips and sushi used per scene are the

same as the previous scenario, hence there are a total of 100 potato chips and a total of

30 sushi pieces for the potato chips and sushi set, respectively. Examples of image and

result are shown in Fig.35-38 and their prediction details are visualized in Table 10-11.

Fig. 35 Examples of potato chips detection results for different background colors:

white (Left), blue (Middle), and green (Right)

 42

Fig. 36 Examples of potato chips detection results for different background colors:

orange (Left), red (Middle), and yellow (Right)

Fig. 37 Examples of sushi detection results for different background colors: white

(Left), blue (Middle), and green (Right)

 43

White Blue Green Orange Red Yellow

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip, 0.9999

chip, 0.9989

chip,0.9983

chip,0.9344

chip,0.8168

bologna,0.9808

bologna,0.9798

bologna,0.9629

bologna,0.9536

bologna,0.9535

bologna,0.9491

bologna,0.8397

salmon,0.9160

salmon,0.7223

salmon,0.5746

chip, 0.9999

chip, 0.9998

chip, 0.9997

chip, 0.99818

chip, 0.9549

chip, 0.7584

chip, 0.7348

bologna,0.8103

bologna,0.5805

bologna, 0.7271

bologna, 0.5663

bologna,0.5414

bologna,0.5348

bologna,0.9782

bologna,0.9593

bologna,0.9474

bologna,0.9396

bologna,0.9075

bologna,0.8391

bologna,0.7936

salmon, 0.7343

chip, 0.7963

bologna, 0.9801

bologna, 0.9756

bologna, 0.9739

bologna, 0.9701

bologna, 0.8445

bologna, 0.8187

bologna, 0.7820

White Blue Green Orange Red Yellow

ebi,0.9890

salmon,0.9998

tamago,0.9967

tuna,0.9311

uni,0.9233

salmon,0.7488

uni,0.9309

bologna,0.9269

bologna,0.8889

bologna,0.684 salmon,0.8977

salmon,0.8714

tamago,0.6672

Table 10: Class predictions with IoU scores for 6 different background colors of potato

chip set

 Table 11: Class prediction with IoU scores for 6 different background colors of

sushi set

Fig. 38 Examples of sushi detection results for different background colors: orange

(Left), red (Middle), and yellow (Right)

 44

As you can see from the above figures, the difference in background colors can

cause a significant change in the detection performance of the models. To quantize

these results, precision and recall values are tabulated in Table 12 and plotted in Fig.

39.

Set Background

colors

Total

objects

TP FP Total

positives

FN Precision

(%)

Recall

(%)

Chip White 100 100 0 100 0 100.00 100.00

Blue 37 75 112 0 33.04 100.00

Green 51 74 125 0 40.80 100.00

Orange 0 41 41 80 0.00 0.00

Red 0 64 64 46 0.00 0.00

Yellow 11 77 88 13 12.50 45.83

Sushi White 30 28 0 28 2 100.00 93.33

Blue 3 17 20 14 15.00 17.65

Green 15 14 29 5 51.72 75.00

Orange 0 26 26 30 0.00 0.00

Red 0 1 1 30 0.00 0.00

Yellow 11 13 24 10 45.83 52.38

Table 12: Evaluation of the HTC model for different background colors

Fig. 39 Evaluation of the HTC model for different background colors

 45

The results in Table 12 and Fig.39 show that the background colors severely

affect the performance of the detection, causing the degradation of both precisions and

recalls of the model. The results between the potato chip and sushi sets are also quite

different because of the difference in object colors and textures under detection.

 The precisions and recalls when using a white background color for detecting

the 2 sets of food objects are the highest among all other colors. For both sets, the

precisions and the recalls of orange and red backgrounds are zeros since there are no

true positives predicted by the model. These two colors have the most serious effects

on this detection model. One possible explanation might be that these two background

colors are similar in color to the food object we are trying to detect such as ebi and

salmon sushi. Moreover, these two colors might affect the auto white-balance

adjustment of the camera. Another interesting observation is in the precision value of

potato chip when yellow background is used. Compared to the result from the sushi set,

the precision value for detecting a potato chip on a yellow background is lower than the

case of sushi, which further reinforces the assumption that the similarity of color of the

object being detected and the background color of the scene is may be to blame.

