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ABSTRACT

5673001063  Petroleum Technology Program
Akrawin Jongpitisub: Study of CO2 capture process using aqueous
ammonia,
Thesis Advisors: Asst. Prof. Kitipat Siemanond and Prof. Amr Henni
9% pp.

Keywords:  Post combustion CO2 capture/ MEA scrubbing process/ Ammonia
scrubbing process/ Simulation modelling/ Heat exchanger network.

Carbon dioxide (CO2) emissions to the atmosphere have become an issue
for many industries, especially coal-fired power plants, due to their contribution to
global warming. Many research projects are presently involved the development of
effective solvents to combat these severe environmental problems. Aqueous
ammonia is a solvent that has been proposed as a replacement to conventional
aqueous monoethanolamine (MEA) in post-combustion COz capture. In this study,
an aqueous ammonia based CO2 capture process was simulated by Aspen Plus
simulator for capturing about 90 % by weight of CO2 with a purity of 98 % by weight
from a post-combustion flue gas based on a 180 MWe coal-fired power plant. The
simulation d? this process was performed to meet the ammonia emission standard.
An ammonia-based simulation process consists of two parts: the CO2 absorption
process and the ammonia abatement process. To minimize the energy consumption of
the process, heat integration was applied by adding a Heat Exchanger Network
(HEN). HEN was designed using stage-wise model (Yee and Grossmann, 1990) and
validated using the Aspen Plus simulator. Furthermore, capital investment and annual
costs were investigated using Aspen Plus Cost Estimator, and some economic
parameters (Hassan et al, 2007) to assess the feasibility of this process based on
standard environmental regulations. The results showed that the performance of
actual agueous ammonia plants using process integration reduced the energy
requirement from a “non-integrated process by 58 % on the heaters, coolers and
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electrical units, resulting in a theoretical decrease of 47 % in the annual cost of
utilities, compared to the cost without process heat integration.
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