BIOBUTANOL PRODUCTION BY IMMOBILIZED *CLOSTRIDIUM BEIJERINCKII* TISTR 1461 ONTO POROUS MATERIALS

Rapeephat Vichuviwat

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan. The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2014

128370144

Thesis Title:	Biobutanol Production by Immobilized Clostridium	
	beijerinckii TISTR 1461 onto Porous Materials	
By:	Rapeephat Vichuviwat	
Program:	Petrochemical Technology	
Thesis Advisors:	Assoc. Prof. Apanee Luengnaruemitchai	
	Assoc. Prof. Sujitra Wongkasemjit	

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University in partial fulfillment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

MM

(Assoc. Prof. Apanee, Luengnarmemitchai)

englange wha

(Assoc. Prof. Sujitra Wongkasemjit)

Thanyald Cle

(Asst. Prof. Thanyalak Chaisuwan)

(Dr. Ruengsak Thitiratsakul)

ABSTRACT

5571019063: Petrochemical Technology Program Rapeephat Vichuviwat: Biobutanol Production by Immobilized *Clostridium beijerinckii* TISTR 1461 onto Porous Materials. Thesis Advisors: Assoc. Prof. Apanee Luengnaruemitchai and Assoc. Prof. Sujitra Wongkasemjit 85 pp.
Keywords: Butanol/ ABE fermentation / Immobilization / *Clostridium*

beijerinckii

Butanol is an attractive fuel since it can be used as a fuel additive to reduce petroleum fuel consumption. However, traditional acetone-butanol-ethanol (ABE) fermentation has limitations-low productivity, butanol toxicity on microorganisms, and unstable production. Therefore, to enhance ABE fermentation, the cell immobilization on porous materials has been applied. Immobilized cells have been used to maintain high cell concentrations and stability of cell operation during the fermentation process. Consequently, this research aimed to study ABE fermentation by immobilized Clostridium beijerinckii TISTR 1461 onto different porous materials. Brick, activated carbon, and zeolite were used as carriers for immobilization. Fermented product samples were collected at different times on stream to observe the productivity of the immobilized cells fermentation, and compared with the free mobilized cells fermentation process. Butanol production from immobilized cells fermentation on brick and zeolite were 9.5% and 62.0% higher, respectively, than free mobilized cells fermentation. Whereas, butanol production from immobilized cells fermentation on activation carbon was found to be lower than free mobilized cells 45.0%. There observed that the effect of materials to medium pH has play role on solvent production. Repeat batch fermentation with immobilized cell on zeolite for investigate cell efficiency was substantial and maintained after seven sequential reuse cycles. The average butanol production amounted to 6.5 g/l. Scanning electron microscopy (SEM) demonstrated that the Clostridium beijerinckii cells were present on the surface and in the pores of the materials.

บทคัดย่อ

รพีพัฒน์ วิชชุวิวรรธณ์ : การผลิตบิวทานอลชีวภาพโดยการตรึง *Clostridium beijerinckii* TISTR 1461 ลงบนวัสดุรูพรุน (Biobutanol Production by Immobilized *Clostridium beijerinckii* TISTR 1461 onto Porous Materials) อ. ที่ปรึกษา: รศ.ดร. อาภาณี เหลืองนฤมิตชัย และ รศ.ดร. สุจิ ตรา วงศ์เกษมจิตต์ 85 หน้า