However, the blue and green background affect the potato chip set in a different way.

The recalls, or the ability to find positives, are at maximum values, but the precision

shows a large drop. This means that the model detects all the potato chips as positives,

but more than half of them is classified into wrong categories.

 Based on the result, we can clearly see that background color in a scene can

adversely affect the performance of our model in both the precision and recall values.

One way to mitigate this problem is to add more images with different background

colors into the training set, but this will certainly add to the overhead in the data-labeling

step. Alternatively, for a control environment where the background of the scene

remains more-or-less the same such as in a production line, we do not expect this to be

a major problem as long as the background color of the training images are similar to

the actual scene that the camera will capture. Being able to control some parts of the

variables (i.e. background color) in the actual working environment can allow some

requirements in the training data set to be relaxed, resulting in saved time and resources.

 46

4.1.3.3 Addition of Non-Food Objects

 In this scenario, we mix in non-food objects such as plastic plate, spoon, and

chopsticks into a scene with the food objects to measure the performance of our

detection model. This experiment is done on a white background color with maximum

brightness level, and the added objects do not block or overlap with the food objects.

The numbers of food objects used and the number of images taken are the same as the

previous scenarios. For the potato chip set, we use total of 100 chips and for the sushi

set, we use a total of 30 pieces of sushi.

 The result and image examples from this testing scenario are shown in Fig.40

and the evaluation is shown in Table 13.

Table 13: Evaluation of the HTC model for addition of non-food objects scenario

Set Total

objects

TP FP Total

positives

FN Precision

(%)

Recall

(%)

Chip 100 100 0 100 0 100.00 100.00

Sushi 30 30 0 30 0 100.00 100.00

Fig. 40 Examples of results with addition of non-food objects scenario:

potato chip set (Left) and sushi set (Right)

 47

The results show that adding non-food objects into the scene does not seem to

affect the precision and recall values, or the performance of the detection model like

what has been observed in the case of luminosity and the background colors. This

implies that this model can distinguish food objects from non-food objects, including

the likes of plastic plate, plastic spoon, plastic folk, and chopsticks.

4.1.3.4 Placement

In this scenario, the food objects are arranged in three different configurations:

normally-spaced, adjacent, and overlapping. For the overlapping configuration, we

only consider the potato chip set is in our test case. The background is set to white and

the luminosity is at the maximum level. We include 5 pieces of potato chips per image,

and the number of sushi is kept the same as in the previous scenarios. The total number

of images taken for each placement is 10. The image and detection result examples are

shown in Fig.41-42 and their prediction details are shown Table 14-15.

Fig. 41 Examples of potato chips detection results for different placements: normally

spaced (Left), adjacent (Middle), and overlapping (Right)

 48

Normally spaced Adjacent Overlapping

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9999

chip,0.9998

bentobox,0.5316

chip,0.7647

Normally spaced Adjacent

ebi,0.9951

salmon,0.9999

tamago,0.9987

salmon,0.9994

tamago,0.9966

These examples show that the adjacent placement can have an effect on the

prediction results. For example, in the adjacent placement of sushi objects, a false

negative is present because the model fails to detect ebi sushi. In the case of an

overlapping placement of potato chips, 2 false positives are observed: a bento box and

a large chip which the model has mistakenly considered the 5 overlapping chips as one

single chip. Consequently, there are also 5 false negatives in this case since none of the

individual chips are correctly detected.

Table 14: Class predictions with IoU scores for different

placements of potato chip set

Table 15: Class predictions with IoU scores for

different placements of sushi set

Fig. 42 Examples of sushi detection results for different placements:

normally spaced (Left), and adjacent (Right)

 49

The detection result for this placement test is represented in Table 16 and Fig.43.

