ENHANCEMENT OF CO₂ GAS ADSORPTION OF HIGHLY POROUS MATERIAL FROM POLY(DVB) POLYHIPE BY USING LAYER-BY-LAYER SURFACE

.

Jirasuta Chungprempree

.

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2015

T 28369373

Thesis Title:	Enhancement of CO ₂ Gas Adsorption of Highly Porous	
	Material from Poly(DVB) PolyHIPE by Using Layer-by-	
	Layer Surface	
By:	Jirasuta Chungprempree	
Program:	Polymer Science	
Thesis Advisors:	Asst. Prof. Manit Nithitanakul	
	Asst. Prof. Stephan T. Dubas	

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

...... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

. (Asst. Frof. Manit Nithitanakul)

.

(Asst. Prof. Stephan T. Dubas)

Thougalat Chaisn

(Asst. Prof. Thanyalak Chaisuwan)

ton ς.

(Asst. Prof. Pornsri Sapsrithong)

ABSTRACT

5672004063: Polymer Science Program
Jirasuta Chungprempree: Enhancement of CO₂ Gas Adsorption of
Highly Porous Material from Poly(DVB)PolyHIPE by Using Layerby-Layer Surface.
Thesis Advisors: Asst. Prof. Manit Nithitanakul. and Asst. Prof.
Stephan T. Dubas 44 pp.
Keywords: Poly(S/DVB)HIPEs/ Layer-by-Layer / Mix surfactants/ CO₂ gas
absorption

PolyHIPE is a highly porous polymer synthesized from high internal phase emulsions using polystyrene (S) and polydivinylbenzene (DVB). The surface of polyHIPE was modified by Layer-by-Layer (LbL) technique by using alternate deposition. This technique consisted of two main layers, the primary layer was repeated until six layers of poly(diallyldimethylammonium chloride) and poly(styrene sulfonate), polycation and polyanionic, respectively. The secondary layer, which used as CO₂ adsorping layer, was the solution of polyethylenimine (PEI) and tetraethylenepentamine (TEPA). In this experiment, polyHIPE were prepared with ratios of S:DVB were varied by 0:100, 80:20, and 20:80.

Pore diameter of the prepared Poly(S/DVB)HIPE were determined and found to be decreased from 79.4 to 41.2 μ m with increased amount of DVB used. Moreover, the compressive modulus and decomposition temperature of poly(S/DVB)HIPEs was increased from 1.79 to 5.41 MPa and 440.98 to 373.79°C, respectively.

 CO_2 adsorption tests were carried out on the obtained modified and unmodified poly(S/DVB)HIPE and it was found to be improved: this is due to the influence of ratio of S:DVB and amine solution investigated by GC-TGA technique. As the result, modified polyHIPE using S/DVB content; 0:100 with PEI on surface has the highest of CO_2 adsorption at 1.04 mmol/g.

67

บทคัดย่อ

จิรสุตา จึงเปรมปรี : การเพิ่มประสิทธิภาพการดูดซับก๊าซคาร์บอนไดออกไซด์ด้วยวัสดุ รูพรุนสูงที่ผ่านการปรับปรุงด้วยเทคนิคเคลือบชั้นผิวพอลิเมอร์ (Enhancement of CO₂ Gas Adsorption of Highly Porous Material from Poly(DVB)PolyHIPE by Using Layerby-Layer Surface) อ. ที่ปรึกษา : ผศ. คร. มานิตย์ นิธิธนากุล และ ผศ. คร. สเตฟาน ทีดูบาส 44 หน้า

พอลิฮีพ คือวัสดุรูพรุนสูงที่ถูกสังเคราะห์จากพอลิเมอไรเซชันของอิมัลชันที่ ประกอบด้วยพอลิสไตรีน และไดไวนิลเบนซีน ซึ่งมีการปรับสภาพพื้นผิวของพอลิฮีพ โดยใช้ เทคนิคเคลือบชั้นผิวพอลิเมอร์ โดยเทคนิคนี้ประกอบด้วย 2 ชั้นหลัก ได้แก่ชั้นปฐมภูมิ ประกอบด้วยสารละลายที่มีประจุบวกของพอลิไดเมทิลแอมโมเนียมคลอไรด์ และประจุลบของ พอลิสไตรีนซัลโฟเนต ที่มีการวางสลับกันไปมา 6 ชั้น และชั้นทุติยภูมิที่ถูกใช้ในการดูดซับก๊าซ การ์บอนไดออกไซด์ซึ่งประกอบด้วยพอลิเอทิลีนอิมีน และเทตะเอทิลีนเพนทามีน ซึ่งในงานวิจัยนี้ มีการเตรียมอัตราส่วนของพอลิสไตรีนต่อไดไวนิลเบนซีน ไว้ดังนี้ 0:100, 20:80 และ 80:20