บิวทานอลเป็นพลังงานเชื้อเพลิงที่กำลังได้รับความสนใจเนื่องด้วยความสามารถที่ใช้เป็น สารตัวเติมในเชื้อเพลิงเพื่อลุคการใช้เชื้อเพลิงจากปีโตรเลียม อย่างไรก็ตามการหมักเพื่อผลิต อะซิ โตน-บิวทานอล-เอทานอล (ABE) แบบคั้งเดิมนั้นมีข้อจำกัดหลายประการ อาทิ ความสามารถใน การผลิตที่ต่ำ, ความเป็นพิษของบิวทานอลต่อเชื้อจุลินทรีย์ และ ความไม่เสถียรในการผลิต ค้วย เหตุดังกล่าว เพื่อการปรับปรุงกระบวนการหมัก ABE การตรึงเซลล์ลงบนวัสดุรูพรุนจึงได้นำมา ประยุกต์ใช้ การตรึงเซลล์สามารถใช้เพื่อเพิ่มความหนานแน่นและจำนวนเซลล์ อีกทั้งยังสามารถ ้ช่วยในเรื่องความเสถียรของเซลล์ในระหว่างกระบวนการหมักอีกด้วย ดังนั้นจึงนำมาซึ่ง วัตถุประสงค์ของงานวิจัยนี้คือ การศึกษาการหมักABEด้วยวิธีการตรึง Clostridium beijerinckii TISTR 1461 ลงบนวัสคุรพรุนชนิดต่างๆ โดยอิฐ, ถ่านกัมมันต์ และ ซีโอไลต์ ถูกนำมาใช้เป็นวัสคุ ที่ใช้การตรึงเซลล์ในการศึกษานี้ ตัวอย่างผลิตภัณฑ์จากการหมักจะถูกเก็บในเวลาที่ต่างกันเพื่อ สึกษาการผลิตผลิตภัณฑ์เปรียบเทียบระหว่างการหมักแบบตรึงเซลล์และกระบวนการหมักแบบ เซลล์เคลื่อนที่โดยอิสระ บิวทานอลที่ผลิตได้จากการหมักแบบตรึงเซลล์ลงบนอิฐและซีโอไลต์ได้ ความเข้มข้นมากกว่าการหมักแบบเซลล์เคลื่อนที่อิสระเป็น 9.5% และ 62% ตามลำคับ ในขณะที่ ้บิวทานอลที่ผลิตได้จากการตรึงเซลล์ลงบนถ่านกัมมันต์นั้นน้อยกว่าบิวทานอลจากการหมักแบบ เซลล์เคลื่อนที่อิสระเป็น 45% จากการศึกษาพบว่าวัสดุที่ใช้มีผลต่อค่าความเป็นกรดค่างของ สารละลายในการหมักซึ่งจะมีบทบาทสำคัญต่อการผลิตผลิตภัณฑ์ อีกทั้งการหมักด้วยวิธีการตรึง เซลล์ลงบนซีโอไลต์แบบใช้ซ้ำเพื่อศึกษาประสิทธิภาพของเซลล์ที่ยังคงอยู่หลังจากการใช้ซ้ำเจ็ค รอบได้ก่าเฉลี่ยบิวทานอลที่ผลิตได้คือ 6.5 กรัม/ลิตร จากการศึกษาด้วยกล้องจุลทรรศน์อิเล็กตรอน ชนิดส่องกราด (SEM) พบว่าเซลล์ Clostridium beijerinckii ได้ปรากฏอยู่ทั้งบนผิวและรูพรุนของ วัสดุ

ACKNOWLEDGEMENTS

I would like to express my grateful appreciation to Assoc. Prof. Apanee Luengnaruemitchai for her support and advice throughout this thesis work. I also would like to express my sincere thanks to Assoc. Prof Sujitra Wongkasemjit, Asst. Prof. Thanyalak Chaisuwan, and Dr. Ruengsak Thitiratsakul for their kindness being my co-advisor and committee. In addition, I would like to special thank for Dr. Akarin Boonsombuti who fully supported and gave useful suggestions for experimental problem solving to me.

This thesis work would have not been successful without the assistance from The Petroleum and Petrochemical College, The Center of Excellence on Petrochemical and Materials Technology, and National Research University Project of ChE and the Ratchadaphiseksomphot Endowment Fund (EN269B-56) that provided all facilities and funding support.

Finally, I most gratefully acknowledge my family and my friends for all their support and encouragement throughout the period of this research.