Set Placement Total

objects

TP FP Total

positives

FN Precision

(%)

Recall

(%)

Chip Normally spaced 50 50 0 50 0 100.00 100.00

Adjacent 50 0 50 0 100.00 100.00

Overlapping 17 17 34 33 50.00 34.00

Sushi Normally spaced 30 30 0 30 0 100.00 100.00

Adjacent 25 3 28 2 89.29 92.59

This evaluation shows that the adjacent configuration affects the precision and

recall of the sushi set by causing a ~10% decrease, but such degradation is not observed

for the potato chip set. The overlapping configuration generates a 50% and a 66%

decrease in the precision and the recall, respectively, for the potato chip set. The result

suggests that the HTC model is able to successfully distinguish normally-spaced and

adjacent objects, but it can be prone to error when it comes to detecting overlapping

objects.

4.1.3.5 Incomplete objects

 The next scenario that we test is to assess if the model can perform inference on

an incomplete or partially-blocked objects. Only one piece of object is included per

Table 16: Evaluation of the HTC model for different placements

Fig. 43 Evaluation of the HTC model for different placements

 50

image, and 30 photos were captured for each category of objects. Additionally, we also

provide overall evaluation for the whole sushi set by combining the evaluation for each

class. The background color is set to white and the brightness level is at maximum level.

The image and detection result examples are shown in Fig.44-45. Then, we evaluate

the model as shown in Table 17 and Fig.46.

Fig. 44 Examples of incomplete potato chip detection:

normal image (Left), and detection (Right)

Fig. 45 Examples of incomplete sushi detection: ebi (Left), salmon

(Middle), and tamago (Right)

 51

The results show that the model can detect 100% of the incomplete potato chips

with the accuracy of 93.75%. This high detection accuracy might be attributed to the

fact that a potato chip has uniform color over the whole piece, even though its shape

can be different.

 In contrast, the result for the sushi data set under incomplete object testing

scenario is relatively worse when compared to that of a potato chip. The least detected

type of sushi is tamago (egg sushi) which is detected at only 28.57% recall value with

66.67% precision, and the most detected class of sushi is salmon, which has the recall

and precision of 64.29% and 90.0%, respectively. And overall precision and recall of

the sushi set is calculated to be 78.0% and 48.15%, respectively. Among these three

types of sushi, salmon is inherently more uniform in color and texture as compared to

the other two categories, which might explain why it has the highest precision and recall

value in its class.

Set Category Total

objects

TP FP Total

positives

FN Precision

(%)

Recall

(%)

Chip 30 30 2 32 0 93.75 100.00

Sushi Ebi 30 13 5 18 12 72.22 52.00

Adjacent 30 18 2 20 10 90.00 64.29

Tamago 30 8 4 12 20 66.67 28.57

Total 90 39 11 50 42 78.00 48.15

Table 17: Evaluation of the HTC model for incomplete objects scenario

Fig. 46 Evaluation of the HTC model for incomplete objects

scenario

 52

 Depending on the situation, the ability to detect an incomplete object may or

may not be beneficial to the system. For example, if the model is used as part of the

robot perception system for picking and placing food object, it is undesirable to have

the robot pick up incomplete or damaged object and place it in the final packaging. On

the other hand, a defect-free object might appear to be incomplete due to being blocked

by other objects. For this latter case, the failure to detect such object can result in an

incorrect operation in the assembly line.

4.1.3.6 Image Resolution

 In last scenario condition that we explore in the study is the effect of image

resolution, we perform inference of 9 different possible streaming resolutions from the

RGB-D camera, including, 320x180, 320x240, 424x240, 640x360, 640x480, 848x480,

960x540, 1280x720, and 1920x1080. Note that the background color is fixed to white

color and the brightness is set to maximum level. We use 10 potato chips and 3 pieces

of sushi. A total of 10 photos for each set and each image resolutions are captured and

analyzed. Example images are shown in Fig.47-48 and the evaluation result is

summarized in Table 18.