จากผลการวิจัขพบว่าเส้นผ่านสูตรกลางของพอลิฮีพ ลคลงจาก 79.4 ถึง 41.2 ไมโครเมตร เมื่อมีการเพิ่มสัคส่วนของไคไวนิลเบนซีน อีกทั้งค่าโมดูลัสการกคอัคและอุณหภูมิการสลายตัวของ สารมีค่าเพิ่มขึ้น จาก 1.79 ถึง 5.41 เม็กกะปาสคาล และ 440.98 ถึง 373.79 องศาเซลเซียส ตามลำคับ

จากการทดสอบการดูดซับก๊าซคาร์บอนไดออกไซด์โดยพอลิ(สไตรีน/ไดไวนิลเบนซีน) ฮีพ พบว่าสัดส่วนของพอลิสไตรีนต่อไดไวนิลเบนซีน และสารละลายเอมีน มีผลต่อการดูดซับ ก๊าซคาร์บอนไดออกไซด์ของพอลิฮีพ โดยพบว่าพอลิฮีพ ที่มีสัดส่วนของพอลิสไตรีนต่อไดไวนิล เบนซีน 0:100 และผ่านการปรับปรุงผิวด้วยสารละลายเอมีนของพอลิเอทิลีนเอมีน มีก่าการดูดซับ การ์บอนไดออกไซด์สูงสุดที่ 1.04 มิลลิโมลต่อกรัม

Ø

ACKNOWLEDGEMENTS

The author is grateful for the partial scholarship and partial funding of the thesis work provided by the Petroleum and Petrochemical College

This thesis would not have been accomplished without the guidance and the support from many persons. I would like to use this opportunity to extend my heartfelt gratitude to the following.

Frist, I would like to express my gratitude to my advisor, Asst. Prof. Manit Nithitanakul for the useful comments, generous support and constant encouragement throughout the learning process of this master thesis. His words can always inspire me and bring me to higher level of thinking. I would not have achieved this far and this thesis would not have been completed without all the support.

Furthermore, I would like to extend our sincere thanks to Asst. Prof. Stephan Dubas and Asst. Prof. Pornsri Sapsrithong for their helpful and constructive suggestion. They have provided insightful discussions about research and sacrificed their time to teach and help me when I have problem.

Deepest gratitude are also due to the members of the committee, Asst. Prof. Thanyalak Chaisuwan for insightful comments, and useful question.

Many people, especially MN group, all senior students, team members, and our classmates, have made valuable suggestions on this proposal which gave us an inspiration to improve my work. We thank all the people for their help directly and indirectly to complete the thesis.

Most importantly, none of this would have been possible without the love, support, and encouragement of my family. I am especially grateful to my parents, who believed in me and wanted the best for me. Thank you for giving me inspiration that my life was to learn and to know and understand myself; only then could I know and understand others.

TABLE OF CONTENTS

		PAGE
Title Page		i
Abstract (in English)		iii
Abstract (in Thai)		iv
Acknowledgements		v
Table of Contents		vi
List of Tables	3	ix
List of Figures		х

CHAPTER

I	INTRODUCTION	1
II	LITERATURE REVIEW	3
	2.1 Theoretical Background	3
	2.2 High Internal Phase Emulsion Polymer (PolyHIPE)	4
	2.3 Polystyrene (S)	8
	2.4 Divinylbenzene (DVB)	9
	2.5 Surface Modification Using Layer-by-Layer Technique	9
	2.6 Polystyrenesulfonate (PSS)	12
	2.7 Poly(diallyldimethylammonium Chloride) (PDADMAC)	12
	2.8 Polyethylenimine (PEI)	13
	2.9 Tetraethylenepentamine (TEPA)	14
III	EXPERIMENTAL	16
	3.1 Materials	16
	3.2 Experimental Procedures	16

1	3.2.1 Preparation of Poly(S/DVB)HIPE	16
	3.2.2 Poly(S/DVB)HIPE Surface Modification	17
	3.3 Characterization	17
	3.3.1 Scanning Electron Microscope (SEM)	17
	3.3.2 Autosorb-1MP	17
	3.3.3 Mechanical Properties	17
	3.3.4 Thermogravimetric Analysis (TGA)	18
	3.3.5 Fourier Transform Infrared Spectroscopy (FT-IR)	18
	3.3.6 UV-Vis Spectroscopy	18
	3.3.7 Adsorption of Carbon Dioxide (CO ₂)	18
IV	RESULTS AND DISCUSSION	19
	4.1 Morphology of Poly(S/DVB)HIPE	19
	4.2 Physical Properties of Poly(S/DVB)HIPE	20
	4.3 Thermal Properties	21
	4.4 Mechanical Properties	· 22
	4.5 Surface Modification of Poly(S/DVB)HIPE	24
	4.6 Adsorption Capacities	27
V	CONCLUSIONS AND RECOMMENDATIONS	32
	5.1 Conclusions	32
	5.2 Recommendations	32
	REFERENCES	33
	APPENDICES	38
	Appendix A Experimental-Data	38

CHAPTER

PAGE

Appendix B	Fourier Transform Infrared Spectroscopy (FTIR)	42
Appendix C	Calculation CO ₂ Adsorption	43

CURRICULUM VITAE44

.