TABLE OF CONTENTS

	Title P	age	i
	Abstra	ct (in English)	iii
	Abstra	ct (in Thai)	iv
	Ackno	wledgements	v
	Table of Contents		vi
	List of	Tables	x
	List of	Figures	xi
CHA	PTER		
	I	INTRODUCTION	1
	II	LITERATURE REVIEW	3
		2.1 Butanol	3
		2.1.1 Properties of Butanol	3
		2.1.2 Butanol as fuel	5
		2.2 Biobutanol	6
		2.2.1 Biological Process	6
		2.3 Acetone-Butanol-Ethanol (ABE) Fermentation	7
		2.3.1 Microbes	8
		2.3.2 Culture medium	9
		2.3.3 Metabolic Pathway	10
		2.3.4 Immobilization	12
		2.4 Materials for cells immobilization	23
		2.4.1 Brick	23
		2.4.2 Activated carbon	24
		2.4.3 Zeolite 13X	25

III	EXPERIMENTAL	27
	3.1 Materials and Chemicals	27

IV

3.2 Equipment	27
3.3 Methodology	28
3.3.1 Preparation of Carriers for Cell Immobilization	28
3.3.2 Medium Preparation	28
3.3.3 Inoculum Development	29
3.3.4 Fermentation	29
3.3.5 Repeated Batch Fermentation	29
3.4 Analysis Method	30
3.4.1 High Performance Liquid Chromatography	
(HPLC)	30
3.4.2 Gas Chromatography (GC)	30
3.4.3 UV-VIS Technique (UV)	30
3.4.4 Scanning Electron Microscope (SEM)	30
3.4.5 X-Ray Diffraction (XRD)	31
3.4.6 Surface Area Analysis (BET)	31
3.4.7 pH Meter	31
3.4.8 X-ray Fluorescence Spectroscopy (XRF)	31
RESULTS AND DISCUSSION	33
4.1 Materials Characterization	33
4.1.1 Material composition	33
4.1.1.1 Brick (XRF)	33
4.1.1.2 Activated Carbon (SEM/EDS)	34
4.1.1.3 Zeolite 13X (XRF)	35
4.1.2 X-ray Diffraction (XRD)	36
4.1.2.1 Brick	36
4.1.2.2 Activated Carbon	37
4.1.2.3 Zeolite	38
4.1.3 Surface Area Measurement (SAA)	39
4.1.4 Initial pH of Materials Measurement	40

41
- T T
42
43
43
46
49
52
56
57
58
60
60 60
60 60 60
60 60 60
60 60 60 61
60 60 60 61
60 60 61 73
60 60 61 73
 60 60 60 61 73 73
 60 60 60 61 73 73
 60 60 60 61 73 73 75
 60 60 60 61 73 73 75
 60 60 60 61 73 73 75 76

CURRICULUM VITAE

85

LIST OF TABLES

TABLE

2.1	Structures, properties and main applications of n-butanol, 2-	
	Butanol, iso-Butanol and tert-Butanol	3
2.2	Properties of butanol and other fuels	5
2.3	Comparison of continuous reactor performance with	
	different cell immobilization techniques	14
2.4	Chemical composition of brick	24
2.5	Chemical composition of zeolite 13X	26
4.1	XRF analysis for composition of brick	33
4.2	EDS analysis for composition of activated carbon	34
4.3	XRF analysis for composition of treated and untreated	
	zeolite 13X	35
4.4	BET surface area, total pore volume, and average pore	
	diameter of materials	39
4.5	Initial pH of materials	40
4.6	ABE production from different fermentation operations	56
Al	Retention time of substances	73