Fig. 47 Examples of the potato chip set detections in different image resolutions:

320x180 (Left), 848x480 (Middle), and 1920x1080 (Right)

 53

Set Placement Total

objects

TP FP Total

positives

FN Precision

(%)

Recall

(%)

Chip 320x180 100 100 0 100 0 100.00 100.00

320x240 100 0 100 0 100.00 100.00

424x240 100 0 100 0 100.00 100.00

640x360 100 0 100 0 100.00 100.00

640x480 100 0 100 0 100.00 100.00

848x480 100 0 100 0 100.00 100.00

960x540 100 0 100 0 100.00 100.00

1280x720 100 0 100 0 100.00 100.00

1920x1080 100 0 100 0 100.00 100.00

Sushi 320x180 30 30 0 30 0 100.00 100.00

320x240 30 0 30 0 100.00 100.00

424x240 30 0 30 0 100.00 100.00

640x360 30 0 30 0 100.00 100.00

640x480 30 0 30 0 100.00 100.00

848x480 30 0 30 0 100.00 100.00

960x540 30 0 30 0 100.00 100.00

1280x720 30 0 30 0 100.00 100.00

1920x1080 29 0 29 1 100.00 96.67

According to the evaluation in Table 18, we can conclude that different image

resolutions show little to no effect on the precision and recall values of the HTC model.

Table 18: Evaluation of the HTC model for different image resolutions

Fig. 48 Examples of the sushi set detections in different image resolutions: 320x180

(Left), 848x480 (Middle), and 1920x1080 (Right)

 54

Since the images used in the training of the model are of low to medium resolutions,

this implies that detection of high-resolution test images is still possible without the

need to include high resolution images in the training data set.

 Finally, we have been through all six test scenarios and observe how each one

of them can impact the performance of the HTC model in our experimental setup. We

have visualized the results and discussed them above. This would be beneficial to

researchers who want to improve an object detection or instance segmentation to use in

food automation. Next, we would like to show the performance of our trained models

on different conditions.

4.1.4 Inference Speed Analysis

 In this section, we compare inference speed between the 2 models: Cascade

Mask R-CNN and HTC without semantic segmentation. Two testing conditions are

used in the comparison, namely, the number of objects presented in the image and

resolution of the image being analyzed. The models used are the 300-epoch models that

are trained on Google Colab. The testing is also completely done on Colab with Nvidia

Tesla T4 GPU. We measure the inference speed by calculating the difference in time

between before and after we execute the function, inference_detector, which is the

function provided by the MMDetection toolbox, and is used to perform inference in the

previous section.

4.1.4.1 Number of objects

 We perform the evaluation on the potato chip class by preparing 20 different

images of potato chips where the number of potato chips in an image varies from 1 to

20 potato chips. The inference is performed 30 times for each image and the average

time is calculated to be the representative value for that particular image. The

representative values of the inference speed (in frame per seconds) for Cascade Mask

R-CNN and HTC model are shown in Fig.49.

 55

As is evident in the figure, the inference speeds of both models tend to decrease

as the number of objects increases, as expected. The HTC model decreases at a slightly

faster rate than that of Cascade Mask R-CNN model. However, these two models share

approximately the same values when the number of objects is small (4 objects or less

in this experiment).

4.1.4.2 Image Resolution

 In this section, we perform inference for different resolutions of potato chip

images, where each image contains 10 potato chips. For each image resolution, there

are 10 different images. We conduct inference on all of the images, 30 times per image.

We find the average values of 30 iterations and then calculate the final average values

of among the 10 images. There are 9 different possible streaming resolutions including,

320x180, 320x240, 424x240, 640x360, 640x480, 848x480, 960x540, 1280x720, and

1920x1080. Most of them are in 16:9 scale, except for 320x240 and 640x480, which

are in 4:3 ratio.

The inference speed on different image resolutions with Cascade Mask R-CNN

and HTC modes is shown in Fig.50.