σ

LIST OF TABLES

TABLES

PAGE

2.1	CO ₂ capture capacity of amine-multilayered PMMA solid	
	sorbents under pure CO ₂ atmosphere	11
4.1	Surface area and pore size characteristics of	
	poly(S/DVB)HIPE in different a ratio	21
4.2	Degradation temperature (T_d) and residue yield (%) of	
	poly(S/DVB)HIPE filled with different a ratio	21
4.3	Mechanical properties of poly(S/DVB)HIPE between	
	compressive stress (MPa) and young's modulus (MPa) filled	
	with different a ratio	23
4.4	CO2 adsorption of poly(S/DVB)HIPE between unmodified	
	and amine modified surface	28
4.5	Difference CO ₂ adsorption of modify surface of poly(S/DVB	
	(20:80))HIPEs with difference number of layers	30
4.6	CO2 adsorption of poly(S/DVB)HIPE between unmodified	
	and amine-modified surface	30
4.7	Amine content of different samples	30
Al	Multipoint BET surface area of polyHIPE filled with different	
	S/DVB ratio	39
A2	Universal testing machine of polyHIPE filled with differrant	
	S/DVB ratio	41

σ

4

LIST OF FIGURES

FIGURE

σ

FIGU	KE	PAG
2.1	Schematic diagram of CO ₂ production and capture	3
2.2	PolyHIPE preparation	4
2.3	Characteristic structure of a polyHIPE	5
2.4	Different type of unstable emulsion	6
2.5	Morphology of polyHIPEs	7
2.6	The structure of polystyrene	8
2.7	Structure of divinylbenzene	9
2.8	Preparation of amine multilayered on PMMA microparticles	10
2.9	Schematic of layer-by-layer adsorption of polyelectrolyte	
	multilayers	11
2.10	Structure of polystyrenesulfonate	12
2.11	Structure of poly(diallyldimethylammonium chloride)	13
2.12	The structure of polyethylenimine	13
2.13	Structure of tetraethylenepentamine	14
4.1	Scanning electron micrographs of different ratio S:DVB of	
	poly(S/DVB)HIPE; magnification ×500 (a) 0:100 (b) 20:80 (c)	
	80:20	19
4.2	Scanning electron micrographs of poly(S/DVB)HIPE;	
	(a) Unmodified S:DVB 80:20 (×500), (b) Modified S:DVB	
	80:20 (×500), (c) Unmodified S:DVB 80:20 (×2000), and (d)	
	Modified S:DVB 80:20(×2000)	20
4.3	Thermal properties of poly(S/VDB)HIPE filled with different	
	a ratio	22
4.4	Compressive stress-extension curves of poly(S/VDB)HIPEs	
	filled with different a ratio	23

x

LIST OF FIGURES

	FIGURE .		PAGE	
	4.5	Photograph of polyHIPE modified surface: (a, c, and f)		
		PDADMAC on top of surface; (b, d, and h) PSS on top of		
		surface and (i) PEI on top of surface	24	
	4.6	Photograph of polyHIPE modified surface by PDAD-PSS: (a)		
		no coating; (b) surface coating 2 to 6 layers; (c) cross-section		
		coating 2 to 6 layers	25	
	4.7	Absorbance-number of layer curves for PDAD/PSS deposited		
		1.0 M NaCl: (a) top surface of polyHIPE; (b) cross section of		
		polyHIPE	25	
	4.8	Absorbance-number of layer curves for PDAD/PSS deposited		
		1.0 M NaCl	26	
	4.9	Comparison of the CO_2 breakthrough curve of $poly(S/DVB)$		
		HIPEs filled with different a ratio	28	
	4.10	Comparison of the CO_2 breakthrough curve of modified		
0		poly(S/DVB)HIPEs with PEI	29	
	4.11	Comparison of the CO_2 breakthrough curve of modified		
		poly(S/DVB)HIPEs with TEPA	29	
	4.12	Comparison of the CO_2 breakthrough curve of unmodified and		
		amine-modified poly(DVB)HIPEs	31	
	B1	FTIR spectra of polyHIPE filled with different S/BVD of		
		0:100 (a) unmodified poly(S/DVB)HIPE (b) modified		
		poly(S/DVB)HIPE with PEI solution (c) PEI solution and the		
		spectra of N-H stretching at 3400-3380 cm ⁻¹ and N-H bend		
		vibration at 1650-1550 cm ⁻¹	42	

xī