LIST OF FIGURES

FIGURE

2.1	Butanol production process from lignocellulosic feedstocks.	7
2.2	Separation outline for gram-negative rods and cocci.	8
2.3	SEM of Clostridium beijerinckii NCIMB 8052.	9
2.4	Metabolic pathway of C. acetobutylicum. The following	
	enzymes are shown: hydrogenase (1), NAD-linked Fd	
	oxidoreductase (2). CoA, Coenzyme A.	11
2.5	Basic methods of cells immobilization: (a) Entrapment with	
	a matrix, (b) Attachment or adsorption to a preformed	
	carrier, (c) self-aggregation of cells and (d) cells contained	
	behind a barrier.	12
2.6	Comparison of glucose consumption and butanol production	
	between the batch with free cells and cells immobilized on	
	bricks.	16
2.7	Scanning electron micrographs of immobilized cells on	
	bricks: (a) before the immobilization and (b) after the	
	immobilization.	17
2.8	(a) Structures of graphite (g), carbon nanotube (nt) and	
	fullerene (f). (b) Graphitizing carbon (gc) and non-	
	graphitizing carbon (ngc).	25
4.1	X-Ray diffraction pattern of brick.	36
4.2	X-Ray diffraction pattern of activated carbon.	37
4.3	X-Ray diffraction pattern of treated and untreated zeolite	
	13X.	38
4.4	Scanning electron microscope images of materials before the	
	immobilization; (a) brick, (b) activated carbon, (c) untreated	
	zeolite, (d) treated zeolite.	41

FIGURE

4.5	Scanning electron microscope images of materials after the	
	immobilization; (a) brick, (b) activated carbon, and (c)	
	zeolite.	42
4.6	pH profile of free mobilized cells fermentation.	43
4.7	Glucose profile of free mobilized cells fermentation.	44
4.8	Acids production of free mobilized cells fermentation.	45
4.9	Solvents production of free mobilized cells fermentation.	45
4.10	Growth curve of Clostridium beijerinckii TISTR 1461.	46
4.11	pH profile of immobilized cells fermentation on brick.	47
4.12	Glucose profiles of immobilized cells fermentation on brick	
	compared with free cell system.	47
4.13	Acids production of immobilized cells fermentation on	
	brick.	48
4.14	Solvents production of immobilized cells fermentation on	
	brick.	49
4.15	pH profile of immobilized cells fermentation on activated	
	carbon.	49
4.16	Glucose profile of immobilized cells fermentation on	
	activated carbon compared with free cell system.	50
4.17	Acids production of immobilized cells fermentation on	
	activated carbon.	52
4.18	Solvents production of immobilized cells fermentation on	
	activated carbon.	52
4.19	pH profile of immobilized cells fermentation on zeolite.	53
4.20	Glucose profile of immobilized cells fermentation on zeolite	
	compared with free cell system.	54

FIGURE

4.21	Acids production of immobilized cells fermentation on	
	zeolite.	55
4.22	Solvents production of immobilized cells fermentation on	
	zeolite.	56
4.23	The repeated batch fermentation with immobilized cells on	
	zeolite.	58
Al	Calibration curve of glucose, acids, and solvents. Symbols;	
	(a) calibration curve of glucose, (b) calibration curve of	
	acetic acid, (c) calibration curve of butyric acid, (d)	
	calibration curve of acetone, (e) calibration curve of butanol,	
	and (f) calibration curve of ethanol.	74
B1	Calibration curve of acetone-butanol-ethanol. Symbols; (a)	
	calibration curve of acetone, (b) calibration curve of butanol,	
	and (c) calibration curve of ethanol.	75
C1	pH profile of immobilized cells fermentation on untreated	
	zeolite.	76
C2	Glucose profile of immobilized cells fermentation on	
	untreated zeolite.	77
C3	Solvents production of immobilized cells fermentation on	
	untreated zeolite.	77
D1	Scanning electron microscope images of brick before the	
	immobilization; (a) magnification x1000, (b) magnification	
	x3000, (c) magnification x5000.	78
D2	Scanning electron microscope images of activated carbon	
	before the immobilization; (a) magnification x1000, (b)	
	magnification x3000, (c) magnification x5000.	79

FIGURE

D3	Scanning electron microscope images of untreated zeolite	
	before the immobilization; (a) magnification x1000, (b)	
	magnification x3000, (c) magnification x5000.	80
D4	Scanning electron microscope images of treated zeolite	
	before the immobilization; (a) magnification x1000, (b)	
	magnification x3000, (c) magnification x5000.	81
D5	Scanning electron microscope images of brick after the	
	immobilization at different magnification.	82
D6	Scanning electron microscope images of activated carbon	
	after the immobilization at different magnification.	83
D7	Scanning electron microscope images of zeolite after the	
	immobilization at different magnification.	84