Fig. 49 Inference speed comparison between Cascade Mask R-CNN

model and HTC model on different numbers of potato chips in an image

 56

From the charts, the inference speed values tend to go down as the resolution,

or the number of pixels, increases. Moreover, the inference speeds of Cascade Mask R-

CNN are higher than HTC for all image resolution tested here. Additionally, the result

is consistent for both 16:9 and 4:3 ratio images.

Fig. 50 Inference speed comparison between Cascade Mask

R-CNN model and HTC model on 16:9 image resolutions

Fig. 51 Inference speed comparison between Cascade Mask R-

CNN model and HTC model on 4:3 image resolutions

 57

 We have measured and compared the inference speeds using two test

conditions. We can conclude that the Cascade Mask R-CNN model generally shows a

faster inference speed than the HTC model in a given condition. The results also

indicate that the number of objects in an image affects the speed of the detection in both

models. Additionally, the higher number of pixels or higher resolution will require more

time to perform inference, and a 4:3 ratio images seem to have faster inference rate than

16:9 ratio images even if they possess higher number of pixels.

 In this section, we have discussed all of the 2D segmentation results, namely,

model evaluation, segmentation results on test set, different scenario impacts on HTC

model performance, and inference speed analysis. The result illustrates the ability of

the model to detect food objects in many different conditions, but it also highlights the

limitations and issues that occur in other cases. Nevertheless, the result and discussion

presented here can serve as a guide towards improving 2D instance segmentation

models in the future.

4.2 3D Point cloud extraction

 In this part, we will discuss our 3D point cloud extraction results and compare

the two extraction methods that are used.

4.2.1 Point Cloud Extraction Results

Fig. 51 (Left) shows an RGB frame of the depth camera and Fig. 51 (Right)

shows the corresponding extracted point cloud of that frame with the depth cloud of the

surroundings. Using rviz for visualization, the point cloud messages of each object are

published in different ROS topics with different colors and they can be visualized

simultaneously. In this example image, there are 4 objects being detected: Japanese

lunch box (blue), Japanese rice ball (green), potato chip (yellow), and Japanese fried

chicken (red).

 58

Fig.52 shows the extracted point cloud of a Japanese rice ball (onigiri) as seen

from different perspectives. The left column shows the RGB images and the right

column shows their corresponding point cloud information. The green cluster

represents the point cloud of the detected object (onigiri) and the white cluster

represents the depth information of the surroundings (plate and table). The point cloud

information of each object is streamed in real-time as the camera raw data.

Fig. 52 RGB frame of the depth camera (Left) and extracted point cloud

visualization (Right)

Fig. 53 Japanese rice ball point cloud visualization

 59

4.2.2 Extraction Method Comparison

Comparing between the two methods of point cloud extraction, the first extraction

method using depth topic shows a faster processing time as compared to the second

extraction method, which uses point cloud topic. The processing time comparison of

their first thousand frames is shown in Fig 53. Measured using ‘timeit’ Python library,

the average processing time of the first and the second extraction methods are 0.149

and 0.211 seconds (6.71 and 4.74 fps), respectively. This translates to about a 1.4x

faster processing time for the first extraction method. It is worth noting that although

the second extraction method has worse performance, it is easier to understand and

implement. Furthermore, the point cloud extracted using the second method comes with

RGB information of the corresponding RGB frame, which could be beneficial to other

types of analysis as well.

Fig. 54 Comparison of processing time between two methods of

point cloud extraction

CHAPTER 5 CONCLUSION

Food industry will continue to evolve as technology becomes more integrated

as part of the daily operations to improve efficiency in productions, streamline

distribution, and ensure quality control. Manual and repetitive tasks carried out by

humans will gradually be replaced by automated machines and industrial robots. To

this end, we anticipate that machine vision will play a key role in enabling such a

transition. In this work, we have implemented instance segmentation models using

Cascade Mask R-CNN and HTC models that are able to detect Japanese food using 2D

RGB data. The 2D segmentation result is then combined with a point cloud information

acquired using depth sensing camera to create a 3D segmentation that is essential for

accomplishing tasks that involve grasping and picking-and-placing object.

The segmentation result between Cascade Mask R-CNN and HTC models is

evaluated. HTC model consistently shows higher mean average precision score and less

false positive when compared to Cascade Mask R-CNN, but its inference speed tends

to be slower, especially as more objects are added to the scene. In addition, we evaluate

the performance of the HTC model under different scenario conditions, including

luminosity, background colors, placement, resolution, addition of non-food objects, and

having an incomplete object. In our experiment, it is observed that luminosity,

background colors, and having an incomplete object show the most impact on the

precision and recall values of an image segmentation.

Two methods for point cloud extraction using depth sensing camera are

presented. One is through subscription of a depth topic and the other is through point

cloud topic. The depth topic method is able to achieve 6.71 fps, which is 1.4x higher

frame rate as compared to the point cloud topic, but it also requires more post-

processing calculation. Once depth information is combined with previously segmented

2D result, a centroid of each 3D segmented object can be calculated by taking the

average value of the x, y, and z coordinates.

 Our study shows the feasibility of using 2D RGB data for classifying and

localization of complex, non-uniform food objects. To implement such system in the

actual production line, careful consideration in regards to the environment must be

 61

taken. As discussed previously, the backgrounds and surroundings of where the food

objects are situated can have a significant impact on the classification. If the

background and the environment can be well-controlled, it would reduce the burden of

having to train the classification model on many different backgrounds, for example. A

detection model tailored for a specific usage environment, instead of a universal one,

would require less dataset to train without compromising on its real-world usage

accuracy. In addition, instance segmentation does not necessarily have to rely only on

2D RGB data. In fact, it should be possible to improve the performance of the

segmentation model by incorporating depth information into the training process, or

use it to isolate target objects from the background itself.

 62

REFERENCES

REFERENCES

[1] P. Hoden, "Automation in the food industry," in Automation in the food industry vol. 2020,
ed, 2011.

[2] Z. Cai and N. Vasconcelos, "Cascade R-CNN: Delving into High Quality Object
Detection," 12/03 2017.

[3] K. He, G. Gkioxari, P. Dollár, and R. Girshick, "Mask R-CNN," in 2017 IEEE
International Conference on Computer Vision (ICCV), 22-29 Oct. 2017 2017, pp. 2980-
2988, doi: 10.1109/ICCV.2017.322.

[4] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks," IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 39, 06/04 2015, doi: 10.1109/TPAMI.2016.2577031.

[5] K. Chen et al., "MMDetection: Open MMLab Detection Toolbox and Benchmark," arXiv e-
prints, p. arXiv:1906.07155, 2019.

[6] A. Zhang, Z. C. Lipton, and M. L. a. A. J. Smola, Dive into Deep Learning. 2020.
[7] S. Halbe, "Object Detection and Instance Segmentation: A detailed overview," ed, 2020.
[8] K. Chen et al., "Hybrid Task Cascade for Instance Segmentation," in 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), 15-20 June 2019 2019,
pp. 4969-4978, doi: 10.1109/CVPR.2019.00511.

[9] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition. 2016,
pp. 770-778.

[10] O. Russakovsky et al., "Imagenet large scale visual recognition challenge," Int. J. Comput.
Vis., pp. 1-42, 01/01 2014.

[11] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale
Image Recognition," arXiv 1409.1556, 09/04 2014.

[12] A. Krizhevsky, "Learning Multiple Layers of Features from Tiny Images," University of
Toronto, 05/08 2012.

[13] E. Shelhamer, J. Long, and T. Darrell, "Fully Convolutional Networks for Semantic
Segmentation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
pp. 1-1, 05/24 2016, doi: 10.1109/TPAMI.2016.2572683.

 64

[14] S.-H. Tsang, "Review: FCN — Fully Convolutional Network (Semantic Segmentation),"
ed, 2018.

[15] "Beginner’s guide to depth." https://www.intelrealsense.com/beginners-guide-to-depth
(accessed Sep 20, 2020).

[16] "What is Apple Face ID and how does it work?" https://www.pocket-
lint.com/phones/news/apple/142207-what-is-apple-face-id-and-how-does-it-work (accessed
Nov 30, 2020).

[17] "COMPARING DRONE LIDAR AND PHOTOGRAMMETRY." https://terra-
drone.eu/en/articles-en/comparing-drone-lidar-and-photogrammetry (accessed Nov 30,
2020).

[18] F. Garcia et al., "ANALYSIS OF LIDAR SENSORS FOR NEW ADAS APPLICATIONS.
USABILITY IN MOVING OBSTACLES DETECTION," 01/01 2009.

[19] "TensorBoard: TensorFlow's visualization toolkit." https://www.tensorflow.org/tensorboard
(accessed Nov 30, 2020).

[20] "Why TensorFlow." https://www.tensorflow.org/about/case-studies (accessed Nov 30,
2020).

[21] D. Mwiti, "Deep Learning with PyTorch: An Introduction," ed, 2018.
[22] A. Paszke et al., "Automatic differentiation in PyTorch," 2017.
[23] Y. Tawil, "An Introduction to Robot Operating System (ROS)," ed, 2017.
[24] "ROS Concepts." http://wiki.ros.org/ROS/Concepts (accessed Oct 21, 2020).
[25] "SIA5F 7-Axis Articulated Arm." https://www.motoman.com/enus/products-

/robots/industrial/assembly-handling/siaseries/sia5f/ (accessed Apr 20, 2020).
[26] "Intel RealSense Depth Camera D435i datasheet." https://www.intelrealsense.com-

/wpcontent/uploads/2020/05/Intel-RealSense-D400-SeriesDatasheet-May-2020.pdf
(accessed Mar 15, 2020).

[27] "Nvidia GeForce RTX 2080 Ti Graphics Card." https://www.nvidia.com/en-
us/geforce/graphicscards/rtx-2080-ti/ (accessed Mar 15, 2020).

[28] E. Bisong, "Google Colaboratory," in Building Machine Learning and Deep Learning
Models on Google Cloud Platform: A Comprehensive Guide for Beginners, E. Bisong Ed.
Berkeley, CA: Apress, 2019, pp. 59-64.

https://www.intelrealsense.com/beginners-guide-to-depth
https://www.pocket-lint.com/phones/news/apple/142207-what-is-apple-face-id-and-how-does-it-work
https://www.pocket-lint.com/phones/news/apple/142207-what-is-apple-face-id-and-how-does-it-work
https://terra-drone.eu/en/articles-en/comparing-drone-lidar-and-photogrammetry
https://terra-drone.eu/en/articles-en/comparing-drone-lidar-and-photogrammetry
https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/about/case-studies
http://wiki.ros.org/ROS/Concepts
https://www.motoman.com/enus/products-/robots/industrial/assembly-handling/siaseries/sia5f/
https://www.motoman.com/enus/products-/robots/industrial/assembly-handling/siaseries/sia5f/
https://www.intelrealsense.com-/wpcontent/uploads/2020/05/Intel-RealSense-D400-SeriesDatasheet-May-2020.pdf
https://www.intelrealsense.com-/wpcontent/uploads/2020/05/Intel-RealSense-D400-SeriesDatasheet-May-2020.pdf
https://www.nvidia.com/en-us/geforce/graphicscards/rtx-2080-ti/
https://www.nvidia.com/en-us/geforce/graphicscards/rtx-2080-ti/

 65

[29] "Instance Segmentation on COCO test-dev." https://paperswithcode.com/sota/instance-
segmentation-on-coco (accessed Feb 9, 2020).

[30] A. Eklund, "Cascade Mask R-CNN and Keypoint Detection used in Floorplan Parsing,"
Independent thesis Advanced level (professional degree) Student thesis, UPTEC IT, 20029,
2020. [Online]. Available: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-415371

[31] T.-Y. Lin et al., "Microsoft COCO: Common Objects in Context," 05/01 2014.
[32] J. Brooks. "COCO Annotator." https://github.com/jsbroks/coco-annotator/ (accessed 2020).
[33] J. Hui. "mAP (mean Average Precision) for Object Detection." https://jonathan-

hui.medium.com/map-mean-average-precision-for-object-detection-
45c121a31173#:~:text=mAP%20(mean%20average%20precision)%20is,difference%20bet
ween%20AP%20and%20mAP. (accessed Nov 25, 2020).

https://paperswithcode.com/sota/instance-segmentation-on-coco
https://paperswithcode.com/sota/instance-segmentation-on-coco
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-415371
https://github.com/jsbroks/coco-annotator/
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173#:~:text=mAP%20(mean%20average%20precision)%20is,difference%20between%20AP%20and%20mAP
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173#:~:text=mAP%20(mean%20average%20precision)%20is,difference%20between%20AP%20and%20mAP
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173#:~:text=mAP%20(mean%20average%20precision)%20is,difference%20between%20AP%20and%20mAP
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173#:~:text=mAP%20(mean%20average%20precision)%20is,difference%20between%20AP%20and%20mAP

VITA

VITA

NAME Suthiwat Yarnchalothorn

DATE OF BIRTH 16 July 1996

PLACE OF BIRTH Lopburi

INSTITUTIONS

ATTENDED

Chulalongkorn University

HOME ADDRESS 688/134 Soi Phayanak, Phayathai Road, Thanon Petchburi,

Ratchathewi, Bangkok 10400.

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1 INTRODUCTION
	1.1 Background
	1.2 Objectives and Scope
	1.2.1 Objectives
	1.2.2 Scope

	1.3 Timeline
	1.4 Expected Outcome

	CHAPTER 2 LITERATURE REVIEW
	2.1 Object Detection and Instance Segmentation
	2.1.1 Region-based CNNs
	2.1.2 Cascade R-CNN
	2.1.3 Hybrid Task Cascade

	2.2 Components of Deep Neural Network
	2.2.1 Region Proposal Networks (RPN)
	2.2.2 Residual Network (ResNet)
	2.2.3 Fully Convolutional Networks (FCN)

	2.3 3D Computer Vision
	2.3.1 Depth Camera Technologies
	2.3.2 Depth Image vs 3D Point Cloud
	2.3.3 Centroid of a 3D point cloud

	2.4 Framework
	2.4.1 Deep Learning Frameworks
	2.4.2 MMDetection
	2.4.3 Robot Operating System (ROS)

	CHAPTER 3 METHODOLOGY
	3.1 Hardware
	3.2 Deep Learning Implementation
	3.2.1 MMDetection Toolbox
	3.2.2 Deep Learning Architectures

	3.3 Model Training
	3.4 Datasets
	3.5 Point Cloud Extraction
	3.5.1 Via Depth Topic
	3.5.2 Via Point Cloud Topic
	3.5.3 Centroid of Point Cloud

	CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSION
	4.1 2D Segmentation
	4.1.1 Model Evaluation
	4.1.2 Segmentation Results of the test dataset
	4.1.3 Scenario Impacts on HTC model
	4.1.3.1 Luminosity
	4.1.3.2 Background Colors
	4.1.3.3 Addition of Non-Food Objects
	4.1.3.4 Placement
	4.1.3.5 Incomplete objects
	4.1.3.6 Image Resolution

	4.1.4 Inference Speed Analysis
	4.1.4.1 Number of objects
	4.1.4.2 Image Resolution

	4.2 3D Point cloud extraction
	4.2.1 Point Cloud Extraction Results
	4.2.2 Extraction Method Comparison

	CHAPTER 5 CONCLUSION
	REFERENCES
	VITA

